Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Oct 3;71(Pt 11):1283–1286. doi: 10.1107/S2056989015017867

Crystal structure of benzene-1,3,5-tri­carb­oxy­lic acid–4-pyridone (1/3)

Selena L Staun a, Allen G Oliver a,*
PMCID: PMC4644998  PMID: 26594492

A 5:1 mixture of 4-hy­droxy­pyridine with benzene 1,3,5-tri­carb­oxy­lic acid in methanol yields the title hydrogen-bonded framework compound. This compound crystallizes in the ortho­rhom­bic space group Pna21 and is a polymorph of the same stoichiometric species, reported in Cc.

Keywords: crystal structure, hydrogen-bond framework, polymorph

Abstract

Slow co-crystallization of a solution of benzene-1,3,5-tri­carb­oxy­lic acid with a large excess of 4-hy­droxy­pyridine produces an inter­penetrating, three-dimensional, hydrogen-bonded framework consisting of three 4-pyridone and one benzene-1,3,5-tri­carb­oxy­lic acid mol­ecules, C9H6O6·3C5H5NO. This structure represents an ortho­rhom­bic polymorph of the previously reported C-centered, monoclinic structure [Campos-Gaxiola et al. (2014). Acta Cryst. E70, o453–o454].

Chemical context  

We have been inter­ested in the co-crystallization properties of benzene carb­oxy­lic acid derivatives (namely: benzene-1,4-di­carb­oxy­lic acid and benzene-1,3,5-tri­carb­oxy­lic acid) with 3- and 4-hy­droxy­pyridines (Staun & Oliver, 2012, 2015; Bhogala et al., 2005). A variety of 3-hy­droxy­pyridine co-crystallants with benzene carb­oxy­lic acids have already been reported and we discontinued pursuit of those materials (Shattock et al., 2008). Both 4-hy­droxy­pyridine and benzene-1,3,5-tri­carb­ox­ylic acid have been used extensively in both metal-organic frameworks as well as suitable donor/acceptor species in crystal engineering (see for example: Castillo et al., 2001; Qian et al., 2014). Recently we reported the characterization of the 1:1 co-crystallant 4-hy­droxy­pyridinium 3,5-di­carb­oxy­benzoate (Staun & Oliver, 2015). We also discovered that from similar preparative conditions (slow evaporation from methanol) with a larger molar ratio of 4-hy­droxy­pyridine to benzene-1,3,5-tri­carb­oxy­lic acid (BTC) a new species could be obtained; reported herein. A comparison of the structure with the Cambridge Structure Database revealed an identical structural motif, albeit in a different crystal system (Campos-Gaxiola et al., 2014). Thus, we report the ortho­rhom­bic polymorph of benzene-1,3,5-tri­carb­oxy­lic acid–4-pyridone (1/3).graphic file with name e-71-01283-scheme1.jpg

Structural commentary  

The dihedral angles formed by the carb­oxy­lic acid moieties with respect to the benzene ring are 2.95 (16), 6.23 (10) and 10.28 (18)°. These are comparable with those for the previously reported polymorph of this compound [3.9 (2), 9.3 (2), and 13.3 (2)°; Campos-Gaxiola et al., 2014]. It should be noted that the 4-hy­droxy­pyridine has undergone rearrangement from a hy­droxy­pyridine to the pyridone form of the mol­ecule as previously observed (Tyl et al., 2008). The 4-pyridone C—O bond distances range from 1.280 (8) to 1.295 (8) Å. These distances are comparable with previously reported examples of this mol­ecule (Staun & Oliver, 2012; Tyl et al., 2008). Inspection of the bond distances about each pyridone ring shows a slight tendency for the C—C bonds α to the nitro­gen [1.347 (12) to 1.371 (11) Å] to be shorter than those to the carbonyl carbon [1.410 (11) to 1.421 (10) Å]. This supports the proposed formal, localized double bond along the ‘edges’ of the pyridone ring.

Two of the three 4-pyridone rings are co-planar with the benzene tri­carb­oxy­lic acid moiety, similar to that of the previously reported structure (Campos-Gaxiola et al., 2014). The remaining 4-pyridone is essentially perpendicular to this plane, also similar to the Campos-Gaxiola structure (Table 1).

Table 1. Pyridone / BTC interplanar angles ().

Pyridone ring This work Campos-Gaxiola
N1 7.3(2) 12.9
N2 8.5(2) 13.2
N3 87.5(3) 87.1

Supra­molecular features  

Each of the pyridone mol­ecules forms a hydrogen-bonded chain of symmetry-related mol­ecules. N1 and N2 form hydrogen bonds to O1i and O2ii, respectively, related by the crystallographic n-glide [symmetry codes: (i) x − Inline graphic, −y + Inline graphic, z; (ii) x + Inline graphic, −y + Inline graphic, z]. N3 forms hydrogen bonds to O3iii and O6iv related by translation along the crystallographic c-axis and the [Inline graphic01] direction, respectively [symmetry codes: (iii) x, y, z + 1; (iv) x − 1, y, z + 1). Thus N3 forms a bifurcated hydrogen bond. These chains of hydrogen-bonded pyridone mol­ecules are bridged by the BTC mol­ecule. Each carb­oxy­lic acid moiety on BTC donates a hydrogen bond to a nearby pyridone carbonyl oxygen (Fig. 1, Table 2). These OCOOH⋯Opy contacts are short for O—H⋯O contacts indicating strong inter­molecular hydrogen bonding. As a result of the N3 pyridone being oriented almost perpendicular to the plane of the other three mol­ecules, the resulting architecture is a three-dimensional hydrogen-bonded network. The BTC, N1 and N2 pyridone mol­ecules form a graph-set Inline graphic(44) ring that is parallel with the ab plane (Macrae et al., 2008). This corresponds with that observed by Campos-Gaxiola et al. The BTC and N3 pyridone form an Inline graphic(30) ring that is perpendicular to the previous ring. Further inspection of this network reveals that there are two independent, inter­penetrating networks (Fig. 2). The BTC mol­ecules in the two networks form typical slipped π–π-stacks [CgCg = 3.592 (5) Å, Cgperp = 3.302 (4) Å; Cg represents the center of gravity of the ring, perp is the shortest perpendicular distance; Spek, 2009]. Other potential π–π contacts are beyond 4 Å. Due to the efficient packing of these mol­ecules there is a significant number of close C—H⋯O contacts, primarily between pyridone carbon atoms and carb­oxy­lic acid oxygen atoms, with one notable example being a contact from C9 to O3v [symmetry code: (v) x + 1, y, z].

Figure 1.

Figure 1

Labeling scheme for title compound. Atomic displacement ellipsoids are depicted at the 50% probability level. Dashed lines represent hydrogen bonds within the asymmetric unit.

Table 2. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
N1H1NO1i 0.88 1.89 2.762(8) 169
N2H2NO2ii 0.88 1.90 2.711(8) 152
N3H3NO3iii 0.88 2.01 2.773(10) 144
N3H3NO6iv 0.88 2.59 3.124(9) 120
O5H5OO1 0.84 1.75 2.555(7) 161
O7H7OO2 0.84 1.73 2.463(7) 145
O9H9OO3 0.84 1.70 2.526(7) 167
C1H1O4i 0.95 2.38 3.227(10) 148
C4H4O5 0.95 2.53 3.174(9) 126
C6H6O7ii 0.95 2.26 3.051(9) 140
C7H7O8ii 0.95 2.66 3.530(9) 153
C9H9O3v 0.95 2.58 3.227(9) 126
C11H11O6iv 0.95 2.46 3.076(11) 123
C11H11O9vi 0.95 2.55 3.159(9) 122
C12H12O6vii 0.95 2.49 3.302(11) 143
C14H13O4viii 0.95 2.60 3.405(10) 143
C15H15O8iii 0.95 2.66 3.608(10) 178

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic; (vii) Inline graphic; (viii) Inline graphic.

Figure 2.

Figure 2

Space-filling views displaying the inter­penetrating networks (a) along the a axis; (b) along the c axis.

Database survey  

A search in the Cambridge Structural Database (CSD, Version 5.36 plus 3 updates; Groom & Allen, 2014) for 4-hy­droxy­pyridine with benzene-1,3,5-tri­carb­oxy­lic acid produced only one hit. The compound is closely related to the title compound, namely: benzene-1,3,5-tri­carb­oxy­lic acid-pyridin­ium-2-olate (1/3) (Campos-Gaxiola et al., 2014). However, the structure is reported to be in the monoclinic space group Cc.

Comparison with the structure of the monoclinic polymorph  

Inspection of an overlay of the two structures reveals some differences between the two polymorphs (Fig. 3). The orientation of the carb­oxy­lic acid groups of the BTC in the title compound has one ‘reversed’ with respect to the others, while the Campos-Gaxiola structure has all three oriented in the same direction, forming a propeller-like motif about the BTC. This results in a change in the hydrogen-bonding motif, reversing the orientations of the pyridone moieties. Perhaps the most prominent structural change is the orientation of the pyridone perpendicular to the plane of the BTC. In the title compound the pyridone rings are oriented with planes that are parallel to each other along the channels they occupy and are related by the screw axis parallel to the c axis. The perpendicular pyridone rings in the Campos-Gaxiola structure alternate their orientation along the channel, related by the c-glide. The change in hydrogen-bonding directionality is propagated to the orientation of the N1 and N2 pyridone chains. Examining the orientation of the carbonyl of the pyridone in these two chains reveals that the Campos-Gaxiola structure has the N1 and N2 chains oriented with the carbonyl along the a-axis forming a ‘parallel‘ alignment of the adjacent pyridone chains; again the c-glide is the cause for this arrangement. The N1 and N2 chains in the title compound adopt an ‘anti-parallel’ orientation with carbonyls in one chain being oriented in the opposite direction to the next chain, again a function of the screw axis. This is highlighted in Fig. 3 with the pyridone chain on the left of the figure showing an overlap of the pyridone rings between the two structures and the chain on the right of the figure showing the opposite orientation of the pyridone rings.

Figure 3.

Figure 3

Overlay of the title compound (red) with the Campos-Gaxiola (light green) structure. The BTC moiety is used as the target for overlay. The view is along the c axis of both structures. Non-H atoms depicted as arbitrary spheres, H atoms as short sticks.

Synthesis and crystallization  

The compound was formed by dissolving 4-hy­droxy­pyridine (0.112 g, 1.18 mmol) in methanol (3 mL) and benzene 1,3,5-tri­carb­oxy­lic acid (0.052 g, 0.24 mmol) in methanol (3 mL). The two solutions were combined and allowed to evaporate over 5 d yielding crystals suitable for diffraction studies. The crystallization process yields crystals of both the previously reported 1:1 co-crystal (Staun & Oliver, 2015) and those of the title compound. Presumably the differences in solvent composition and time for crystallization can yield one polymorph over the other. Several crystallization attempts were made using the methodology described herein (slow evaporation from methanol) and all yielded mixtures of the 1:1 and the 3:1 co-crystals reported herein. No evidence of the Campos-Gaxiola structure was observed within the crystals examined (reported as colorless rectangular prisms).

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. Where possible, hydrogen atoms were initially located from a difference Fourier map and were subsequently refined using a riding model with C—H = 0.95 Å, N—H = 0.88 Å and O—H = 0.84 Å. U iso(H) was set to 1.2U eq(C/N) and 1.5U eq(O). The reliability for the correct enanti­omorph of the space group is low, due to the use of Mo Kα radiation with a light atom structure. Analysis of the Flack x [0.1 (10); Flack, 1983], Hooft y [0.2 (10); Hooft et al., 2008] and Parsons z [−0.2 (12); Parsons et al., 2013] parameters tends to indicate that the correct enanti­omorph of the space group and absolute structure has been determined (Flack & Bernardinelli, 1999). Since these values are not close to zero the model could be refined as a racemic twin. However, this does not yield new or useful information and we have retained the standard model.

Table 3. Experimental details.

Crystal data
Chemical formula C9H6O63C5H5NO
M r 495.44
Crystal system, space group Orthorhombic, P n a21
Temperature (K) 120
a, b, c () 12.699(3), 26.498(6), 6.6591(14)
V (3) 2240.9(8)
Z 4
Radiation type Mo K
(mm1) 0.11
Crystal size (mm) 0.11 0.07 0.05
 
Data collection
Diffractometer Bruker APEXII
Absorption correction Multi-scan (SADABS; Krause et al., 2015)
T min, T max 0.647, 0.745
No. of measured, independent and observed [I > 2(I)] reflections 19034, 3257, 2418
R int 0.109
max () 23.4
(sin /)max (1) 0.558
 
Refinement
R[F 2 > 2(F 2)], wR(F 2), S 0.069, 0.171, 1.04
No. of reflections 3257
No. of parameters 328
No. of restraints 1
H-atom treatment H-atom parameters constrained
max, min (e 3) 0.43, 0.43

Computer programs: APEX2 and SAINT (Bruker 2012), SHELXS97 (Sheldrick, 2008), SHELXL2014/7 (Sheldrick, 2015), OLEX2 (Dolomanov et al., 2009), Mercury (Macrae et al., 2008) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989015017867/zl2644sup1.cif

e-71-01283-sup1.cif (591.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015017867/zl2644Isup2.hkl

e-71-01283-Isup2.hkl (260.2KB, hkl)

CCDC reference: 1427116

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

C9H6O6·3C5H5NO Dx = 1.469 Mg m3
Mr = 495.44 Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pna21 Cell parameters from 1078 reflections
a = 12.699 (3) Å θ = 3.1–19.2°
b = 26.498 (6) Å µ = 0.11 mm1
c = 6.6591 (14) Å T = 120 K
V = 2240.9 (8) Å3 Rod, colorless
Z = 4 0.11 × 0.07 × 0.05 mm
F(000) = 1032

Data collection

Bruker APEXII diffractometer 3257 independent reflections
Radiation source: fine-focus sealed tube 2418 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.109
Detector resolution: 8.33 pixels mm-1 θmax = 23.4°, θmin = 1.5°
combination of ω and φ–scans h = −14→14
Absorption correction: multi-scan (SADABS; Krause et al., 2015) k = −29→29
Tmin = 0.647, Tmax = 0.745 l = −7→7
19034 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.069 H-atom parameters constrained
wR(F2) = 0.171 w = 1/[σ2(Fo2) + (0.1002P)2] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max < 0.001
3257 reflections Δρmax = 0.43 e Å3
328 parameters Δρmin = −0.43 e Å3
1 restraint Absolute structure: Flack x determined using 801 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013).
Primary atom site location: structure-invariant direct methods Absolute structure parameter: 0.1 (10)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.4424 (4) 0.29680 (18) 0.8670 (10) 0.0258 (14)
N1 0.1387 (5) 0.2479 (3) 0.8807 (11) 0.0282 (18)
H1N 0.0730 0.2374 0.8841 0.034*
C1 0.2175 (6) 0.2147 (3) 0.9013 (15) 0.029 (2)
H1 0.2017 0.1799 0.9202 0.035*
C2 0.3205 (6) 0.2300 (3) 0.8955 (14) 0.028 (2)
H2 0.3754 0.2059 0.9094 0.034*
C3 0.3455 (5) 0.2814 (3) 0.8692 (14) 0.023 (2)
C4 0.2598 (6) 0.3152 (3) 0.8499 (14) 0.029 (2)
H4 0.2720 0.3503 0.8335 0.035*
C5 0.1594 (6) 0.2968 (3) 0.8551 (15) 0.030 (2)
H5 0.1023 0.3197 0.8400 0.036*
O2 0.7873 (4) 0.71124 (18) 0.8498 (10) 0.0258 (14)
N2 1.1005 (5) 0.7401 (2) 0.8856 (11) 0.0268 (18)
H2N 1.1684 0.7465 0.8913 0.032*
C6 1.0301 (6) 0.7782 (3) 0.9018 (15) 0.029 (2)
H6 1.0550 0.8116 0.9216 0.034*
C7 0.9253 (6) 0.7700 (3) 0.8907 (14) 0.025 (2)
H7 0.8779 0.7976 0.9023 0.030*
C8 0.8859 (5) 0.7208 (3) 0.8619 (14) 0.0216 (19)
C9 0.9618 (5) 0.6815 (3) 0.8493 (14) 0.026 (2)
H9 0.9392 0.6476 0.8330 0.031*
C10 1.0663 (6) 0.6920 (3) 0.8605 (14) 0.028 (2)
H10 1.1161 0.6654 0.8507 0.034*
O3 0.0529 (4) 0.56842 (19) 0.8945 (9) 0.0217 (14)
N3 −0.0040 (5) 0.5697 (3) 1.4925 (12) 0.0283 (19)
H3N −0.0161 0.5691 1.6226 0.034*
C11 −0.0812 (6) 0.5564 (3) 1.3647 (15) 0.023 (2)
H11 −0.1479 0.5468 1.4167 0.028*
C12 −0.0659 (7) 0.5566 (3) 1.1636 (14) 0.025 (2)
H12 −0.1218 0.5476 1.0756 0.030*
C13 0.0335 (6) 0.5702 (3) 1.0850 (13) 0.020 (2)
C14 0.1109 (6) 0.5847 (3) 1.2259 (13) 0.023 (2)
H13 0.1780 0.5954 1.1794 0.027*
C15 0.0916 (7) 0.5838 (3) 1.4248 (13) 0.022 (2)
H15 0.1453 0.5931 1.5172 0.026*
O4 0.6262 (4) 0.39539 (18) 0.7880 (11) 0.0327 (16)
O5 0.4504 (3) 0.39158 (18) 0.7983 (10) 0.0270 (14)
H5O 0.4625 0.3607 0.8143 0.040*
O6 0.7915 (4) 0.57133 (19) 0.7531 (10) 0.0257 (14)
O7 0.6792 (4) 0.63488 (19) 0.8051 (13) 0.046 (2)
H7O 0.7346 0.6513 0.8273 0.069*
O8 0.2964 (4) 0.61537 (19) 0.7789 (11) 0.0293 (14)
O9 0.2359 (4) 0.53621 (19) 0.8195 (9) 0.0261 (15)
H9O 0.1794 0.5512 0.8474 0.039*
C16 0.5281 (5) 0.4719 (3) 0.7808 (14) 0.0161 (17)
C17 0.6164 (5) 0.5025 (3) 0.7756 (13) 0.0196 (19)
H17 0.6845 0.4878 0.7736 0.023*
C18 0.6062 (5) 0.5544 (3) 0.7733 (13) 0.0163 (17)
C19 0.5061 (6) 0.5761 (3) 0.7777 (14) 0.0200 (18)
H19 0.4990 0.6118 0.7774 0.024*
C20 0.4175 (5) 0.5460 (3) 0.7823 (13) 0.0177 (18)
C21 0.4275 (6) 0.4933 (3) 0.7853 (14) 0.0195 (18)
H21 0.3667 0.4725 0.7903 0.023*
C22 0.5408 (6) 0.4164 (3) 0.7873 (14) 0.0229 (19)
C23 0.3122 (5) 0.5701 (3) 0.7927 (13) 0.021 (2)
C24 0.7028 (6) 0.5873 (3) 0.7757 (14) 0.0204 (18)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.011 (3) 0.021 (3) 0.046 (4) −0.002 (2) 0.004 (3) 0.002 (3)
N1 0.013 (3) 0.029 (4) 0.043 (5) −0.010 (3) 0.004 (4) −0.003 (4)
C1 0.024 (5) 0.025 (5) 0.040 (6) −0.008 (4) −0.001 (4) −0.001 (5)
C2 0.024 (5) 0.024 (5) 0.037 (6) 0.002 (4) 0.005 (4) 0.001 (4)
C3 0.016 (4) 0.024 (4) 0.028 (5) 0.001 (4) −0.001 (4) −0.008 (4)
C4 0.021 (4) 0.026 (5) 0.039 (6) −0.005 (4) 0.000 (5) 0.001 (5)
C5 0.021 (4) 0.030 (5) 0.038 (6) 0.002 (4) −0.002 (4) 0.001 (5)
O2 0.013 (3) 0.022 (3) 0.042 (4) 0.000 (2) −0.004 (3) −0.003 (3)
N2 0.012 (3) 0.030 (4) 0.038 (5) −0.003 (3) −0.003 (4) 0.002 (4)
C6 0.018 (5) 0.021 (5) 0.046 (6) −0.006 (4) 0.000 (4) 0.003 (5)
C7 0.023 (5) 0.014 (4) 0.037 (5) 0.001 (3) 0.001 (4) 0.006 (4)
C8 0.011 (4) 0.028 (5) 0.026 (5) −0.005 (3) −0.006 (4) 0.002 (4)
C9 0.020 (4) 0.014 (4) 0.044 (6) −0.003 (3) 0.002 (4) 0.001 (4)
C10 0.021 (4) 0.025 (5) 0.040 (6) 0.000 (4) 0.004 (4) 0.001 (5)
O3 0.018 (3) 0.025 (3) 0.023 (4) 0.004 (2) 0.001 (3) 0.000 (3)
N3 0.042 (5) 0.019 (4) 0.024 (4) 0.003 (4) 0.001 (4) −0.005 (3)
C11 0.012 (4) 0.022 (5) 0.036 (6) 0.000 (3) 0.003 (4) 0.001 (5)
C12 0.024 (5) 0.017 (5) 0.033 (6) 0.003 (4) −0.003 (4) −0.007 (4)
C13 0.024 (5) 0.006 (4) 0.028 (6) 0.005 (4) 0.001 (4) 0.000 (4)
C14 0.011 (4) 0.026 (5) 0.031 (6) 0.002 (4) −0.002 (4) 0.000 (4)
C15 0.018 (5) 0.024 (5) 0.022 (5) 0.001 (4) −0.007 (4) 0.001 (4)
O4 0.012 (3) 0.023 (3) 0.063 (5) 0.005 (2) 0.006 (3) 0.004 (4)
O5 0.012 (3) 0.018 (3) 0.050 (4) −0.003 (2) 0.000 (3) 0.006 (4)
O6 0.009 (3) 0.025 (3) 0.043 (4) 0.000 (2) 0.001 (3) −0.003 (3)
O7 0.013 (3) 0.021 (3) 0.106 (6) −0.004 (2) 0.011 (4) −0.011 (4)
O8 0.016 (3) 0.019 (3) 0.053 (4) 0.001 (2) 0.000 (3) −0.004 (3)
O9 0.013 (3) 0.022 (3) 0.043 (4) −0.001 (2) 0.006 (3) 0.003 (3)
C16 0.010 (4) 0.016 (4) 0.022 (4) 0.004 (3) −0.003 (4) −0.007 (4)
C17 0.010 (4) 0.027 (4) 0.021 (5) 0.003 (3) 0.000 (4) −0.003 (4)
C18 0.011 (4) 0.015 (4) 0.022 (4) 0.002 (3) 0.002 (4) −0.006 (4)
C19 0.016 (4) 0.019 (4) 0.025 (5) 0.000 (3) 0.000 (4) 0.003 (4)
C20 0.011 (4) 0.014 (4) 0.028 (5) 0.000 (3) −0.003 (4) −0.002 (4)
C21 0.013 (4) 0.022 (4) 0.024 (5) −0.003 (3) 0.001 (4) 0.004 (4)
C22 0.021 (5) 0.023 (4) 0.025 (5) 0.000 (4) 0.003 (4) −0.005 (5)
C23 0.011 (4) 0.021 (5) 0.030 (6) −0.005 (3) −0.003 (4) 0.000 (4)
C24 0.022 (5) 0.016 (4) 0.023 (5) −0.001 (3) 0.002 (4) 0.002 (4)

Geometric parameters (Å, º)

O1—C3 1.295 (8) C11—H11 0.9500
N1—C5 1.334 (10) C12—C13 1.413 (12)
N1—C1 1.340 (10) C12—H12 0.9500
N1—H1N 0.8800 C13—C14 1.413 (12)
C1—C2 1.371 (11) C14—C15 1.347 (12)
C1—H1 0.9500 C14—H13 0.9500
C2—C3 1.410 (11) C15—H15 0.9500
C2—H2 0.9500 O4—C22 1.220 (8)
C3—C4 1.414 (10) O5—C22 1.324 (8)
C4—C5 1.365 (10) O5—H5O 0.8400
C4—H4 0.9500 O6—C24 1.213 (9)
C5—H5 0.9500 O7—C24 1.310 (9)
O2—C8 1.280 (8) O7—H7O 0.8400
N2—C6 1.353 (10) O8—C23 1.221 (8)
N2—C10 1.356 (10) O9—C23 1.332 (8)
N2—H2N 0.8800 O9—H9O 0.8400
C6—C7 1.350 (11) C16—C17 1.385 (9)
C6—H6 0.9500 C16—C21 1.398 (9)
C7—C8 1.410 (10) C16—C22 1.481 (10)
C7—H7 0.9500 C17—C18 1.380 (9)
C8—C9 1.421 (10) C17—H17 0.9500
C9—C10 1.358 (10) C18—C19 1.395 (10)
C9—H9 0.9500 C18—C24 1.506 (10)
C10—H10 0.9500 C19—C20 1.380 (10)
O3—C13 1.293 (10) C19—H19 0.9500
N3—C11 1.345 (10) C20—C21 1.401 (10)
N3—C15 1.348 (10) C20—C23 1.484 (10)
N3—H3N 0.8800 C21—H21 0.9500
C11—C12 1.353 (12)
C5—N1—C1 120.3 (7) C11—C12—C13 119.7 (8)
C5—N1—H1N 119.8 C11—C12—H12 120.2
C1—N1—H1N 119.8 C13—C12—H12 120.2
N1—C1—C2 121.0 (8) O3—C13—C12 121.6 (8)
N1—C1—H1 119.5 O3—C13—C14 121.9 (8)
C2—C1—H1 119.5 C12—C13—C14 116.4 (8)
C1—C2—C3 120.4 (7) C15—C14—C13 121.4 (9)
C1—C2—H2 119.8 C15—C14—H13 119.3
C3—C2—H2 119.8 C13—C14—H13 119.3
O1—C3—C2 121.3 (7) C14—C15—N3 119.8 (8)
O1—C3—C4 122.0 (7) C14—C15—H15 120.1
C2—C3—C4 116.7 (7) N3—C15—H15 120.1
C5—C4—C3 119.4 (7) C22—O5—H5O 109.5
C5—C4—H4 120.3 C24—O7—H7O 109.5
C3—C4—H4 120.3 C23—O9—H9O 109.5
N1—C5—C4 122.2 (7) C17—C16—C21 120.2 (6)
N1—C5—H5 118.9 C17—C16—C22 119.7 (6)
C4—C5—H5 118.9 C21—C16—C22 120.1 (6)
C6—N2—C10 120.0 (6) C18—C17—C16 120.5 (7)
C6—N2—H2N 120.0 C18—C17—H17 119.7
C10—N2—H2N 120.0 C16—C17—H17 119.7
C7—C6—N2 121.8 (8) C17—C18—C19 119.7 (7)
C7—C6—H6 119.1 C17—C18—C24 120.0 (6)
N2—C6—H6 119.1 C19—C18—C24 120.2 (6)
C6—C7—C8 120.4 (7) C20—C19—C18 120.3 (7)
C6—C7—H7 119.8 C20—C19—H19 119.8
C8—C7—H7 119.8 C18—C19—H19 119.8
O2—C8—C7 122.6 (7) C19—C20—C21 120.2 (6)
O2—C8—C9 121.0 (7) C19—C20—C23 119.2 (6)
C7—C8—C9 116.4 (7) C21—C20—C23 120.6 (6)
C10—C9—C8 120.6 (7) C16—C21—C20 119.1 (6)
C10—C9—H9 119.7 C16—C21—H21 120.4
C8—C9—H9 119.7 C20—C21—H21 120.4
N2—C10—C9 120.8 (7) O4—C22—O5 123.0 (7)
N2—C10—H10 119.6 O4—C22—C16 123.4 (7)
C9—C10—H10 119.6 O5—C22—C16 113.6 (6)
C11—N3—C15 121.2 (8) O8—C23—O9 123.6 (6)
C11—N3—H3N 119.4 O8—C23—C20 124.6 (6)
C15—N3—H3N 119.4 O9—C23—C20 111.8 (6)
N3—C11—C12 121.4 (8) O6—C24—O7 124.5 (7)
N3—C11—H11 119.3 O6—C24—C18 123.6 (7)
C12—C11—H11 119.3 O7—C24—C18 111.9 (6)
C5—N1—C1—C2 −0.3 (15) C21—C16—C17—C18 −0.5 (14)
N1—C1—C2—C3 0.5 (15) C22—C16—C17—C18 −178.8 (8)
C1—C2—C3—O1 178.7 (9) C16—C17—C18—C19 0.4 (13)
C1—C2—C3—C4 0.1 (14) C16—C17—C18—C24 177.7 (8)
O1—C3—C4—C5 −179.4 (9) C17—C18—C19—C20 −0.6 (14)
C2—C3—C4—C5 −0.8 (14) C24—C18—C19—C20 −177.8 (8)
C1—N1—C5—C4 −0.4 (15) C18—C19—C20—C21 0.8 (14)
C3—C4—C5—N1 1.0 (15) C18—C19—C20—C23 178.3 (8)
C10—N2—C6—C7 −1.1 (14) C17—C16—C21—C20 0.7 (13)
N2—C6—C7—C8 0.2 (15) C22—C16—C21—C20 179.0 (9)
C6—C7—C8—O2 −179.8 (9) C19—C20—C21—C16 −0.9 (13)
C6—C7—C8—C9 1.0 (14) C23—C20—C21—C16 −178.3 (8)
O2—C8—C9—C10 179.4 (9) C17—C16—C22—O4 −0.2 (15)
C7—C8—C9—C10 −1.4 (14) C21—C16—C22—O4 −178.4 (9)
C6—N2—C10—C9 0.7 (14) C17—C16—C22—O5 177.9 (7)
C8—C9—C10—N2 0.6 (15) C21—C16—C22—O5 −0.3 (13)
C15—N3—C11—C12 0.2 (13) C19—C20—C23—O8 7.1 (15)
N3—C11—C12—C13 1.0 (14) C21—C20—C23—O8 −175.5 (9)
C11—C12—C13—O3 176.6 (8) C19—C20—C23—O9 −172.7 (8)
C11—C12—C13—C14 −2.2 (13) C21—C20—C23—O9 4.7 (12)
O3—C13—C14—C15 −176.3 (8) C17—C18—C24—O6 10.1 (14)
C12—C13—C14—C15 2.4 (13) C19—C18—C24—O6 −172.7 (9)
C13—C14—C15—N3 −1.3 (14) C17—C18—C24—O7 −169.9 (8)
C11—N3—C15—C14 −0.1 (13) C19—C18—C24—O7 7.3 (12)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1N···O1i 0.88 1.89 2.762 (8) 169
N2—H2N···O2ii 0.88 1.90 2.711 (8) 152
N3—H3N···O3iii 0.88 2.01 2.773 (10) 144
N3—H3N···O6iv 0.88 2.59 3.124 (9) 120
O5—H5O···O1 0.84 1.75 2.555 (7) 161
O7—H7O···O2 0.84 1.73 2.463 (7) 145
O9—H9O···O3 0.84 1.70 2.526 (7) 167
C1—H1···O4i 0.95 2.38 3.227 (10) 148
C4—H4···O5 0.95 2.53 3.174 (9) 126
C6—H6···O7ii 0.95 2.26 3.051 (9) 140
C7—H7···O8ii 0.95 2.66 3.530 (9) 153
C9—H9···O3v 0.95 2.58 3.227 (9) 126
C11—H11···O6iv 0.95 2.46 3.076 (11) 123
C11—H11···O9vi 0.95 2.55 3.159 (9) 122
C12—H12···O6vii 0.95 2.49 3.302 (11) 143
C14—H13···O4viii 0.95 2.60 3.405 (10) 143
C15—H15···O8iii 0.95 2.66 3.608 (10) 178

Symmetry codes: (i) x−1/2, −y+1/2, z; (ii) x+1/2, −y+3/2, z; (iii) x, y, z+1; (iv) x−1, y, z+1; (v) x+1, y, z; (vi) −x, −y+1, z+1/2; (vii) x−1, y, z; (viii) −x+1, −y+1, z+1/2.

References

  1. Bhogala, B. R., Basavoju, S. & Nangia, A. (2005). CrystEngComm, 7, 551–562.
  2. Bruker (2012). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Campos-Gaxiola, J. J., Zamora Falcon, F., Corral Higuera, R., Höpfl, H. & Cruz-Enríquez, A. (2014). Acta Cryst. E70, o453–o454. [DOI] [PMC free article] [PubMed]
  4. Castillo, O., Luque, A., Lloret, F. & Román, P. (2001). Inorg. Chim. Acta, 324, 141–149.
  5. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  6. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  7. Flack, H. D. & Bernardinelli, G. (1999). Acta Cryst. A55, 908–915. [DOI] [PubMed]
  8. Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. [DOI] [PubMed]
  9. Hooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst. 41, 96–103. [DOI] [PMC free article] [PubMed]
  10. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
  11. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  12. Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
  13. Qian, J., Jiang, F., Zhang, L., Su, K., Pan, J., Li, Q., Yuan, D. & Hong, M. (2014). Chem. Commun. 50, 1678–1681. [DOI] [PubMed]
  14. Shattock, T. R., Arora, K. K., Vishweshwar, P. & Zaworotko, M. J. (2008). Cryst. Growth Des. 8, 4533–4545.
  15. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  16. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  17. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  18. Staun, S. L. & Oliver, A. G. (2012). Acta Cryst. C68, o84–o87. [DOI] [PubMed]
  19. Staun, S. L. & Oliver, A. G. (2015). Acta Cryst. E71, 861–863. [DOI] [PMC free article] [PubMed]
  20. Tyl, A., Nowak, M. & Kusz, J. (2008). Acta Cryst. C64, o661–o664. [DOI] [PubMed]
  21. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989015017867/zl2644sup1.cif

e-71-01283-sup1.cif (591.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015017867/zl2644Isup2.hkl

e-71-01283-Isup2.hkl (260.2KB, hkl)

CCDC reference: 1427116

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES