Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Oct 28;71(Pt 11):1388–1391. doi: 10.1107/S2056989015019787

Crystal structures of 4-meth­oxy-N-(4-methyl­phenyl)benzene­sulfonamide and N-(4-fluoro­phenyl)-4-meth­oxy­benzene­sulfonamide

Vinola Z Rodrigues a, C P Preema a, S Naveen b,, N K Lokanath c,, P A Suchetan d,*,
PMCID: PMC4645005  PMID: 26594517

In the crystal structures of 4-meth­oxy-N-(4-methyl­phen­yl)benzene­sulfonamide and N-(4-fluoro­phen­yl)-4-meth­oxy­benzene­sulfonamide, the supra­molecular architecture of the former is controlled by C—H⋯πar­yl inter­actions, forming a two-dimensional architecture, while in the latter, a pair of C—H⋯O inter­molecular inter­actions lead to the formation of a three-dimensional architecture.

Keywords: crystal structure, N-(ar­yl)aryl­sulfonamides, C—H⋯O inter­actions, C—H⋯π inter­actions

Abstract

Crystal structures of two N-(ar­yl)aryl­sulfonamides, namely, 4-meth­oxy-N-(4-methyl­phen­yl)benzene­sulfonamide, C14H15NO3S, (I), and N-(4-fluoro­phen­yl)-4-meth­oxy­benzene­sulfonamide, C13H12FNO3S, (II), were determined and analyzed. In (I), the benzene­sulfonamide ring is disordered over two orientations, in a 0.516 (7):0.484 (7) ratio, which are inclined to each other at 28.0 (1)°. In (I), the major component of the sulfonyl benzene ring and the aniline ring form a dihedral angle of 63.36 (19)°, while in (II), the planes of the two benzene rings form a dihedral angle of 44.26 (13)°. In the crystal structure of (I), N—H⋯O hydrogen bonds form infinite C(4) chains extended in [010], and inter­molecular C—H⋯πar­yl inter­actions link these chains into layers parallel to the ab plane. The crystal structure of (II) features N—H⋯O hydrogen bonds forming infinite one dimensional C(4) chains along [001]. Further, a pair of C—H⋯O inter­molecular inter­actions consolidate the crystal packing of (II) into a three-dimensional supra­molecular architecture.

Chemical context  

Sulfonamide drugs were the first among the chemotherapeutic agents to be used for curing and preventing bacterial infection in human beings (Shiva Prasad et al., 2011). They play a vital role as a key constituent in a number of biologically active mol­ecules. Up to now, sulfonamides have been known to exhibit a wide variety of biological activities, such as anti­bacterial (Subhakara Reddy et al., 2012; Himel et al., 1971), anti­fungal (Hanafy et al., 2007), anti­inflamatory (Kuçukguzel et al., 2013), anti­tumor (Ghorab et al., 2011), anti­cancer (Mansour et al., 2011), anti-HIV (Sahu et al., 2007) and anti­tubercular activities (Vora & Mehta, 2012). In recent years, extensive research studies have been carried out on the synthesis and evaluation of pharmacological activities of mol­ecules containing the sulfonamide moiety for different activities, and have been reported to be important pharmacophores (Mohan et al., 2013).

With these considerations in mind and based on our structural study of N-(4-substituted-phen­yl)-4-meth­oxy­benzene­sulfonamides (Vinola et al., 2015), we report herein the crystal structures of 4-meth­oxy-N-(4-methyl­phen­yl)benzene­sulfonamide, (I), and N-(4-fluoro­phen­yl)-4-meth­oxy­benzene­sulfonamide, (II).

Structural commentary  

In (I) (Fig. 1), the benzene­sulfonamide ring is disordered due to rotation across the Car—S(O2) bond over two orientations, with atoms C2, C3, C5 and C6 occupying two positions with a 0.516 (7):0.484 (7) ratio. The dihedral angle between the two parts of disordered benzene ring, i.e. C1/C2A/C3A/C4/C5A/C6A and C1/C2B/C3B/C4/C5B/C6B, is 28.0 (1)°. The dihedral angle between the sulfonyl benzene ring (considering the major component) and the aniline ring is 63.36 (19)°, and the N—C bond in the C—SO2—NH—C segment has a gauche torsion with respect to the S=O bonds. Further, the mol­ecule is twisted at the S—N bond, with a C1—S1—N1—C7 torsion angle of 66.33 (19)°. The meth­oxy group in the sulfonyl­benzene ring is in the same plane as that of the major component of the disordered sulfonyl­benzene ring, the torsion angle C5A—C4—O3—C14 being −176.2 (4)°, while it deviates slightly from planarity with respect to the minor component, the C5B—C4—O3—C14 torsion angle being 165.9 (4)°.

Figure 1.

Figure 1

A view of (I), showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level. Only the major component of the disordered benzene ring is shown.

In (II) (Fig. 2), the dihedral angle between the two benzene rings of 44.26 (13)° is less than that observed in (I), and the N—C bond in the C—SO2—NH—C segment has a gauche torsion with respect to the S=O bonds. Further, the mol­ecule is twisted at the S—N bond, with a C1—S1—N1—C7 torsion angle of 68.4 (2)°. Similar to (I), the meth­oxy group in the sulfonyl­benzene ring is in the same plane as that of the sulfonyl­benzene ring, the C5—C4—O3—C13 torsion angle being 177.0 (2)°.graphic file with name e-71-01388-scheme1.jpg

Figure 2.

Figure 2

A view of (II), showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

Supra­molecular features  

In the crystal structure of (I), N1—H1⋯O2 hydrogen bonds (Table 1) link the mol­ecules into infinite one-dimensional C(4) chains along [010]. Neighbouring C(4) chains are inter­connected via C—H⋯πar­yl inter­actions (Table 1) into layers (Fig. 3) parallel to the ab plane.

Table 1. Hydrogen-bond geometry (Å, °) for (I) .

Cg is the centroid of the C7–C12 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.89 (1) 2.13 (1) 3.010 (2) 170 (2)
C14—H14BCg ii 0.96 2.70 3.541 (2) 146
C9—H9⋯Cg iii 0.93 2.87 3.560 (2) 132

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Figure 3.

Figure 3

A portion of the crystal packing of (I), viewed approximately along [010] and showing inter­molecular hydrogen bonds as thin blue lines. Only the major component of the disordered benzene ring is shown. H atoms not involved in hydrogen bonding have been omitted for clarity.

The crystal structure of (II) features N1—H1⋯O2 hydrogen bonds (Fig. 4 and Table 2), forming infinite one-dimensional C(4) chains along [001]. Further, weak inter­molecular C—H⋯O inter­actions (Table 2) consolidate the crystal packing of (II), leading to a three-dimensional supra­molecular architecture (Fig. 5).

Figure 4.

Figure 4

An N—H⋯O hydrogen-bonded (thin blue lines) chain of mol­ecules in the crystal structure of (II).

Table 2. Hydrogen-bond geometry (Å, °) for (II) .

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.90 (1) 2.06 (1) 2.951 (3) 171 (3)
C6—H6⋯O1ii 0.93 2.55 3.192 (3) 127
C13—H13B⋯O3iii 0.96 2.60 3.468 (3) 151

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Figure 5.

Figure 5

A portion of the crystal packing of (II). Thin blue lines denote inter­molecular C—H⋯O hydrogen bonds. H atoms not involved in hydrogen bonding have been omitted for clarity.

Database survey  

Three N-(4-substituted-phen­yl)-4-meth­oxy­benzene­sul­fon­am­ides (Vinola et al., 2015), namely, 4-meth­oxy-N-(phen­yl)benzene­sulfonamide, (III), 4-meth­oxy-N-(4-meth­oxy­phen­yl)benzene­sulfonamide, (IV), and N-(4-chloro­phen­yl)-4-meth­oxy­benzene­sulfonamide, (V), have been reported previously. Compounds (IV) and (V) crystallize in monoclinic syngony, while compound (III) crystallizes in ortho­rhom­bic syngony. The dihedral angles between the two benzene rings in (III), (IV) and (V) are 55.1 (1), 56.3 (1) and 42.6 (1)°, respectively. Comparison of the dihedral angles between the two benzene rings in (I)–(V) shows that, when an electron-donating substituent is introduced into the para position of the aniline ring of (I) it results in a slight increase in the dihedral angle, whereas, when an electron-withdrawing substituent is introduced it decreases the dihedral angle. Further, the mol­ecules of (III), (IV) and (V) are twisted at the S—N bond, with C1—S1—N1—C7 torsion angles of −72.9 (1), 66.2 (1) and 72.5 (1)°, respectively. These values are similar to those observed in (I) and (II).

Comparison of the crystal structures (I) and (V) shows that the effect of introducing an electron-donating substituent into the para position of the aniline ring of (I) is quite different than that due to electron-withdrawing substituents. The crystal structure of (III) features N—H⋯O hydrogen bonds that form C(4) chains, and thus, the supra­molecular architecture is one-dimensional. In (IV), one N—H⋯O hydrogen bond and two alternating C—H⋯πar­yl (centroid of aniline ring) inter­actions direct a two-dimensional architecture. This is quite similar to the crystal structure of (I). Thus, the methyl and meth­oxy groups on the aniline ring have similar influence on the crystal structures of these compounds. However, the crystal structures of (II) and (V) are very different. The crystal structure of (V) features N—H⋯O hydrogen bonds that form C(4) chains. Further, (V) does not feature any structuredirecting inter­molecular inter­actions, and thus, the structure is one-dimensional. In contrast to this, the crystal structure of (II) features an N—H⋯O and two C—H⋯O inter­actions, leading to a three-dimensional architecture. Thus, the Cl and F atoms on the aniline ring have very different influences on the crystal structures of these compounds.

Synthesis and crystallization  

Compounds (I) and (II) were prepared according to the literature method of Vinola et al. (2015). The purity of the compounds were checked by determining the melting points. Single crystals used for X-ray diffraction studies were obtained by slow evaporation of ethanol solutions of the compounds at room temperature.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. The amino H atoms were located in a difference map and were refined isotropically with the bond-length restraint N—H = 0.90 (1) Å. To improve considerably the values of R1, wR2, and S (goodness-of-fit), a partially obscured reflection (i.e. 100) was omitted from the final refinement of (I). The two parts (A and B) of the disordered benzene­sulfonyl ring in (I) were restrained to be planar (FLAT instruction), and thus, the r.m.s. deviations (considering non-H atoms) observed for the planes defining the two rings are 0.047 (1) (major-component ring A) and 0.054 (1) Å (minor-component ring B). The disordered atoms (C2, C3, C5 and C6) in both components were isotropically refined, and the C—C bond lengths were restrained to 1.391 (1) Å.

Table 3. Experimental details.

  (I) (II)
Crystal data
Chemical formula C14H15NO3S C13H12FNO3S
M r 277.33 281.30
Crystal system, space group Monoclinic, P21/c Orthorhombic, P n a21
Temperature (K) 296 296
a, b, c (Å) 14.5604 (5), 5.2459 (2), 17.6094 (6) 20.2188 (13), 12.1199 (8), 5.1770 (3)
α, β, γ (°) 90, 95.205 (2), 90 90, 90, 90
V3) 1339.50 (8) 1268.62 (14)
Z 4 4
Radiation type Cu Kα Cu Kα
μ (mm−1) 2.19 2.44
Crystal size (mm) 0.33 × 0.27 × 0.21 0.32 × 0.27 × 0.22
 
Data collection
Diffractometer Bruker APEXII Bruker APEXII
Absorption correction Multi-scan (SADABS; Bruker, 2009) Multi-scan (SADABS; Bruker, 2009)
T min, T max 0.517, 0.632 0.481, 0.585
No. of measured, independent and observed [I > 2σ(I)] reflections 7071, 2139, 2047 5438, 1830, 1784
R int 0.042 0.037
(sin θ/λ)max−1) 0.583 0.583
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.048, 0.145, 1.12 0.034, 0.100, 1.09
No. of reflections 2139 1830
No. of parameters 175 177
No. of restraints 19 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.45, −0.43 0.30, −0.35
Absolute structure Flack (1983), 973 Friedel pairs
Absolute structure parameter 0.08 (2)

Computer programs: APEX2, SAINT-Plus and XPREP (Bruker, 2009), SHELXS97 and SHELXL97 (Sheldrick, 2008) and Mercury (Macrae et al., 2008).

Supplementary Material

Crystal structure: contains datablock(s) I, II, global. DOI: 10.1107/S2056989015019787/cv5497sup1.cif

e-71-01388-sup1.cif (43.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015019787/cv5497Isup2.hkl

e-71-01388-Isup2.hkl (103.1KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015019787/cv5497Isup4.cml

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989015019787/cv5497IIsup3.hkl

e-71-01388-IIsup3.hkl (88.3KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015019787/cv5497IIsup5.cml

CCDC reference: 1432501

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are thankful to the Institution of Excellence, Vijnana Bhavana, University of Mysore, Mysuru, for providing the single-crystal X-ray diffraction facility. VZR is thankful to the University Grants Commission, Delhi, for the financial assistance under its MRP scheme.

supplementary crystallographic information

(I) 4-Methoxy-N-(4-methylphenyl)benzenesulfonamide . Crystal data

C14H15NO3S Prism
Mr = 277.33 Dx = 1.375 Mg m3
Monoclinic, P21/c Cu Kα radiation, λ = 1.54178 Å
a = 14.5604 (5) Å Cell parameters from 178 reflections
b = 5.2459 (2) Å θ = 5.0–64.1°
c = 17.6094 (6) Å µ = 2.19 mm1
β = 95.205 (2)° T = 296 K
V = 1339.50 (8) Å3 Prism, colourless
Z = 4 0.33 × 0.27 × 0.21 mm
F(000) = 584

(I) 4-Methoxy-N-(4-methylphenyl)benzenesulfonamide . Data collection

Bruker APEXII diffractometer 2047 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.042
Graphite monochromator θmax = 64.1°, θmin = 5.0°
phi and φ scans h = −16→16
Absorption correction: multi-scan (SADABS; Bruker, 2009) k = −5→6
Tmin = 0.517, Tmax = 0.632 l = −20→20
7071 measured reflections 1 standard reflections every 1 reflections
2139 independent reflections intensity decay: 0.1%

(I) 4-Methoxy-N-(4-methylphenyl)benzenesulfonamide . Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.145 H atoms treated by a mixture of independent and constrained refinement
S = 1.12 w = 1/[σ2(Fo2) + (0.095P)2 + 0.6515P] where P = (Fo2 + 2Fc2)/3
2139 reflections (Δ/σ)max = 0.001
175 parameters Δρmax = 0.45 e Å3
19 restraints Δρmin = −0.43 e Å3

(I) 4-Methoxy-N-(4-methylphenyl)benzenesulfonamide . Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

(I) 4-Methoxy-N-(4-methylphenyl)benzenesulfonamide . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
H1 0.7020 (19) 0.376 (2) 0.4174 (15) 0.033 (7)*
C1 0.87525 (15) 0.0577 (4) 0.41335 (12) 0.0223 (5)
C2A 0.9220 (3) 0.2925 (9) 0.4259 (2) 0.0227 (12)* 0.516 (7)
H2A 0.8960 0.4215 0.4532 0.027* 0.516 (7)
C3A 1.0070 (3) 0.3298 (9) 0.3973 (3) 0.0243 (12)* 0.516 (7)
H3A 1.0392 0.4819 0.4057 0.029* 0.516 (7)
C2B 0.9452 (3) 0.1901 (9) 0.4561 (3) 0.0230 (13)* 0.484 (7)
H2B 0.9355 0.2534 0.5040 0.028* 0.484 (7)
C3B 1.0299 (3) 0.2268 (10) 0.4262 (3) 0.0231 (13)* 0.484 (7)
H3B 1.0768 0.3160 0.4540 0.028* 0.484 (7)
C4 1.04337 (15) 0.1285 (4) 0.35455 (12) 0.0226 (5)
C5A 0.9913 (3) −0.0795 (10) 0.3344 (3) 0.0190 (14)* 0.516 (7)
H5A 1.0125 −0.1992 0.3011 0.023* 0.516 (7)
C6A 0.9068 (4) −0.1143 (11) 0.3631 (3) 0.0199 (16)* 0.516 (7)
H6A 0.8710 −0.2557 0.3483 0.024* 0.516 (7)
C5B 0.9778 (4) −0.0372 (12) 0.3192 (4) 0.0215 (16)* 0.484 (7)
H5B 0.9903 −0.1226 0.2750 0.026* 0.484 (7)
C6B 0.8942 (4) −0.0756 (12) 0.3492 (3) 0.0191 (17)* 0.484 (7)
H6B 0.8514 −0.1900 0.3264 0.023* 0.484 (7)
S1 0.76759 (3) 0.02277 (10) 0.45066 (3) 0.0195 (3)
O3 1.12308 (11) 0.1523 (3) 0.32071 (9) 0.0257 (4)
O1 0.77618 (12) 0.1184 (3) 0.52696 (8) 0.0288 (4)
O2 0.73662 (11) −0.2332 (3) 0.43553 (9) 0.0239 (4)
N1 0.69436 (13) 0.2136 (3) 0.40319 (10) 0.0209 (5)
C10 0.60286 (15) 0.1132 (4) 0.16969 (13) 0.0233 (5)
C7 0.66683 (14) 0.1726 (4) 0.32369 (12) 0.0190 (5)
C11 0.66087 (17) 0.3146 (5) 0.19337 (13) 0.0269 (5)
H11 0.6785 0.4311 0.1576 0.032*
C9 0.57863 (15) −0.0581 (5) 0.22474 (14) 0.0251 (5)
H9 0.5409 −0.1957 0.2099 0.030*
C14 1.18279 (18) 0.3601 (5) 0.34384 (17) 0.0401 (7)
H14A 1.1496 0.5177 0.3367 0.060*
H14B 1.2345 0.3610 0.3137 0.060*
H14C 1.2043 0.3410 0.3967 0.060*
C8 0.60898 (15) −0.0295 (4) 0.30080 (13) 0.0219 (5)
H8 0.5908 −0.1449 0.3366 0.026*
C12 0.69271 (16) 0.3439 (4) 0.26919 (12) 0.0236 (5)
H12 0.7317 0.4791 0.2839 0.028*
C13 0.56880 (18) 0.0780 (6) 0.08674 (14) 0.0363 (6)
H13A 0.6139 −0.0147 0.0614 0.054*
H13B 0.5589 0.2417 0.0631 0.054*
H13C 0.5119 −0.0155 0.0831 0.054*

(I) 4-Methoxy-N-(4-methylphenyl)benzenesulfonamide . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0253 (12) 0.0218 (12) 0.0201 (11) −0.0001 (10) 0.0032 (9) −0.0043 (9)
C4 0.0233 (11) 0.0225 (12) 0.0222 (11) 0.0006 (9) 0.0021 (9) 0.0015 (9)
S1 0.0239 (4) 0.0169 (4) 0.0181 (4) −0.0004 (2) 0.0046 (2) −0.00107 (18)
O3 0.0223 (8) 0.0264 (9) 0.0290 (8) −0.0022 (7) 0.0056 (7) 0.0003 (7)
O1 0.0336 (9) 0.0348 (10) 0.0187 (8) 0.0010 (8) 0.0062 (7) −0.0046 (7)
O2 0.0294 (9) 0.0151 (8) 0.0277 (8) −0.0003 (7) 0.0046 (7) 0.0038 (6)
N1 0.0286 (10) 0.0129 (10) 0.0220 (10) 0.0015 (8) 0.0061 (8) −0.0028 (7)
C10 0.0199 (11) 0.0249 (13) 0.0254 (12) 0.0060 (9) 0.0027 (9) −0.0035 (9)
C7 0.0186 (11) 0.0154 (11) 0.0236 (11) 0.0038 (8) 0.0046 (9) −0.0017 (8)
C11 0.0322 (13) 0.0231 (12) 0.0258 (12) 0.0017 (10) 0.0060 (10) 0.0025 (9)
C9 0.0187 (11) 0.0223 (12) 0.0339 (13) −0.0017 (10) 0.0008 (9) −0.0041 (10)
C14 0.0262 (13) 0.0385 (15) 0.0570 (18) −0.0111 (12) 0.0118 (12) −0.0074 (13)
C8 0.0177 (11) 0.0179 (11) 0.0305 (13) −0.0004 (9) 0.0042 (9) 0.0032 (9)
C12 0.0294 (12) 0.0145 (11) 0.0274 (12) −0.0036 (9) 0.0051 (9) −0.0021 (9)
C13 0.0329 (14) 0.0476 (17) 0.0281 (13) 0.0003 (13) 0.0019 (11) −0.0059 (12)

(I) 4-Methoxy-N-(4-methylphenyl)benzenesulfonamide . Geometric parameters (Å, º)

C1—C6A 1.371 (5) S1—O2 1.4340 (17)
C1—C6B 1.378 (5) S1—N1 1.6360 (19)
C1—C2B 1.395 (5) O3—C14 1.430 (3)
C1—C2A 1.415 (5) N1—C7 1.437 (3)
C1—S1 1.763 (2) N1—H1 0.893 (10)
C2A—C3A 1.391 (5) C10—C9 1.391 (3)
C2A—H2A 0.9300 C10—C11 1.393 (3)
C3A—C4 1.426 (5) C10—C13 1.511 (3)
C3A—H3A 0.9300 C7—C8 1.391 (3)
C2B—C3B 1.397 (6) C7—C12 1.392 (3)
C2B—H2B 0.9300 C11—C12 1.382 (3)
C3B—C4 1.394 (5) C11—H11 0.9300
C3B—H3B 0.9300 C9—C8 1.380 (3)
C4—C5A 1.358 (5) C9—H9 0.9300
C4—O3 1.358 (3) C14—H14A 0.9600
C4—C5B 1.395 (5) C14—H14B 0.9600
C5A—C6A 1.385 (6) C14—H14C 0.9600
C5A—H5A 0.9300 C8—H8 0.9300
C6A—H6A 0.9300 C12—H12 0.9300
C5B—C6B 1.385 (6) C13—H13A 0.9600
C5B—H5B 0.9300 C13—H13B 0.9600
C6B—H6B 0.9300 C13—H13C 0.9600
S1—O1 1.4291 (16)
C6A—C1—C2B 113.9 (3) O1—S1—O2 120.18 (10)
C6B—C1—C2B 120.3 (3) O1—S1—N1 105.25 (10)
C6A—C1—C2A 119.3 (3) O2—S1—N1 107.39 (9)
C6B—C1—C2A 116.1 (3) O1—S1—C1 107.99 (10)
C6A—C1—S1 122.2 (3) O2—S1—C1 107.66 (10)
C6B—C1—S1 120.2 (3) N1—S1—C1 107.83 (10)
C2B—C1—S1 118.7 (2) C4—O3—C14 117.83 (18)
C2A—C1—S1 117.6 (2) C7—N1—S1 121.15 (14)
C3A—C2A—C1 119.8 (4) C7—N1—H1 115.7 (17)
C3A—C2A—H2A 120.1 S1—N1—H1 112.5 (18)
C1—C2A—H2A 120.1 C9—C10—C11 117.8 (2)
C2A—C3A—C4 118.1 (4) C9—C10—C13 120.9 (2)
C2A—C3A—H3A 120.9 C11—C10—C13 121.3 (2)
C4—C3A—H3A 120.9 C8—C7—C12 119.2 (2)
C1—C2B—C3B 119.5 (4) C8—C7—N1 120.31 (19)
C1—C2B—H2B 120.3 C12—C7—N1 120.4 (2)
C3B—C2B—H2B 120.3 C12—C11—C10 121.0 (2)
C4—C3B—C2B 119.4 (4) C12—C11—H11 119.5
C4—C3B—H3B 120.3 C10—C11—H11 119.5
C2B—C3B—H3B 120.3 C8—C9—C10 121.8 (2)
C5A—C4—O3 116.0 (3) C8—C9—H9 119.1
C5A—C4—C3B 114.4 (3) C10—C9—H9 119.1
O3—C4—C3B 124.1 (3) O3—C14—H14A 109.5
O3—C4—C5B 116.0 (3) O3—C14—H14B 109.5
C3B—C4—C5B 119.2 (3) H14A—C14—H14B 109.5
C5A—C4—C3A 120.5 (3) O3—C14—H14C 109.5
O3—C4—C3A 122.4 (2) H14A—C14—H14C 109.5
C5B—C4—C3A 115.1 (3) H14B—C14—H14C 109.5
C4—C5A—C6A 120.3 (4) C9—C8—C7 119.8 (2)
C4—C5A—H5A 119.9 C9—C8—H8 120.1
C6A—C5A—H5A 119.9 C7—C8—H8 120.1
C1—C6A—C5A 120.6 (4) C11—C12—C7 120.4 (2)
C1—C6A—H6A 119.7 C11—C12—H12 119.8
C5A—C6A—H6A 119.7 C7—C12—H12 119.8
C6B—C5B—C4 120.7 (5) C10—C13—H13A 109.5
C6B—C5B—H5B 119.7 C10—C13—H13B 109.5
C4—C5B—H5B 119.7 H13A—C13—H13B 109.5
C1—C6B—C5B 119.2 (5) C10—C13—H13C 109.5
C1—C6B—H6B 120.4 H13A—C13—H13C 109.5
C5B—C6B—H6B 120.4 H13B—C13—H13C 109.5
C6A—C1—C2A—C3A −10.4 (6) S1—C1—C6B—C5B 177.4 (5)
C6B—C1—C2A—C3A −26.8 (6) C4—C5B—C6B—C1 1.9 (9)
C2B—C1—C2A—C3A 79.3 (5) C6A—C1—S1—O1 145.9 (4)
S1—C1—C2A—C3A −179.7 (3) C6B—C1—S1—O1 163.2 (4)
C1—C2A—C3A—C4 1.2 (6) C2B—C1—S1—O1 −7.0 (3)
C6A—C1—C2B—C3B 27.0 (6) C2A—C1—S1—O1 −45.0 (3)
C6B—C1—C2B—C3B 11.9 (6) C6A—C1—S1—O2 14.8 (4)
C2A—C1—C2B—C3B −80.4 (5) C6B—C1—S1—O2 32.1 (4)
S1—C1—C2B—C3B −177.9 (3) C2B—C1—S1—O2 −138.2 (3)
C1—C2B—C3B—C4 −0.6 (6) C2A—C1—S1—O2 −176.2 (3)
C2B—C3B—C4—C5A −27.1 (6) C6A—C1—S1—N1 −100.8 (4)
C2B—C3B—C4—O3 −179.6 (3) C6B—C1—S1—N1 −83.5 (4)
C2B—C3B—C4—C5B −9.8 (6) C2B—C1—S1—N1 106.3 (3)
C2B—C3B—C4—C3A 82.0 (6) C2A—C1—S1—N1 68.2 (3)
C2A—C3A—C4—C5A 8.2 (6) C5A—C4—O3—C14 −176.2 (4)
C2A—C3A—C4—O3 176.2 (3) C3B—C4—O3—C14 −24.1 (4)
C2A—C3A—C4—C3B −80.1 (6) C5B—C4—O3—C14 165.9 (4)
C2A—C3A—C4—C5B 25.4 (6) C3A—C4—O3—C14 15.3 (4)
O3—C4—C5A—C6A −177.0 (4) O1—S1—N1—C7 −178.58 (16)
C3B—C4—C5A—C6A 28.1 (7) O2—S1—N1—C7 −49.43 (18)
C5B—C4—C5A—C6A −82.9 (14) C1—S1—N1—C7 66.33 (19)
C3A—C4—C5A—C6A −8.3 (7) S1—N1—C7—C8 71.9 (2)
C6B—C1—C6A—C5A 92.3 (16) S1—N1—C7—C12 −112.4 (2)
C2B—C1—C6A—C5A −26.5 (7) C9—C10—C11—C12 −0.5 (3)
C2A—C1—C6A—C5A 10.5 (7) C13—C10—C11—C12 −179.2 (2)
S1—C1—C6A—C5A 179.3 (4) C11—C10—C9—C8 1.3 (3)
C4—C5A—C6A—C1 −1.2 (8) C13—C10—C9—C8 180.0 (2)
C5A—C4—C5B—C6B 86.0 (14) C10—C9—C8—C7 −1.2 (3)
O3—C4—C5B—C6B 179.8 (5) C12—C7—C8—C9 0.4 (3)
C3B—C4—C5B—C6B 9.2 (8) N1—C7—C8—C9 176.2 (2)
C3A—C4—C5B—C6B −27.4 (7) C10—C11—C12—C7 −0.3 (3)
C6A—C1—C6B—C5B −80.7 (16) C8—C7—C12—C11 0.4 (3)
C2B—C1—C6B—C5B −12.5 (8) N1—C7—C12—C11 −175.4 (2)
C2A—C1—C6B—C5B 25.2 (8)

(I) 4-Methoxy-N-(4-methylphenyl)benzenesulfonamide . Hydrogen-bond geometry (Å, º)

Cg is the centroid of the C7–C12 ring.

D—H···A D—H H···A D···A D—H···A
N1—H1···O2i 0.89 (1) 2.13 (1) 3.010 (2) 170 (2)
C14—H14B···Cgii 0.96 2.70 3.541 (2) 146
C9—H9···Cgiii 0.93 2.87 3.560 (2) 132

Symmetry codes: (i) x, y+1, z; (ii) −x, y+1/2, −z+1/2; (iii) −x+1, y−1/2, −z+1/2.

(II) N-(4-Fluorophenyl)-4-methoxybenzenesulfonamide . Crystal data

C13H12FNO3S Prism
Mr = 281.30 Dx = 1.473 Mg m3
Orthorhombic, Pna21 Cu Kα radiation, λ = 1.54178 Å
Hall symbol: P 2c -2n Cell parameters from 143 reflections
a = 20.2188 (13) Å θ = 4.3–64.1°
b = 12.1199 (8) Å µ = 2.44 mm1
c = 5.1770 (3) Å T = 296 K
V = 1268.62 (14) Å3 Prism, colourless
Z = 4 0.32 × 0.27 × 0.22 mm
F(000) = 584

(II) N-(4-Fluorophenyl)-4-methoxybenzenesulfonamide . Data collection

Bruker APEXII diffractometer 1784 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.037
Graphite monochromator θmax = 64.1°, θmin = 4.3°
phi and φ scans h = −22→23
Absorption correction: multi-scan (SADABS; Bruker, 2009) k = −13→14
Tmin = 0.481, Tmax = 0.585 l = −5→5
5438 measured reflections 1 standard reflections every 1 reflections
1830 independent reflections intensity decay: 0.1%

(II) N-(4-Fluorophenyl)-4-methoxybenzenesulfonamide . Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.100 w = 1/[σ2(Fo2) + (0.0719P)2] where P = (Fo2 + 2Fc2)/3
S = 1.09 (Δ/σ)max = 0.001
1830 reflections Δρmax = 0.30 e Å3
177 parameters Δρmin = −0.35 e Å3
2 restraints Absolute structure: Flack (1983), 973 Friedel pairs
Primary atom site location: structure-invariant direct methods Absolute structure parameter: 0.08 (2)

(II) N-(4-Fluorophenyl)-4-methoxybenzenesulfonamide . Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

(II) N-(4-Fluorophenyl)-4-methoxybenzenesulfonamide . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.77164 (2) 0.42206 (4) 0.40154 (13) 0.0172 (2)
F1 0.96703 (8) −0.00461 (12) 0.4446 (3) 0.0328 (4)
O1 0.75213 (8) 0.53031 (14) 0.4790 (4) 0.0229 (4)
O2 0.79392 (9) 0.40209 (15) 0.1426 (4) 0.0234 (4)
O3 0.56267 (8) 0.10112 (16) 0.6458 (4) 0.0289 (5)
N1 0.83314 (9) 0.38833 (18) 0.5945 (4) 0.0179 (5)
C10 0.93385 (12) 0.0915 (2) 0.4822 (6) 0.0245 (6)
C6 0.70105 (11) 0.2317 (2) 0.3318 (5) 0.0224 (6)
H6 0.7303 0.2162 0.1979 0.027*
C8 0.85326 (11) 0.1947 (2) 0.7108 (5) 0.0229 (6)
H8 0.8215 0.2003 0.8401 0.028*
C7 0.86643 (11) 0.2844 (2) 0.5534 (5) 0.0181 (5)
C4 0.60893 (10) 0.1812 (2) 0.5970 (6) 0.0216 (6)
C2 0.66316 (11) 0.3540 (2) 0.6686 (6) 0.0221 (5)
H2 0.6672 0.4199 0.7591 0.027*
C5 0.65224 (10) 0.15819 (19) 0.3967 (6) 0.0234 (5)
H5 0.6482 0.0924 0.3056 0.028*
C11 0.94793 (12) 0.1792 (2) 0.3219 (6) 0.0277 (6)
H11 0.9794 0.1731 0.1917 0.033*
C12 0.91355 (11) 0.2773 (2) 0.3611 (5) 0.0240 (6)
H12 0.9224 0.3382 0.2575 0.029*
C3 0.61372 (11) 0.2795 (2) 0.7337 (5) 0.0234 (6)
H3 0.5843 0.2952 0.8667 0.028*
C1 0.70619 (12) 0.3303 (2) 0.4696 (5) 0.0186 (5)
C13 0.51905 (13) 0.1183 (2) 0.8577 (6) 0.0330 (7)
H13A 0.5443 0.1268 1.0134 0.049*
H13B 0.4901 0.0560 0.8745 0.049*
H13C 0.4933 0.1837 0.8281 0.049*
C9 0.88759 (13) 0.0962 (2) 0.6755 (6) 0.0261 (6)
H9 0.8794 0.0353 0.7801 0.031*
H1 0.8245 (14) 0.399 (2) 0.763 (2) 0.023 (8)*

(II) N-(4-Fluorophenyl)-4-methoxybenzenesulfonamide . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0222 (3) 0.0161 (3) 0.0134 (3) −0.0004 (2) −0.0004 (2) −0.0003 (2)
F1 0.0403 (8) 0.0248 (8) 0.0333 (10) 0.0127 (6) 0.0008 (8) −0.0014 (8)
O1 0.0286 (8) 0.0160 (9) 0.0241 (10) 0.0003 (7) −0.0029 (7) −0.0009 (7)
O2 0.0280 (9) 0.0249 (10) 0.0172 (10) −0.0017 (8) 0.0010 (8) −0.0009 (8)
O3 0.0258 (9) 0.0260 (10) 0.0349 (13) −0.0065 (8) 0.0066 (9) −0.0040 (9)
N1 0.0228 (9) 0.0193 (11) 0.0117 (11) −0.0006 (8) 0.0019 (9) −0.0019 (9)
C10 0.0262 (12) 0.0222 (14) 0.0251 (15) 0.0056 (11) −0.0031 (11) −0.0029 (11)
C6 0.0239 (11) 0.0208 (13) 0.0225 (15) 0.0030 (10) 0.0038 (10) −0.0064 (11)
C8 0.0221 (10) 0.0265 (15) 0.0202 (14) 0.0010 (10) 0.0050 (10) 0.0016 (11)
C7 0.0202 (11) 0.0186 (13) 0.0155 (13) −0.0019 (10) −0.0016 (9) −0.0015 (10)
C4 0.0201 (11) 0.0181 (13) 0.0265 (14) −0.0009 (9) −0.0039 (11) 0.0023 (11)
C2 0.0268 (12) 0.0202 (13) 0.0193 (13) −0.0003 (10) −0.0019 (10) −0.0052 (11)
C5 0.0258 (11) 0.0183 (12) 0.0261 (14) −0.0003 (9) −0.0027 (11) −0.0081 (13)
C11 0.0279 (11) 0.0306 (15) 0.0246 (17) 0.0054 (12) 0.0065 (11) −0.0005 (12)
C12 0.0275 (11) 0.0227 (12) 0.0218 (14) 0.0003 (10) 0.0065 (11) 0.0023 (11)
C3 0.0234 (11) 0.0268 (14) 0.0201 (14) −0.0002 (11) 0.0034 (10) −0.0032 (11)
C1 0.0212 (11) 0.0182 (12) 0.0162 (12) 0.0018 (10) −0.0026 (9) −0.0010 (10)
C13 0.0272 (12) 0.0401 (15) 0.0316 (17) −0.0092 (12) 0.0027 (12) 0.0013 (14)
C9 0.0316 (13) 0.0208 (14) 0.0260 (16) −0.0008 (11) −0.0004 (12) 0.0050 (12)

(II) N-(4-Fluorophenyl)-4-methoxybenzenesulfonamide . Geometric parameters (Å, º)

S1—O1 1.4275 (18) C8—H8 0.9300
S1—O2 1.435 (2) C7—C12 1.380 (3)
S1—N1 1.647 (2) C4—C5 1.385 (4)
S1—C1 1.764 (2) C4—C3 1.390 (4)
F1—C10 1.358 (3) C2—C1 1.378 (4)
O3—C4 1.371 (3) C2—C3 1.388 (4)
O3—C13 1.423 (3) C2—H2 0.9300
N1—C7 1.444 (3) C5—H5 0.9300
N1—H1 0.898 (10) C11—C12 1.392 (4)
C10—C9 1.371 (4) C11—H11 0.9300
C10—C11 1.378 (4) C12—H12 0.9300
C6—C5 1.372 (3) C3—H3 0.9300
C6—C1 1.395 (3) C13—H13A 0.9600
C6—H6 0.9300 C13—H13B 0.9600
C8—C7 1.385 (4) C13—H13C 0.9600
C8—C9 1.394 (4) C9—H9 0.9300
O1—S1—O2 120.28 (11) C1—C2—H2 120.0
O1—S1—N1 105.44 (11) C3—C2—H2 120.0
O2—S1—N1 106.74 (11) C6—C5—C4 120.5 (2)
O1—S1—C1 108.44 (11) C6—C5—H5 119.8
O2—S1—C1 108.41 (11) C4—C5—H5 119.8
N1—S1—C1 106.77 (11) C10—C11—C12 117.9 (2)
C4—O3—C13 117.5 (2) C10—C11—H11 121.1
C7—N1—S1 118.62 (16) C12—C11—H11 121.1
C7—N1—H1 111.3 (19) C7—C12—C11 120.2 (2)
S1—N1—H1 113.8 (19) C7—C12—H12 119.9
F1—C10—C9 118.5 (2) C11—C12—H12 119.9
F1—C10—C11 118.3 (2) C2—C3—C4 118.9 (2)
C9—C10—C11 123.3 (2) C2—C3—H3 120.5
C5—C6—C1 119.0 (2) C4—C3—H3 120.5
C5—C6—H6 120.5 C2—C1—C6 120.9 (2)
C1—C6—H6 120.5 C2—C1—S1 119.40 (19)
C7—C8—C9 120.0 (2) C6—C1—S1 119.56 (19)
C7—C8—H8 120.0 O3—C13—H13A 109.5
C9—C8—H8 120.0 O3—C13—H13B 109.5
C12—C7—C8 120.5 (2) H13A—C13—H13B 109.5
C12—C7—N1 118.9 (2) O3—C13—H13C 109.5
C8—C7—N1 120.5 (2) H13A—C13—H13C 109.5
O3—C4—C5 115.2 (2) H13B—C13—H13C 109.5
O3—C4—C3 124.1 (2) C10—C9—C8 118.1 (3)
C5—C4—C3 120.7 (2) C10—C9—H9 121.0
C1—C2—C3 120.0 (2) C8—C9—H9 121.0
O1—S1—N1—C7 −176.37 (18) C1—C2—C3—C4 0.5 (4)
O2—S1—N1—C7 −47.4 (2) O3—C4—C3—C2 179.3 (2)
C1—S1—N1—C7 68.4 (2) C5—C4—C3—C2 −0.8 (4)
C9—C8—C7—C12 −0.1 (4) C3—C2—C1—C6 −0.2 (4)
C9—C8—C7—N1 −177.5 (2) C3—C2—C1—S1 −176.4 (2)
S1—N1—C7—C12 80.1 (3) C5—C6—C1—C2 0.1 (4)
S1—N1—C7—C8 −102.5 (2) C5—C6—C1—S1 176.26 (19)
C13—O3—C4—C5 177.0 (2) O1—S1—C1—C2 −27.8 (2)
C13—O3—C4—C3 −3.0 (4) O2—S1—C1—C2 −159.9 (2)
C1—C6—C5—C4 −0.3 (4) N1—S1—C1—C2 85.4 (2)
O3—C4—C5—C6 −179.4 (2) O1—S1—C1—C6 156.0 (2)
C3—C4—C5—C6 0.7 (4) O2—S1—C1—C6 23.8 (2)
F1—C10—C11—C12 179.8 (2) N1—S1—C1—C6 −90.8 (2)
C9—C10—C11—C12 0.5 (4) F1—C10—C9—C8 −179.3 (2)
C8—C7—C12—C11 0.6 (4) C11—C10—C9—C8 0.0 (4)
N1—C7—C12—C11 178.0 (2) C7—C8—C9—C10 −0.2 (4)
C10—C11—C12—C7 −0.8 (4)

(II) N-(4-Fluorophenyl)-4-methoxybenzenesulfonamide . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1···O2i 0.90 (1) 2.06 (1) 2.951 (3) 171 (3)
C6—H6···O1ii 0.93 2.55 3.192 (3) 127
C13—H13B···O3iii 0.96 2.60 3.468 (3) 151

Symmetry codes: (i) x, y, z+1; (ii) −x+3/2, y−1/2, z−1/2; (iii) −x+1, −y, z+1/2.

References

  1. Bruker (2009). APEX2, SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  3. Ghorab, M. M., Ragab, A. F., Heiba, I. H. & Agha, M. H. (2011). J. Basic Appl. Chem. 1, 8–14.
  4. Hanafy, A., Uno, J., Mitani, H., Kang, Y. & Mikami, Y. (2007). Jpn J. Med. Mycol. 48, 47–50. [DOI] [PubMed]
  5. Himel, C. M., Aboulsaa, W. G. & Uk, S. (1971). J. Agric. Food Chem. 19, 1175–1180.
  6. Kuçukguzel, S. G., Coskun, I., Aydın, S., Aktay, G., Gursoy, S., Cevik, O., Ozakpınar, O. B., Ozsavc, D., Sener, A., Kaushik-Basu, N., Basu, A. & Talele, T. T. (2013). Molecules, 18, 3595–3614. [DOI] [PMC free article] [PubMed]
  7. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  8. Mansour, S., Al-Said Ghorab, M. M., Al-Dosari, M. S. & Hamed, M. M. (2011). Eur. J. Med. Chem. 46, 201–207. [DOI] [PubMed]
  9. Mohan, N. R., Sreenivasa, S., Manojkumar, K. E. & Chakrapani Rao, T. M. (2013). J. Appl. Chem. 2, 722–729.
  10. Sahu, K. K., Ravichandran, V., Mourya, V. K. & Agrawal, R. K. (2007). Med. Chem. Res. 15, 418–430.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Shiva Prasad, K., Shiva Kumar, L., Vinay, K. B., ChandraShekar, S., Jayalakshmi, B. & Revanasiddappa, H. D. (2011). Int. J. Chem. Res. 2, 1–6.
  13. Subhakara Reddy, N., Srinivas Rao, A., Adharvana Chari, M., Ravi Kumar, V., Jyothy, V. & Himabindu, V. (2012). J. Chem. Sci 124, 723–730.
  14. Vinola, Z. R., Sreenivasa, S., Naveen, S., Lokanath, N. K. & Suchetan, P. A. (2015). J. Appl. Chem. 4, 127-135.
  15. Vora, P. J. & Mehta, A. G. (2012). IOSR J. Appl. Chem. 1, 34–39.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, II, global. DOI: 10.1107/S2056989015019787/cv5497sup1.cif

e-71-01388-sup1.cif (43.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015019787/cv5497Isup2.hkl

e-71-01388-Isup2.hkl (103.1KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015019787/cv5497Isup4.cml

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989015019787/cv5497IIsup3.hkl

e-71-01388-IIsup3.hkl (88.3KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015019787/cv5497IIsup5.cml

CCDC reference: 1432501

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES