Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Oct 17;71(Pt 11):o848–o849. doi: 10.1107/S205698901501912X

Crystal structure of a second triclinic polymorph of 2-methyl­pyridinium picrate

Jeganathan Gomathi a, Doraisamyraja Kalaivani a,*
PMCID: PMC4645006  PMID: 26594559

Abstract

The title mol­ecular salt, C6H8N+·C6H2N3O7 (systematic name: 2-methyl­pyridinium 2,4,6-tri­nitro­phenolate), crystallizes with two cations and two anions in the asymmetric unit. In the crystal, the cations are linked to the anions via bifurcated N—H⋯(O,O) hydrogen bonds, generating R 1 2(6) graph-set motifs. Numerous C—H⋯O hydrogen bonds are observed between these cation–anion pairs, which result in a three-dimensional network. In addition, weak aromatic π–π stacking between the 2-methyl­pyridinium rings [inter-centroid distance = 3.8334 (19) Å] and very weak stacking [inter-centroid distance = 4.0281 (16) Å] between inversion-related pairs of picrate anions is observed. The title salt is a second triclinic polymorph of the structure (also with Z′ = 2) reported earlier [Anita et al. (2006). Acta Cryst. C62, o567–o570; Chan et al. (2014). CrystEngComm, 16, 4508–4538]. In the title compound, the cations and anions display a chequerboard arrangement when viewed down [100], whereas in the first polymorph, (010) layers of alternating cations and anions are apparent in a [100] view. It is inter­esting that the unit-cell lengths are almost identical for the two polymorphs, although the inter-axial angles are quite different.

Keywords: crystal structure; polymorphism; 2-methyl­pyridinium picrate; 3-methyl­pyridinium picrate; 2,4,6-tri­nitro­phenolate

Related literature  

For the first triclinic polymorph of 2-methyl­pyridinium picrate, see: Anitha et al. (2006); Chan et al. (2014). For the crystal structure of the isomeric 3-methyl­pyridinium picrate, see: Gomathi & Kalaivani (2015).graphic file with name e-71-0o848-scheme1.jpg

Experimental  

Crystal data  

  • C6H8N+·C6H2N3O7

  • M r = 322.24

  • Triclinic, Inline graphic

  • a = 8.1524 (4) Å

  • b = 11.8809 (6) Å

  • c = 14.6377 (9) Å

  • α = 102.077 (3)°

  • β = 90.001 (3)°

  • γ = 100.692 (3)°

  • V = 1361.21 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 296 K

  • 0.35 × 0.35 × 0.30 mm

Data collection  

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004) T min = 0.952, T max = 0.969

  • 25854 measured reflections

  • 4789 independent reflections

  • 3165 reflections with I > 2σ(I)

  • R int = 0.034

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.052

  • wR(F 2) = 0.159

  • S = 1.06

  • 4789 reflections

  • 423 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.27 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S205698901501912X/hb7512sup1.cif

e-71-0o848-sup1.cif (798.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S205698901501912X/hb7512Isup2.hkl

e-71-0o848-Isup2.hkl (381.2KB, hkl)

Supporting information file. DOI: 10.1107/S205698901501912X/hb7512Isup3.cml

ORTEP . DOI: 10.1107/S205698901501912X/hb7512fig1.tif

ORTEP view of the title mol­ecular salt with displacement ellipsoids drawn at 40% probability.

. DOI: 10.1107/S205698901501912X/hb7512fig2.tif

 A partial view of the crystal packing diagram of the title mol­ecular salt (hydrogen bonds and π–π stacking are shown as dotted lines).

CCDC reference: 1417625

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
N7H7AO9 0.95(4) 2.28(4) 2.813(4) 114(3)
N7H7AO14 0.95(4) 1.76(4) 2.678(3) 160(3)
N8H8AO1 0.94(4) 2.35(4) 2.894(4) 117(3)
N8H8AO7 0.94(4) 1.76(4) 2.660(3) 158(4)
C5H5O2i 0.93 2.50 3.423(4) 170
C9H9O8ii 0.93 2.45 3.365(3) 167
C14H14O10iii 0.93 2.54 3.456(4) 167
C17H17O3 0.93 2.34 3.078(4) 136
C18H18BO12i 0.96 2.64 3.488(5) 148
C20H20O13iv 0.93 2.55 3.247(4) 132
C23H23O8ii 0.93 2.63 3.394(4) 140
C23H23O11 0.93 2.36 3.122(4) 139

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

The authors are thankful to UGC, New Delhi, for financial support and the SAIF, IIT Madras, Chennai, for the data collection.

supplementary crystallographic information

S1. Comment

Previous attempt in our laboratories to synthesize carbon-bonded anionic sigma complex with two heterocyclic moieties (substituted imidazole and pyridine) from the ethanolic solution containing 2-chloro-1,3,5-trinitrobenzene, hydantoin and 3-methylpyridine yielded 3-methylpyridinium picrate, a triclinic polymorph (Gomathi & Kalaivani, 2015). In the present work, a similar attempt with 2-methylpyridine instead of 3-methylpyridine in the reaction mixture, yielded 2-methylpyridinium picrate which crystallizes in the triclinic system with space group P1. Fig. 1 & 2 depict ORTEP and packing view of title molecular salt of present investigation respectively. Anita et al. (Anitha et al., 2006) have synthesized 2-methylpyridinium picrate by slow evaporation of the aqueous solution containing pyridoxine and picric acid in a 1:1 stoichiometric ratio at room temperature. They isolated instead of the expected picric acid complex with pyridoxine, crystals of 2-methylpyridinium picrate. Another group (Chan et al., 2014) has prepared 2-methylpyridinium picrate by adding picric acid to liquid 2-methylpyridine without other organic solvents. 2-Methylpyridinium picrate synthesized by both the groups also crystallize in the triclinic system with space group P1. The unit cell parameters of 2-methylpyridinium picrate of both the groups are nearly similar. However, 2-methypyridinium picrate reported in this article differs in the inter-axial bond angles noticeably. In addition to this observation, no disorder is observed in the title molecule, whereas, 2-methylpyridinium picrate reported by Anita et al. one of the oxygen atoms of the nitro group of picrate anion is disordered, with occupancy factors of 0.71 and 0.29. The dihedral angles between the planes of phenyl ring of picrate anions and that of 2-methylpyridinium cations of two molecules present in the asymmetric unit are greater than 80 ° [dihedral angle between (i) planes constituting C1-C2-C3-C4-C5-C6 and N7-C13-C14-C15-C16-C17, 85.54 (11)°; (ii) C1-C2-C3-C4-C5-C6 and N8-C19-C20-C21-C22-C23, 87.60 (11)°; (iii) C7-C8-C9-C10-C11-C12 and N7-C13-C14-C15-C16-C17, 80.60 (11)°; (iv) C7-C8-C9-C10-C11-C12 and N8-C19-C20-C21-C22-C23, 82.49 (10)°], which unambigously reflects the absence of π-bonding between the aromatic rings of anion and cation and supports the fact that the main contributing factor of the formation of the product is proton-transfer reaction. Protonation of the nitrogen atom is further evidenced from the values of the C-N bond distances. N-H···O hydrogen bonding is noticed between the cation and anion parts of two molecules of asymmetric unit and the bifurcation at N-H forming N-H···O hydrogen bonds with the oxygen atoms of phenolate and nitro group results in R12(6) ring motif and this sort of linkage is highly responsible for the stability of the molecule. Along with this ring motif, other ring motifs such as R22(7), R33(13) and R43(19) are also stabilizing the crystal system. The nitro group involved in forming R12(6) ring motif bends only slightly from the plane of the aromatic ring to which it is attached [dihedral angles, 21.68 (16)° and 24.16 (12)°], whereas, the other nitro group lying on the other side of C-O- bond twists from the ring remarkably [dihedral angles, 79.94 (12)° and 53.29 (15)°]. This kind of twisting may probably reduce the strain due to overcrowding around C-O-. The plane of the nitro group para with respect to C-O- lies almost in the plane of the phenyl ring [dihedral angles, 5.02 (19)° and 3.08 (29)°].

S2. Experimental

2-Chloro-1,3,5-trinitrobenzene [2.56 g (0.01 mol)] was dissolved in 30 ml of rectified spirit and mixed with hydantoin [1.00 g (0.01 mol)] in 20 ml of the same solvent. After mixing of these two solutions, 3 ml of 2-methylpyridine (0.03 mol) was added and the solution was heated to 318 K. The solution was stirred at this temperature with the help of magnetic stirrer for 5 h. The solution was cooled to room temperature and then filtered carefully. The clear maroon-red colour solution obtained was allowed to evaporate slowly maintaining the temperature at 293 K. After a period of six weeks, maroon-red coloured crystals formed from the solution. The crystals were filtered, powdered and washed with 30 ml of dry ether and recrystallized from rectified spirit. Instead of the expected carbon-bonded anionic sigma complex with hydantoin, crystals of 2-methylpyridinium picrate were obtained (yield: 70%; m.p.: 423 K).

S3. Refinement

Crystal data, data collection and structure refinement details are summarized.

Figures

Fig. 1.

Fig. 1.

ORTEP view of the title molecular salt with displacement ellipsoids drawn at 40% probability.

Fig. 2.

Fig. 2.

A partial view of the crystal packing diagram of the title molecular salt (hydrogen bonds and π–π stacking are shown as dotted lines).

Crystal data

C6H8N+·C6H2N3O7 Z = 4
Mr = 322.24 F(000) = 664
Triclinic, P1 Dx = 1.572 Mg m3
a = 8.1524 (4) Å Mo Kα radiation, λ = 0.71073 Å
b = 11.8809 (6) Å Cell parameters from 6819 reflections
c = 14.6377 (9) Å θ = 2.5–25.5°
α = 102.077 (3)° µ = 0.13 mm1
β = 90.001 (3)° T = 296 K
γ = 100.692 (3)° Block, yellow
V = 1361.21 (13) Å3 0.35 × 0.35 × 0.30 mm

Data collection

Bruker Kappa APEXII CCD diffractometer 4789 independent reflections
Radiation source: fine-focus sealed tube 3165 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.034
ω and φ scan θmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Bruker, 2004) h = −9→9
Tmin = 0.952, Tmax = 0.969 k = −14→14
25854 measured reflections l = −17→17

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.052 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.159 w = 1/[σ2(Fo2) + (0.0576P)2 + 1.224P] where P = (Fo2 + 2Fc2)/3
S = 1.06 (Δ/σ)max < 0.001
4789 reflections Δρmax = 0.35 e Å3
423 parameters Δρmin = −0.27 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.2716 (3) 0.1874 (2) 0.86637 (19) 0.0366 (6)
C2 0.2025 (3) 0.2910 (2) 0.8744 (2) 0.0393 (7)
C3 0.2970 (3) 0.4009 (2) 0.8818 (2) 0.0411 (7)
H3 0.2457 0.4657 0.8877 0.049*
C4 0.4672 (3) 0.4148 (2) 0.88062 (19) 0.0369 (6)
C5 0.5471 (3) 0.3206 (2) 0.87618 (19) 0.0359 (6)
H5 0.6630 0.3308 0.8777 0.043*
C6 0.4504 (3) 0.2134 (2) 0.86961 (19) 0.0345 (6)
C7 0.6949 (3) 0.3848 (2) 0.64217 (19) 0.0367 (6)
C8 0.5153 (3) 0.3557 (2) 0.62748 (19) 0.0359 (6)
C9 0.4225 (3) 0.2467 (2) 0.61397 (19) 0.0372 (6)
H9 0.3071 0.2346 0.6047 0.045*
C10 0.5014 (3) 0.1533 (2) 0.61406 (19) 0.0361 (6)
C11 0.6715 (3) 0.1706 (2) 0.62624 (19) 0.0382 (7)
H11 0.7239 0.1071 0.6248 0.046*
C12 0.7637 (3) 0.2815 (2) 0.64042 (19) 0.0370 (6)
C13 1.1475 (4) 0.6975 (3) 0.6877 (2) 0.0460 (7)
C14 1.2631 (4) 0.7880 (3) 0.7391 (3) 0.0559 (9)
H14 1.3302 0.8401 0.7090 0.067*
C15 1.2802 (4) 0.8019 (3) 0.8328 (3) 0.0592 (9)
H15 1.3584 0.8635 0.8667 0.071*
C16 1.1837 (4) 0.7263 (3) 0.8779 (3) 0.0572 (9)
H16 1.1961 0.7346 0.9422 0.069*
C17 1.0688 (4) 0.6385 (3) 0.8267 (3) 0.0535 (8)
H17 1.0012 0.5860 0.8562 0.064*
C18 1.1222 (5) 0.6719 (4) 0.5849 (3) 0.0747 (11)
H18A 1.1979 0.7286 0.5597 0.112*
H18B 1.1430 0.5948 0.5592 0.112*
H18C 1.0093 0.6755 0.5691 0.112*
C19 −0.1835 (3) −0.1337 (2) 0.8099 (2) 0.0412 (7)
C20 −0.2865 (4) −0.2209 (3) 0.7485 (2) 0.0524 (8)
H20 −0.3591 −0.2782 0.7708 0.063*
C21 −0.2835 (4) −0.2242 (3) 0.6552 (3) 0.0627 (10)
H21 −0.3535 −0.2839 0.6138 0.075*
C22 −0.1775 (5) −0.1400 (3) 0.6221 (3) 0.0640 (10)
H22 −0.1753 −0.1408 0.5584 0.077*
C23 −0.0760 (4) −0.0555 (3) 0.6837 (3) 0.0569 (9)
H23 −0.0024 0.0022 0.6623 0.068*
C24 −0.1811 (5) −0.1215 (3) 0.9123 (2) 0.0641 (9)
H24A −0.2608 −0.1842 0.9281 0.096*
H24B −0.0715 −0.1247 0.9343 0.096*
H24C −0.2096 −0.0477 0.9412 0.096*
N1 0.0244 (3) 0.2838 (3) 0.8789 (2) 0.0583 (8)
N2 0.5652 (3) 0.5307 (2) 0.88834 (18) 0.0459 (6)
N3 0.5319 (3) 0.1137 (2) 0.86915 (19) 0.0420 (6)
N4 0.9426 (3) 0.2915 (2) 0.6504 (2) 0.0513 (7)
N5 0.4056 (3) 0.0360 (2) 0.59800 (18) 0.0463 (6)
N6 0.4285 (3) 0.4513 (2) 0.6237 (2) 0.0485 (7)
N7 1.0518 (3) 0.6267 (2) 0.7348 (2) 0.0458 (6)
N8 −0.0805 (3) −0.0542 (2) 0.7744 (2) 0.0455 (6)
O1 −0.0686 (3) 0.1928 (2) 0.8495 (3) 0.1149 (13)
O2 −0.0287 (3) 0.3707 (2) 0.9134 (3) 0.0944 (10)
O3 0.7155 (3) 0.5408 (2) 0.8829 (2) 0.0747 (8)
O4 0.4947 (3) 0.61454 (18) 0.90051 (17) 0.0594 (6)
O5 0.5817 (4) 0.1009 (3) 0.9423 (2) 0.0988 (11)
O6 0.5417 (4) 0.0464 (2) 0.79711 (19) 0.0767 (8)
O7 0.1934 (2) 0.08461 (17) 0.86122 (15) 0.0512 (6)
O8 1.0032 (3) 0.2064 (2) 0.6182 (2) 0.0866 (9)
O9 1.0276 (3) 0.3819 (2) 0.6908 (2) 0.0953 (10)
O10 0.4784 (3) −0.04584 (18) 0.59417 (15) 0.0536 (6)
O11 0.2538 (3) 0.0224 (2) 0.5862 (2) 0.0737 (8)
O12 0.3364 (4) 0.4393 (3) 0.5559 (2) 0.0983 (11)
O13 0.4468 (3) 0.5344 (2) 0.6878 (2) 0.0752 (8)
O14 0.7744 (2) 0.48653 (17) 0.64961 (16) 0.0523 (6)
H7A 0.970 (5) 0.565 (3) 0.700 (2) 0.072 (11)*
H8A −0.003 (5) 0.005 (3) 0.814 (3) 0.085 (12)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0308 (14) 0.0384 (16) 0.0384 (16) −0.0002 (12) −0.0031 (11) 0.0091 (13)
C2 0.0229 (13) 0.0440 (17) 0.0499 (18) 0.0025 (12) −0.0006 (11) 0.0104 (14)
C3 0.0349 (15) 0.0379 (16) 0.0528 (19) 0.0088 (12) 0.0022 (13) 0.0132 (14)
C4 0.0305 (14) 0.0343 (15) 0.0437 (17) −0.0009 (11) 0.0022 (12) 0.0098 (13)
C5 0.0269 (13) 0.0381 (15) 0.0403 (16) 0.0011 (11) 0.0017 (11) 0.0074 (12)
C6 0.0314 (14) 0.0352 (15) 0.0366 (16) 0.0059 (11) −0.0018 (11) 0.0071 (12)
C7 0.0318 (14) 0.0365 (16) 0.0390 (16) 0.0017 (12) −0.0023 (11) 0.0063 (13)
C8 0.0317 (14) 0.0326 (15) 0.0423 (17) 0.0067 (11) −0.0019 (11) 0.0052 (12)
C9 0.0268 (13) 0.0414 (16) 0.0409 (17) 0.0048 (12) 0.0012 (11) 0.0046 (13)
C10 0.0329 (14) 0.0318 (15) 0.0411 (17) 0.0019 (11) 0.0042 (11) 0.0057 (12)
C11 0.0361 (15) 0.0349 (15) 0.0450 (17) 0.0097 (12) 0.0056 (12) 0.0094 (13)
C12 0.0274 (13) 0.0402 (16) 0.0428 (17) 0.0048 (12) −0.0006 (11) 0.0086 (13)
C13 0.0430 (16) 0.0397 (17) 0.060 (2) 0.0148 (14) 0.0040 (14) 0.0156 (15)
C14 0.0464 (18) 0.0427 (18) 0.079 (3) −0.0026 (14) 0.0071 (17) 0.0229 (17)
C15 0.053 (2) 0.0429 (19) 0.074 (3) −0.0037 (15) −0.0136 (17) 0.0069 (17)
C16 0.0511 (19) 0.063 (2) 0.057 (2) 0.0121 (17) −0.0037 (16) 0.0115 (18)
C17 0.0365 (16) 0.056 (2) 0.072 (3) 0.0031 (14) 0.0095 (15) 0.0270 (18)
C18 0.098 (3) 0.076 (3) 0.057 (2) 0.035 (2) 0.006 (2) 0.014 (2)
C19 0.0365 (15) 0.0333 (15) 0.0545 (19) 0.0067 (12) 0.0012 (13) 0.0106 (14)
C20 0.0489 (18) 0.0364 (17) 0.067 (2) −0.0052 (14) −0.0052 (16) 0.0111 (16)
C21 0.063 (2) 0.048 (2) 0.069 (3) 0.0044 (17) −0.0196 (18) −0.0004 (18)
C22 0.071 (2) 0.074 (3) 0.050 (2) 0.022 (2) −0.0042 (18) 0.0120 (19)
C23 0.0455 (18) 0.062 (2) 0.071 (3) 0.0114 (16) 0.0139 (17) 0.0315 (19)
C24 0.073 (2) 0.063 (2) 0.055 (2) 0.0104 (18) 0.0016 (17) 0.0122 (18)
N1 0.0306 (14) 0.0527 (17) 0.091 (2) 0.0057 (13) 0.0026 (13) 0.0164 (16)
N2 0.0393 (14) 0.0389 (15) 0.0577 (17) −0.0015 (11) 0.0034 (11) 0.0140 (12)
N3 0.0369 (13) 0.0374 (14) 0.0507 (17) 0.0042 (10) −0.0032 (11) 0.0095 (13)
N4 0.0319 (13) 0.0450 (16) 0.078 (2) 0.0065 (12) −0.0019 (12) 0.0159 (14)
N5 0.0416 (15) 0.0393 (15) 0.0535 (16) −0.0004 (12) 0.0106 (11) 0.0073 (12)
N6 0.0413 (14) 0.0418 (15) 0.0621 (18) 0.0093 (11) −0.0072 (13) 0.0090 (14)
N7 0.0325 (13) 0.0381 (14) 0.0644 (19) 0.0009 (11) −0.0052 (12) 0.0107 (13)
N8 0.0334 (13) 0.0389 (14) 0.0624 (19) 0.0024 (11) −0.0012 (12) 0.0103 (13)
O1 0.0293 (13) 0.0564 (17) 0.239 (4) −0.0057 (12) −0.0048 (17) −0.003 (2)
O2 0.0400 (14) 0.0627 (17) 0.181 (3) 0.0171 (12) 0.0187 (16) 0.0202 (19)
O3 0.0350 (13) 0.0545 (15) 0.131 (2) −0.0054 (10) 0.0125 (13) 0.0251 (15)
O4 0.0605 (14) 0.0346 (12) 0.0830 (17) 0.0070 (10) 0.0091 (12) 0.0143 (11)
O5 0.151 (3) 0.096 (2) 0.0671 (19) 0.072 (2) −0.0282 (18) 0.0147 (16)
O6 0.108 (2) 0.0571 (16) 0.0671 (18) 0.0379 (15) 0.0000 (15) −0.0016 (14)
O7 0.0380 (11) 0.0385 (12) 0.0740 (15) −0.0062 (9) −0.0104 (10) 0.0170 (10)
O8 0.0375 (13) 0.0568 (16) 0.165 (3) 0.0165 (12) 0.0103 (15) 0.0163 (17)
O9 0.0410 (14) 0.0557 (16) 0.176 (3) 0.0013 (12) −0.0321 (16) 0.0013 (18)
O10 0.0617 (14) 0.0335 (12) 0.0650 (15) 0.0068 (10) 0.0075 (11) 0.0113 (10)
O11 0.0383 (13) 0.0528 (14) 0.120 (2) −0.0063 (10) 0.0119 (13) 0.0102 (14)
O12 0.122 (2) 0.091 (2) 0.089 (2) 0.0606 (19) −0.0448 (19) 0.0001 (16)
O13 0.0726 (17) 0.0431 (14) 0.101 (2) 0.0219 (12) −0.0229 (14) −0.0149 (14)
O14 0.0399 (11) 0.0373 (12) 0.0764 (16) −0.0041 (9) −0.0136 (10) 0.0151 (11)

Geometric parameters (Å, º)

C1—O7 1.256 (3) C17—N7 1.328 (4)
C1—C2 1.429 (4) C17—H17 0.9300
C1—C6 1.431 (4) C18—H18A 0.9600
C2—C3 1.371 (4) C18—H18B 0.9600
C2—N1 1.441 (3) C18—H18C 0.9600
C3—C4 1.367 (4) C19—N8 1.334 (4)
C3—H3 0.9300 C19—C20 1.369 (4)
C4—C5 1.385 (4) C19—C24 1.475 (4)
C4—N2 1.441 (3) C20—C21 1.358 (5)
C5—C6 1.353 (4) C20—H20 0.9300
C5—H5 0.9300 C21—C22 1.366 (5)
C6—N3 1.459 (3) C21—H21 0.9300
C7—O14 1.244 (3) C22—C23 1.348 (5)
C7—C12 1.437 (4) C22—H22 0.9300
C7—C8 1.446 (4) C23—N8 1.325 (4)
C8—C9 1.348 (4) C23—H23 0.9300
C8—N6 1.455 (4) C24—H24A 0.9600
C9—C10 1.382 (4) C24—H24B 0.9600
C9—H9 0.9300 C24—H24C 0.9600
C10—C11 1.370 (4) N1—O1 1.196 (3)
C10—N5 1.438 (3) N1—O2 1.206 (3)
C11—C12 1.365 (4) N2—O3 1.213 (3)
C11—H11 0.9300 N2—O4 1.222 (3)
C12—N4 1.446 (3) N3—O5 1.193 (3)
C13—N7 1.337 (4) N3—O6 1.195 (3)
C13—C14 1.377 (4) N4—O9 1.200 (3)
C13—C18 1.478 (5) N4—O8 1.215 (3)
C14—C15 1.351 (5) N5—O10 1.222 (3)
C14—H14 0.9300 N5—O11 1.225 (3)
C15—C16 1.358 (5) N6—O13 1.198 (3)
C15—H15 0.9300 N6—O12 1.213 (3)
C16—C17 1.356 (5) N7—H7A 0.95 (4)
C16—H16 0.9300 N8—H8A 0.94 (4)
O7—C1—C2 127.2 (2) C13—C18—H18A 109.5
O7—C1—C6 121.0 (3) C13—C18—H18B 109.5
C2—C1—C6 111.7 (2) H18A—C18—H18B 109.5
C3—C2—C1 123.7 (2) C13—C18—H18C 109.5
C3—C2—N1 116.3 (3) H18A—C18—H18C 109.5
C1—C2—N1 120.0 (2) H18B—C18—H18C 109.5
C4—C3—C2 119.5 (3) N8—C19—C20 117.5 (3)
C4—C3—H3 120.2 N8—C19—C24 118.3 (3)
C2—C3—H3 120.2 C20—C19—C24 124.2 (3)
C3—C4—C5 121.4 (2) C21—C20—C19 120.5 (3)
C3—C4—N2 119.0 (2) C21—C20—H20 119.8
C5—C4—N2 119.5 (2) C19—C20—H20 119.8
C6—C5—C4 117.6 (2) C20—C21—C22 120.0 (3)
C6—C5—H5 121.2 C20—C21—H21 120.0
C4—C5—H5 121.2 C22—C21—H21 120.0
C5—C6—C1 126.0 (3) C23—C22—C21 118.6 (3)
C5—C6—N3 118.6 (2) C23—C22—H22 120.7
C1—C6—N3 115.4 (2) C21—C22—H22 120.7
O14—C7—C12 126.6 (2) N8—C23—C22 120.4 (3)
O14—C7—C8 122.2 (2) N8—C23—H23 119.8
C12—C7—C8 111.0 (2) C22—C23—H23 119.8
C9—C8—C7 125.3 (2) C19—C24—H24A 109.5
C9—C8—N6 117.4 (2) C19—C24—H24B 109.5
C7—C8—N6 117.3 (2) H24A—C24—H24B 109.5
C8—C9—C10 119.0 (2) C19—C24—H24C 109.5
C8—C9—H9 120.5 H24A—C24—H24C 109.5
C10—C9—H9 120.5 H24B—C24—H24C 109.5
C11—C10—C9 120.7 (2) O1—N1—O2 120.9 (3)
C11—C10—N5 119.2 (2) O1—N1—C2 120.3 (3)
C9—C10—N5 120.1 (2) O2—N1—C2 118.9 (3)
C12—C11—C10 119.6 (3) O3—N2—O4 122.7 (2)
C12—C11—H11 120.2 O3—N2—C4 118.2 (2)
C10—C11—H11 120.2 O4—N2—C4 119.1 (2)
C11—C12—C7 124.4 (2) O5—N3—O6 122.5 (3)
C11—C12—N4 116.0 (2) O5—N3—C6 117.9 (3)
C7—C12—N4 119.6 (2) O6—N3—C6 119.6 (3)
N7—C13—C14 117.2 (3) O9—N4—O8 121.5 (3)
N7—C13—C18 117.6 (3) O9—N4—C12 120.1 (3)
C14—C13—C18 125.2 (3) O8—N4—C12 118.4 (3)
C15—C14—C13 120.7 (3) O10—N5—O11 122.8 (2)
C15—C14—H14 119.7 O10—N5—C10 119.1 (2)
C13—C14—H14 119.7 O11—N5—C10 118.1 (2)
C14—C15—C16 120.4 (3) O13—N6—O12 123.8 (3)
C14—C15—H15 119.8 O13—N6—C8 119.2 (3)
C16—C15—H15 119.8 O12—N6—C8 116.9 (3)
C17—C16—C15 118.3 (3) C17—N7—C13 122.7 (3)
C17—C16—H16 120.8 C17—N7—H7A 119 (2)
C15—C16—H16 120.8 C13—N7—H7A 118 (2)
N7—C17—C16 120.6 (3) C23—N8—C19 123.0 (3)
N7—C17—H17 119.7 C23—N8—H8A 116 (2)
C16—C17—H17 119.7 C19—N8—H8A 121 (2)
O7—C1—C2—C3 178.5 (3) C15—C16—C17—N7 0.2 (5)
C6—C1—C2—C3 1.6 (4) N8—C19—C20—C21 −0.7 (5)
O7—C1—C2—N1 1.0 (5) C24—C19—C20—C21 178.5 (3)
C6—C1—C2—N1 −175.8 (3) C19—C20—C21—C22 −0.2 (5)
C1—C2—C3—C4 0.8 (5) C20—C21—C22—C23 0.8 (5)
N1—C2—C3—C4 178.3 (3) C21—C22—C23—N8 −0.5 (5)
C2—C3—C4—C5 −2.9 (4) C3—C2—N1—O1 160.5 (4)
C2—C3—C4—N2 179.9 (3) C1—C2—N1—O1 −21.9 (5)
C3—C4—C5—C6 2.4 (4) C3—C2—N1—O2 −20.0 (5)
N2—C4—C5—C6 179.6 (2) C1—C2—N1—O2 157.6 (3)
C4—C5—C6—C1 0.3 (4) C3—C4—N2—O3 −176.7 (3)
C4—C5—C6—N3 −177.2 (2) C5—C4—N2—O3 6.0 (4)
O7—C1—C6—C5 −179.2 (3) C3—C4—N2—O4 3.7 (4)
C2—C1—C6—C5 −2.1 (4) C5—C4—N2—O4 −173.6 (3)
O7—C1—C6—N3 −1.6 (4) C5—C6—N3—O5 79.3 (4)
C2—C1—C6—N3 175.5 (2) C1—C6—N3—O5 −98.5 (3)
O14—C7—C8—C9 176.3 (3) C5—C6—N3—O6 −103.1 (3)
C12—C7—C8—C9 0.1 (4) C1—C6—N3—O6 79.1 (3)
O14—C7—C8—N6 −1.4 (4) C11—C12—N4—O9 −156.7 (3)
C12—C7—C8—N6 −177.6 (2) C7—C12—N4—O9 25.7 (4)
C7—C8—C9—C10 0.2 (4) C11—C12—N4—O8 22.4 (4)
N6—C8—C9—C10 177.9 (3) C7—C12—N4—O8 −155.2 (3)
C8—C9—C10—C11 −1.0 (4) C11—C10—N5—O10 −1.1 (4)
C8—C9—C10—N5 −178.8 (3) C9—C10—N5—O10 176.7 (3)
C9—C10—C11—C12 1.4 (4) C11—C10—N5—O11 −179.2 (3)
N5—C10—C11—C12 179.2 (2) C9—C10—N5—O11 −1.4 (4)
C10—C11—C12—C7 −1.1 (4) C9—C8—N6—O13 126.6 (3)
C10—C11—C12—N4 −178.6 (3) C7—C8—N6—O13 −55.5 (4)
O14—C7—C12—C11 −175.7 (3) C9—C8—N6—O12 −51.1 (4)
C8—C7—C12—C11 0.3 (4) C7—C8—N6—O12 126.8 (3)
O14—C7—C12—N4 1.7 (4) C16—C17—N7—C13 1.6 (5)
C8—C7—C12—N4 177.8 (2) C14—C13—N7—C17 −2.4 (4)
N7—C13—C14—C15 1.4 (5) C18—C13—N7—C17 177.0 (3)
C18—C13—C14—C15 −177.9 (3) C22—C23—N8—C19 −0.4 (5)
C13—C14—C15—C16 0.2 (5) C20—C19—N8—C23 1.0 (4)
C14—C15—C16—C17 −1.1 (5) C24—C19—N8—C23 −178.2 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N7—H7A···O9 0.95 (4) 2.28 (4) 2.813 (4) 114 (3)
N7—H7A···O14 0.95 (4) 1.76 (4) 2.678 (3) 160 (3)
N8—H8A···O1 0.94 (4) 2.35 (4) 2.894 (4) 117 (3)
N8—H8A···O7 0.94 (4) 1.76 (4) 2.660 (3) 158 (4)
C5—H5···O2i 0.93 2.50 3.423 (4) 170
C9—H9···O8ii 0.93 2.45 3.365 (3) 167
C14—H14···O10iii 0.93 2.54 3.456 (4) 167
C17—H17···O3 0.93 2.34 3.078 (4) 136
C18—H18B···O12i 0.96 2.64 3.488 (5) 148
C20—H20···O13iv 0.93 2.55 3.247 (4) 132
C23—H23···O8ii 0.93 2.63 3.394 (4) 140
C23—H23···O11 0.93 2.36 3.122 (4) 139

Symmetry codes: (i) x+1, y, z; (ii) x−1, y, z; (iii) x+1, y+1, z; (iv) x−1, y−1, z.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: HB7512).

References

  1. Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.
  2. Anitha, K., Athimoolam, S. & Natarajan, S. (2006). Acta Cryst. C62, o567–o570. [DOI] [PubMed]
  3. Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Chan, E. J., Grabowsky, S., Harrowfield, J. M., Shi, M. W., Skelton, B. W., Sobolev, A. N. & White, A. H. (2014). CrystEngComm, 16, 4508–4538.
  5. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  6. Gomathi, J. & Kalaivani, D. (2015). Acta Cryst E71, 1196–1198. [DOI] [PMC free article] [PubMed]
  7. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  8. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S205698901501912X/hb7512sup1.cif

e-71-0o848-sup1.cif (798.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S205698901501912X/hb7512Isup2.hkl

e-71-0o848-Isup2.hkl (381.2KB, hkl)

Supporting information file. DOI: 10.1107/S205698901501912X/hb7512Isup3.cml

ORTEP . DOI: 10.1107/S205698901501912X/hb7512fig1.tif

ORTEP view of the title mol­ecular salt with displacement ellipsoids drawn at 40% probability.

. DOI: 10.1107/S205698901501912X/hb7512fig2.tif

 A partial view of the crystal packing diagram of the title mol­ecular salt (hydrogen bonds and π–π stacking are shown as dotted lines).

CCDC reference: 1417625

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES