Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Oct 24;71(Pt 11):o869. doi: 10.1107/S205698901501909X

Crystal structure of 3-bromo­pyridine N-oxide

Matthew G Hutchinson a, Will E Lynch a, Clifford W Padgett a,*
PMCID: PMC4645004  PMID: 26594570

Abstract

In the title compound, C5H4BrNO, there are two mol­ecules in the asymmetric unit that are related by a pseudo-inversion center. The two independent mol­ecules are approximately planar, with an observed (ring–ring) angle of 5.49 (13)°. The crystal structure exhibits a herringbone pattern with the zigzag running along the b-axis direction. The least-squares plane containing the rings of both asymmetric molecules and the plane containing the symmetrically related mol­ecules make a plane–plane angle of 66.69 (10)°, which makes the bend of the herringbone pattern. The bromo group on one mol­ecule points to the bromo group on the neighboring mol­ecule, with a Br⋯Br inter­molecular distance of 4.0408 (16) Å. The herringbone layer-to-layer distance is 3.431 (4) Å with a shift of 1.742 (7) Å. There are no short contacts, hydrogen bonds, or π–π inter­actions.

Keywords: crystal structure, 3-bromo­pyridine N-oxide, herringbone pattern

Related literature  

For the synthesis of pyridine N-oxide-related compounds, see: Rousseau & Robins (1965). For an example of the chemistry of the title compound and its use in catalysed cyclization of alkynyl oxiranes and oxetanes, see: Gronnier et al. (2012).graphic file with name e-71-0o869-scheme1.jpg

Experimental  

Crystal data  

  • C5H4BrNO

  • M r = 174.00

  • Monoclinic, Inline graphic

  • a = 7.832 (5) Å

  • b = 18.398 (10) Å

  • c = 8.298 (5) Å

  • β = 92.906 (5)°

  • V = 1194.2 (12) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 6.77 mm−1

  • T = 173 K

  • 0.3 × 0.3 × 0.2 mm

Data collection  

  • Rigaku XtaLAB mini diffractometer

  • Absorption correction: multi-scan (REQAB; Rigaku, 1998) T min = 0.189, T max = 0.257

  • 12561 measured reflections

  • 2732 independent reflections

  • 1881 reflections with I > 2σ(I)

  • R int = 0.056

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.041

  • wR(F 2) = 0.092

  • S = 1.09

  • 2732 reflections

  • 146 parameters

  • H-atom parameters constrained

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.67 e Å−3

Data collection: CrystalClear-SM Expert (Rigaku, 2011); cell refinement: CrystalClear-SM Expert; data reduction: CrystalClear-SM Expert; program(s) used to solve structure: SHELXT (Sheldrick, 2015a ); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b ); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2.

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S205698901501909X/lh5792sup1.cif

e-71-0o869-sup1.cif (387KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S205698901501909X/lh5792Isup2.hkl

e-71-0o869-Isup2.hkl (218.6KB, hkl)

Supporting information file. DOI: 10.1107/S205698901501909X/lh5792Isup3.cml

. DOI: 10.1107/S205698901501909X/lh5792fig1.tif

The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level.

CCDC reference: 1430552

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge financial support from Armstrong State University.

supplementary crystallographic information

S1. Structural commentary

Details of the synthesis pyridine N-oxide related compounds appears in the literature Rousseau & Robins (1965). The title compound is used in the catalyzed cyclization of alkynyl oxiranes and oxetanes Gronnier, et al. (2012). The asymmetric unit of the title compound is shown in Fig. 1. There are two molecules in the asymmetric unit that are related by a pseudo-inversion center. The inversion symmetry is broken by the nonplanar arrangement of the two molecules. The two independent molecules are found to be nearly planar with an observed twist angle of 5.49 (13)° and a fold angle of 1.40 (13)°. The distance between O2···Br1 is 4.307 (3) Å and the distance between O1···Br2 is 4.196 (3) Å. The structure exhibits a herringbone pattern with the zigzag running along the b axis. The least-squares plane containing both rings of the asymmetric unit and the plane containing the symmetrically-related molecules have a plane-plane angle of 66.69 (10)°, which makes the bend of the herringbone pattern. The bromo group on one molecule points to the bromo group on the neighboring molecule with the Br1···Br2 inter­molecular distance at 4.0408 (16) Å. The herringbone layer-to-layer distance is 3.431 (4) Å with a shift of 1.742 (7) Å.

S2. Synthesis and crystallization

3-Bromo­pyridine N-oxide was purchased from Sigma-Aldrich and 0.10 g was dissolved in approximately 50 mL of methanol. Diffraction quality crystals were obtained by slow evaporation of the solvent.

S3. Refinement

H atoms were placed in calculated positions with C–H = 0.93Å and Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level.

Crystal data

C5H4BrNO F(000) = 672
Mr = 174.00 Dx = 1.936 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 7.832 (5) Å Cell parameters from 2269 reflections
b = 18.398 (10) Å θ = 1.6–27.4°
c = 8.298 (5) Å µ = 6.77 mm1
β = 92.906 (5)° T = 173 K
V = 1194.2 (12) Å3 Prism, colorless
Z = 8 0.3 × 0.3 × 0.2 mm

Data collection

Rigaku XtaLAB mini diffractometer 2732 independent reflections
Radiation source: Sealed Tube 1881 reflections with I > 2σ(I)
Graphite Monochromator monochromator Rint = 0.056
Detector resolution: 13.6612 pixels mm-1 θmax = 27.5°, θmin = 2.7°
ω scans h = −10→10
Absorption correction: multi-scan (REQAB; Rigaku, 1998) k = −23→23
Tmin = 0.189, Tmax = 0.257 l = −10→10
12561 measured reflections

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.041 w = 1/[σ2(Fo2) + (0.0225P)2 + 1.184P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.092 (Δ/σ)max < 0.001
S = 1.09 Δρmax = 0.50 e Å3
2732 reflections Δρmin = −0.67 e Å3
146 parameters Extinction correction: SHELXL2014 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraints Extinction coefficient: 0.0059 (6)
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br2 0.67164 (6) 0.60185 (3) 0.12441 (6) 0.0635 (2)
Br1 0.49425 (6) 0.20942 (3) 0.64430 (6) 0.0639 (2)
O2 0.3319 (3) 0.40963 (15) 0.4152 (4) 0.0529 (8)
N2 0.3246 (4) 0.46580 (17) 0.3178 (4) 0.0405 (7)
O1 0.8214 (4) 0.41613 (18) 0.3888 (4) 0.0688 (10)
N1 0.8315 (4) 0.36058 (18) 0.4861 (4) 0.0458 (8)
C6 0.4715 (5) 0.4993 (2) 0.2786 (4) 0.0399 (9)
H6 0.5765 0.4832 0.3222 0.048*
C2 0.6948 (5) 0.2634 (2) 0.6143 (4) 0.0423 (9)
C1 0.6861 (5) 0.3230 (2) 0.5159 (5) 0.0439 (9)
H1 0.5814 0.3380 0.4694 0.053*
C7 0.4632 (5) 0.5572 (2) 0.1741 (5) 0.0419 (9)
C3 0.8487 (6) 0.2403 (2) 0.6878 (5) 0.0494 (10)
H3 0.8548 0.1997 0.7547 0.059*
C10 0.1717 (5) 0.4901 (2) 0.2572 (5) 0.0473 (10)
H10 0.0713 0.4681 0.2873 0.057*
C5 0.9832 (5) 0.3399 (2) 0.5567 (5) 0.0500 (10)
H5 1.0818 0.3659 0.5372 0.060*
C4 0.9919 (5) 0.2807 (2) 0.6567 (5) 0.0519 (11)
H4 1.0970 0.2673 0.7049 0.062*
C8 0.3107 (5) 0.5830 (2) 0.1079 (5) 0.0525 (11)
H8 0.3062 0.6223 0.0375 0.063*
C9 0.1645 (5) 0.5475 (3) 0.1510 (5) 0.0571 (12)
H9 0.0589 0.5628 0.1073 0.069*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br2 0.0504 (3) 0.0630 (3) 0.0777 (4) −0.0142 (2) 0.0089 (2) 0.0102 (2)
Br1 0.0534 (3) 0.0706 (4) 0.0674 (3) −0.0198 (2) 0.0011 (2) 0.0044 (2)
O2 0.0458 (17) 0.0450 (17) 0.0679 (19) −0.0009 (13) 0.0033 (15) 0.0144 (14)
N2 0.0385 (19) 0.0358 (18) 0.0471 (18) 0.0008 (14) 0.0014 (15) 0.0007 (14)
O1 0.0456 (19) 0.072 (2) 0.089 (2) 0.0061 (15) 0.0075 (17) 0.0410 (18)
N1 0.0341 (18) 0.049 (2) 0.055 (2) 0.0025 (15) 0.0058 (16) 0.0087 (17)
C6 0.030 (2) 0.044 (2) 0.046 (2) −0.0008 (16) −0.0014 (17) −0.0017 (17)
C2 0.039 (2) 0.047 (2) 0.041 (2) −0.0045 (18) 0.0027 (18) −0.0059 (18)
C1 0.034 (2) 0.052 (3) 0.046 (2) 0.0011 (18) −0.0014 (17) −0.0006 (19)
C7 0.039 (2) 0.040 (2) 0.047 (2) −0.0015 (17) 0.0039 (18) −0.0035 (18)
C3 0.053 (3) 0.046 (2) 0.048 (2) −0.002 (2) −0.009 (2) 0.0049 (19)
C10 0.028 (2) 0.054 (3) 0.060 (3) 0.0035 (18) 0.0047 (19) 0.001 (2)
C5 0.030 (2) 0.061 (3) 0.059 (3) 0.0003 (19) 0.0000 (19) 0.006 (2)
C4 0.041 (2) 0.055 (3) 0.058 (3) 0.006 (2) −0.008 (2) 0.001 (2)
C8 0.046 (3) 0.052 (3) 0.059 (3) 0.010 (2) 0.003 (2) 0.018 (2)
C9 0.039 (2) 0.064 (3) 0.067 (3) 0.014 (2) −0.006 (2) 0.004 (2)

Geometric parameters (Å, º)

Br2—C7 1.892 (4) C1—H1 0.9300
Br1—C2 1.885 (4) C7—C8 1.373 (5)
O2—N2 1.312 (4) C3—H3 0.9300
N2—C6 1.359 (5) C3—C4 1.381 (6)
N2—C10 1.351 (5) C10—H10 0.9300
O1—N1 1.302 (4) C10—C9 1.374 (6)
N1—C1 1.365 (5) C5—H5 0.9300
N1—C5 1.352 (5) C5—C4 1.369 (6)
C6—H6 0.9300 C4—H4 0.9300
C6—C7 1.373 (5) C8—H8 0.9300
C2—C1 1.367 (5) C8—C9 1.380 (6)
C2—C3 1.390 (5) C9—H9 0.9300
O2—N2—C6 119.6 (3) C2—C3—H3 121.7
O2—N2—C10 120.0 (3) C4—C3—C2 116.7 (4)
C10—N2—C6 120.4 (3) C4—C3—H3 121.7
O1—N1—C1 119.0 (3) N2—C10—H10 120.0
O1—N1—C5 120.9 (3) N2—C10—C9 120.0 (4)
C5—N1—C1 120.1 (3) C9—C10—H10 120.0
N2—C6—H6 120.4 N1—C5—H5 119.9
N2—C6—C7 119.2 (3) N1—C5—C4 120.2 (4)
C7—C6—H6 120.4 C4—C5—H5 119.9
C1—C2—Br1 119.0 (3) C3—C4—H4 119.2
C1—C2—C3 121.5 (4) C5—C4—C3 121.7 (4)
C3—C2—Br1 119.4 (3) C5—C4—H4 119.2
N1—C1—C2 119.9 (4) C7—C8—H8 121.7
N1—C1—H1 120.1 C7—C8—C9 116.7 (4)
C2—C1—H1 120.1 C9—C8—H8 121.7
C6—C7—Br2 117.4 (3) C10—C9—C8 121.4 (4)
C6—C7—C8 122.3 (4) C10—C9—H9 119.3
C8—C7—Br2 120.3 (3) C8—C9—H9 119.3
Br2—C7—C8—C9 −179.7 (3) N1—C5—C4—C3 0.4 (7)
Br1—C2—C1—N1 −176.6 (3) C6—N2—C10—C9 2.2 (6)
Br1—C2—C3—C4 177.8 (3) C6—C7—C8—C9 −0.3 (6)
O2—N2—C6—C7 178.8 (3) C2—C3—C4—C5 −0.8 (6)
O2—N2—C10—C9 −177.9 (4) C1—N1—C5—C4 0.8 (6)
N2—C6—C7—Br2 179.8 (3) C1—C2—C3—C4 0.1 (6)
N2—C6—C7—C8 0.4 (6) C7—C8—C9—C10 1.1 (7)
N2—C10—C9—C8 −2.1 (7) C3—C2—C1—N1 1.1 (6)
O1—N1—C1—C2 178.3 (4) C10—N2—C6—C7 −1.4 (5)
O1—N1—C5—C4 −179.0 (4) C5—N1—C1—C2 −1.6 (6)

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: LH5792).

References

  1. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  2. Gronnier, C., Kramer, S., Odabachian, Y. & Gagosz, F. (2012). J. Am. Chem. Soc. 134, 828–831. [DOI] [PubMed]
  3. Rigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.
  4. Rigaku (2011). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.
  5. Rousseau, R. J. & Robins, R. K. (1965). J. Heterocycl. Chem. 2, 196–201.
  6. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  7. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S205698901501909X/lh5792sup1.cif

e-71-0o869-sup1.cif (387KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S205698901501909X/lh5792Isup2.hkl

e-71-0o869-Isup2.hkl (218.6KB, hkl)

Supporting information file. DOI: 10.1107/S205698901501909X/lh5792Isup3.cml

. DOI: 10.1107/S205698901501909X/lh5792fig1.tif

The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level.

CCDC reference: 1430552

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES