Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Oct 3;71(Pt 11):o816. doi: 10.1107/S2056989015017247

Crystal structure of tris­(3-methyl-1H-pyrazol-1-yl)methane

Margaret A Goodman a, M Scott Goodman b, Alexander Y Nazarenko b,*, Ealin N Patel b
PMCID: PMC4645007  PMID: 26594542

Abstract

The title mol­ecule, C13H16N6, crystallizes from hexane as a mol­ecular crystal with no strong inter­molecular inter­actions (the shortest C—H⋯N contact is longer than 3.38 Å). A relatively short intra­molecular contact (3.09 Å) has a C—H⋯N angle of 118° which is quite small to be still considered a hydrogen bond. The three pyrazole rings form a propeller-like motif, with one methylpyrazole unit almost perpendicular to the mean plane of the three rings [82.20 (6)°]. The other two methylpyrazole units, with nitrogen donor atoms oriented in opposite directions, are oriented at 67.26 (6) and 72.53 (6)° to the mean plane.

Keywords: crystal structure; 1,1′,1′′-methane­triyltris(3-methyl-1H-pyrazole); tripyrazolyl­methane

Related literature  

For syntheses and reactions of tris­pyrazolyl­methanes and their complexes with transition metals, see: Goodman et al. (2012); Jameson & Castellano (1998); Reger et al. (2000).graphic file with name e-71-0o816-scheme1.jpg

Experimental  

Crystal data  

  • C13H16N6

  • M r = 256.32

  • Monoclinic, Inline graphic

  • a = 12.0881 (8) Å

  • b = 13.4178 (10) Å

  • c = 9.0985 (6) Å

  • β = 111.630 (2)°

  • V = 1371.82 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 173 K

  • 0.60 × 0.48 × 0.29 mm

Data collection  

  • Bruker Photon-100 CMOS diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2014) T min = 0.706, T max = 0.747

  • 22036 measured reflections

  • 2612 independent reflections

  • 2171 reflections with I > 2σ(I)

  • R int = 0.029

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.037

  • wR(F 2) = 0.099

  • S = 1.05

  • 2612 reflections

  • 225 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT; program(s) used to solve structure: SHELXT (Sheldrick, 2015a ); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b ); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2.

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015017247/zl2643sup1.cif

e-71-0o816-sup1.cif (667.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015017247/zl2643Isup2.hkl

e-71-0o816-Isup2.hkl (209.1KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015017247/zl2643Isup3.cdx

Supporting information file. DOI: 10.1107/S2056989015017247/zl2643Isup4.cml

. DOI: 10.1107/S2056989015017247/zl2643fig1.tif

The mol­ecular structure of the title compound. Displacement elipsoids are drawn at the 50% probability level. Disorder of H atoms bonded to C5 are omitted for clarity.

c . DOI: 10.1107/S2056989015017247/zl2643fig2.tif

Packing diagram of the title mol­ecule. View along the c axis.

CCDC reference: 1424633

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

Financial support from the State University of New York for acquisition and maintenance of the X-ray diffractometer is gratefully acknowledged.

supplementary crystallographic information

S1. Chemical context

This report is part of our continious effort to study substituted tris­pyrazolyl­methanes and their complexes with various metal ions. Because all synthetic procedures yield a complex mixture of isomers, positive identification of the ligand molecule by X-ray diffractometry is essential for future research.

S2. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1.

All hydrogen atoms were located in electron difference density Fourier maps and were refined in an isotropic approximation. One methyl group (C5) was treated as disordered (SHELXL instruction AFIX 124). Isotropic parameters of atoms H1 and of disordered methyl group hydrogen atoms were constrained as UH = 1.2 UC.

Reflections 1 0 0 and 1 1 0 were too close to the beamstop to be measured reliably and were excluded from refinement.

S3. Synthesis and crystallization

Following the general method of Reger et al. (2000), 3-methyl­pyrazole (6.0 mL, 75.0 mmol), tetra­butyl­ammonium bromide (1.21 g, 3.75 mmol), and sodium carbonate (47.0 g, 0.45 mol) were heated together in a biphasic mixture of deionized water (75 mL) and chloro­form (40 mL). The reaction mixture was allowed to gently reflux for approximately 72 hours under argon. After cooling and filtering, the organic layer was separated from the aqueous layer. The aqueous layer was extracted three times with di­ethyl ether (100 mL), and the combined organic portions were washed twice with 100 mL portions of H2O. The organic mixture was dried (Na2SO4) and the solvents were removed under vacuum to give a dark, brown oil. 1H NMR analysis showed this to be mainly a mixture of all four regioisomers of the tris­(pyrazolyl)methanes derived from 3-methyl­pyrazole.

The crude mixture of tris­(pyrazolyl)methane regioisomers was first isomerized according to the method of Jameson & Castellano (1998). The crude brown oil (1.0 g) was combined with a catalytic amount of p-toluene­sulfonic acid (0.060 g) and a small amount (50 µL) of 3-methyl­pyrazole and heated at reflux in dry toluene (15 mL) for 24 hours under argon. After cooling, the mixture was washed twice with 100 mL portions of saturated NaHCO3 (aq). The aqueous extracts were then extracted once with CH2Cl2 (100 mL). The organic layers were combined, dried with Na2SO4, and evaporated under reduced pressure to give a dark yellow oil. NMR analysis of this oil showed that it contained a 2:1 mixture of the desired tris­(pyrazolyl)methane and another regioisomer.

For purification, the material was dissolved in a minimum amount of hot hexane and allowed to crystallize at room temperature for 24 hours. The resulting yellow/brown crystals were separated under a microscope. The larger, clear, and darker-colored lozenges were separated from the smaller, opaque, and lighter plates. These smaller crystals tend to form in masses, often growing on the larger crystals and the bottom of the flask. The larger crystals were scraped clean of as much of the other material as possible under the microscope. The large crystals separated in this fashion were typically at least 85% of target compound. This material was then carefully crystallized from hot hexanes after decolorization with carbon in the same solvent.

A suitable crystal was carefully cut from a larger block. A bigger crystal demonstrated the same structure in a preliminary X-ray experiment.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound. Displacement elipsoids are drawn at the 50% probability level. Disorder of H atoms bonded to C5 are omitted for clarity.

Fig. 2.

Fig. 2.

Packing diagram of the title molecule. View along the c axis.

Crystal data

C13H16N6 F(000) = 544
Mr = 256.32 Dx = 1.241 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 12.0881 (8) Å Cell parameters from 9433 reflections
b = 13.4178 (10) Å θ = 2.9–25.7°
c = 9.0985 (6) Å µ = 0.08 mm1
β = 111.630 (2)° T = 173 K
V = 1371.82 (16) Å3 Block, colourless
Z = 4 0.60 × 0.48 × 0.29 mm

Data collection

Bruker Photon-100 CMOS diffractometer 2171 reflections with I > 2σ(I)
Radiation source: sealedtube Rint = 0.029
φ and ω scans θmax = 25.7°, θmin = 2.9°
Absorption correction: multi-scan (SADABS; Bruker, 2014) h = −14→14
Tmin = 0.706, Tmax = 0.747 k = −16→16
22036 measured reflections l = −10→11
2612 independent reflections

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.037 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.099 w = 1/[σ2(Fo2) + (0.0457P)2 + 0.5131P] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max < 0.001
2612 reflections Δρmax = 0.28 e Å3
225 parameters Δρmin = −0.19 e Å3

Special details

Experimental. SADABS-2014/5 (Bruker,2014/5) was used for absorption correction. wR2(int) was 0.0499 before and 0.0468 after correction. The ratio of minimum to maximum transmission is 0.9453. The λ/2 correction factor is 0.00150.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. 1. Fixed Uiso At 1.2 times of: All C(H) groups, All C(H,H,H,H,H,H) groups 2. Others Sof(H5D)=Sof(H5E)=Sof(H5F)=1-FVAR(1) Sof(H5A)=Sof(H5B)=Sof(H5C)=FVAR(1) 3.a Disordered Me refined with riding coordinates and stretchable bonds: C5(H5A,H5B,H5C,H5D,H5E,H5F)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
N1 0.75721 (10) 0.58635 (9) 0.89470 (13) 0.0257 (3)
C1 0.81554 (12) 0.51681 (10) 0.82664 (15) 0.0231 (3)
H1 0.8972 (14) 0.5366 (11) 0.8603 (18) 0.028*
N2 0.64449 (11) 0.57102 (10) 0.88717 (14) 0.0322 (3)
C2 0.80352 (15) 0.67251 (12) 0.96750 (19) 0.0379 (4)
H2 0.8860 (18) 0.6925 (14) 0.984 (2) 0.051 (5)*
N3 0.76487 (10) 0.52045 (9) 0.65612 (13) 0.0247 (3)
C3 0.71772 (17) 0.71542 (14) 1.0092 (2) 0.0469 (4)
H3 0.7246 (19) 0.7797 (18) 1.066 (3) 0.074 (7)*
N4 0.83993 (11) 0.50592 (9) 0.57737 (14) 0.0288 (3)
C4 0.62038 (14) 0.65090 (12) 0.95767 (18) 0.0358 (4)
N5 0.81296 (9) 0.41679 (8) 0.88404 (12) 0.0224 (3)
C5 0.50296 (17) 0.66100 (16) 0.9753 (2) 0.0547 (5)
H5A 0.50076 (17) 0.7279 (9) 1.0330 (8) 0.066* 0.544 (19)
H5B 0.4350 (9) 0.66087 (16) 0.8637 (14) 0.066* 0.544 (19)
H5C 0.4909 (2) 0.6013 (8) 1.0416 (9) 0.066* 0.544 (19)
H5D 0.4504 (7) 0.5989 (8) 0.9259 (7) 0.066* 0.456 (19)
H5E 0.5161 (2) 0.66585 (18) 1.0952 (15) 0.066* 0.456 (19)
H5F 0.4602 (6) 0.7254 (8) 0.9172 (8) 0.066* 0.456 (19)
N6 0.90717 (10) 0.38708 (9) 1.01297 (12) 0.0249 (3)
C6 0.64987 (13) 0.52449 (12) 0.55706 (17) 0.0310 (3)
H6 0.5895 (15) 0.5348 (12) 0.5961 (19) 0.031 (4)*
C7 0.64953 (14) 0.51349 (12) 0.40812 (17) 0.0332 (4)
H7 0.5830 (16) 0.5140 (13) 0.313 (2) 0.043 (5)*
C8 0.76915 (13) 0.50248 (11) 0.42596 (16) 0.0299 (3)
C9 0.82000 (19) 0.48816 (18) 0.3011 (2) 0.0473 (5)
H9A 0.905 (2) 0.4833 (17) 0.347 (3) 0.072 (7)*
H9B 0.784 (2) 0.433 (2) 0.236 (3) 0.084 (8)*
H9C 0.805 (2) 0.548 (2) 0.234 (3) 0.088 (8)*
C10 0.72423 (13) 0.34908 (11) 0.84262 (18) 0.0311 (3)
H10 0.6507 (15) 0.3624 (12) 0.755 (2) 0.036 (4)*
C11 0.76199 (14) 0.27160 (12) 0.94568 (19) 0.0332 (4)
H11 0.7205 (15) 0.2122 (13) 0.945 (2) 0.039 (5)*
C12 0.87610 (13) 0.29819 (11) 1.04977 (16) 0.0285 (3)
C13 0.95886 (18) 0.24190 (16) 1.1873 (2) 0.0454 (4)
H13A 1.032 (2) 0.2793 (19) 1.244 (3) 0.086 (8)*
H13B 0.921 (2) 0.2225 (19) 1.253 (3) 0.088 (8)*
H13C 0.982 (2) 0.183 (2) 1.150 (3) 0.094 (9)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0252 (6) 0.0268 (6) 0.0242 (6) −0.0002 (5) 0.0081 (5) −0.0029 (5)
C1 0.0219 (7) 0.0251 (7) 0.0210 (7) −0.0020 (5) 0.0063 (5) −0.0013 (5)
N2 0.0272 (7) 0.0379 (7) 0.0315 (7) 0.0033 (5) 0.0108 (5) −0.0050 (5)
C2 0.0404 (10) 0.0334 (9) 0.0411 (9) −0.0069 (7) 0.0163 (7) −0.0108 (7)
N3 0.0224 (6) 0.0305 (7) 0.0209 (6) −0.0011 (5) 0.0077 (5) −0.0003 (5)
C3 0.0528 (11) 0.0350 (10) 0.0560 (11) 0.0016 (8) 0.0237 (9) −0.0134 (8)
N4 0.0281 (7) 0.0350 (7) 0.0261 (6) 0.0001 (5) 0.0134 (5) 0.0006 (5)
C4 0.0351 (9) 0.0406 (9) 0.0316 (8) 0.0104 (7) 0.0122 (7) 0.0000 (7)
N5 0.0199 (6) 0.0241 (6) 0.0221 (6) −0.0007 (4) 0.0064 (4) −0.0015 (5)
C5 0.0450 (11) 0.0647 (13) 0.0602 (12) 0.0151 (9) 0.0260 (9) −0.0059 (10)
N6 0.0231 (6) 0.0310 (7) 0.0207 (6) 0.0004 (5) 0.0081 (5) 0.0023 (5)
C6 0.0236 (7) 0.0424 (9) 0.0252 (7) −0.0006 (6) 0.0070 (6) −0.0003 (6)
C7 0.0317 (8) 0.0409 (9) 0.0224 (7) −0.0006 (7) 0.0048 (6) 0.0004 (6)
C8 0.0347 (8) 0.0309 (8) 0.0245 (7) −0.0015 (6) 0.0115 (6) 0.0007 (6)
C9 0.0467 (11) 0.0697 (14) 0.0302 (9) −0.0003 (10) 0.0195 (8) −0.0020 (9)
C10 0.0236 (8) 0.0287 (8) 0.0374 (8) −0.0033 (6) 0.0069 (7) −0.0032 (6)
C11 0.0314 (8) 0.0262 (8) 0.0455 (9) −0.0045 (6) 0.0182 (7) 0.0001 (7)
C12 0.0302 (8) 0.0309 (8) 0.0295 (7) 0.0018 (6) 0.0169 (6) 0.0040 (6)
C13 0.0448 (11) 0.0479 (11) 0.0436 (10) 0.0026 (9) 0.0163 (9) 0.0205 (9)

Geometric parameters (Å, º)

N1—C1 1.4398 (18) C5—H5D 1.045 (13)
N1—N2 1.3546 (17) C5—H5E 1.045 (13)
N1—C2 1.347 (2) C5—H5F 1.045 (13)
C1—H1 0.956 (16) N6—C12 1.3298 (19)
C1—N3 1.4436 (17) C6—H6 0.932 (17)
C1—N5 1.4446 (17) C6—C7 1.362 (2)
N2—C4 1.3353 (19) C7—H7 0.939 (18)
C2—H2 0.99 (2) C7—C8 1.402 (2)
C2—C3 1.357 (2) C8—C9 1.490 (2)
N3—N4 1.3615 (16) C9—H9A 0.96 (2)
N3—C6 1.3506 (18) C9—H9B 0.95 (3)
C3—H3 0.99 (2) C9—H9C 0.98 (3)
C3—C4 1.395 (2) C10—H10 0.965 (17)
N4—C8 1.3278 (18) C10—C11 1.361 (2)
C4—C5 1.492 (2) C11—H11 0.941 (18)
N5—N6 1.3591 (15) C11—C12 1.401 (2)
N5—C10 1.3490 (18) C12—C13 1.488 (2)
C5—H5A 1.045 (13) C13—H13A 0.98 (3)
C5—H5B 1.045 (13) C13—H13B 0.92 (3)
C5—H5C 1.045 (13) C13—H13C 0.95 (3)
N2—N1—C1 121.52 (11) H5B—C5—H5E 141.1
C2—N1—C1 125.94 (12) H5B—C5—H5F 56.3
C2—N1—N2 112.52 (12) H5C—C5—H5D 56.3
N1—C1—H1 107.0 (9) H5C—C5—H5E 56.3
N1—C1—N3 111.06 (11) H5C—C5—H5F 141.1
N1—C1—N5 111.55 (11) H5D—C5—H5E 109.5
N3—C1—H1 108.3 (9) H5D—C5—H5F 109.5
N3—C1—N5 111.27 (11) H5E—C5—H5F 109.5
N5—C1—H1 107.4 (9) C12—N6—N5 104.82 (11)
C4—N2—N1 104.33 (12) N3—C6—H6 120.6 (10)
N1—C2—H2 121.4 (11) N3—C6—C7 106.53 (13)
N1—C2—C3 106.24 (15) C7—C6—H6 132.8 (10)
C3—C2—H2 132.4 (11) C6—C7—H7 127.0 (11)
N4—N3—C1 117.37 (11) C6—C7—C8 105.75 (13)
C6—N3—C1 130.02 (12) C8—C7—H7 127.2 (11)
C6—N3—N4 112.10 (11) N4—C8—C7 111.04 (13)
C2—C3—H3 126.0 (13) N4—C8—C9 120.42 (14)
C2—C3—C4 106.23 (15) C7—C8—C9 128.53 (14)
C4—C3—H3 127.8 (13) C8—C9—H9A 110.7 (14)
C8—N4—N3 104.56 (11) C8—C9—H9B 110.7 (15)
N2—C4—C3 110.68 (14) C8—C9—H9C 109.5 (15)
N2—C4—C5 120.61 (16) H9A—C9—H9B 113 (2)
C3—C4—C5 128.69 (16) H9A—C9—H9C 104.5 (19)
N6—N5—C1 117.49 (11) H9B—C9—H9C 108 (2)
C10—N5—C1 130.21 (12) N5—C10—H10 120.1 (10)
C10—N5—N6 111.75 (11) N5—C10—C11 106.96 (13)
C4—C5—H5A 109.5 C11—C10—H10 132.9 (10)
C4—C5—H5B 109.5 C10—C11—H11 127.0 (10)
C4—C5—H5C 109.5 C10—C11—C12 105.53 (13)
C4—C5—H5D 109.5 C12—C11—H11 127.5 (10)
C4—C5—H5E 109.5 N6—C12—C11 110.93 (13)
C4—C5—H5F 109.5 N6—C12—C13 120.15 (14)
H5A—C5—H5B 109.5 C11—C12—C13 128.92 (15)
H5A—C5—H5C 109.5 C12—C13—H13A 112.2 (15)
H5A—C5—H5D 141.1 C12—C13—H13B 110.5 (16)
H5A—C5—H5E 56.3 C12—C13—H13C 108.8 (16)
H5A—C5—H5F 56.3 H13A—C13—H13B 112 (2)
H5B—C5—H5C 109.5 H13A—C13—H13C 107 (2)
H5B—C5—H5D 56.3 H13B—C13—H13C 106 (2)
N1—C1—N3—N4 145.25 (12) C2—C3—C4—C5 178.91 (17)
N1—C1—N3—C6 −43.68 (19) N3—C1—N5—N6 142.82 (11)
N1—C1—N5—N6 −92.55 (13) N3—C1—N5—C10 −46.46 (19)
N1—C1—N5—C10 78.17 (17) N3—N4—C8—C7 −0.73 (16)
N1—N2—C4—C3 −0.18 (17) N3—N4—C8—C9 179.43 (15)
N1—N2—C4—C5 −179.06 (15) N3—C6—C7—C8 0.29 (18)
N1—C2—C3—C4 −0.05 (19) N4—N3—C6—C7 −0.78 (17)
C1—N1—N2—C4 −178.37 (12) N5—C1—N3—N4 −89.84 (14)
C1—N1—C2—C3 178.37 (14) N5—C1—N3—C6 81.22 (18)
C1—N3—N4—C8 173.56 (12) N5—N6—C12—C11 −0.56 (15)
C1—N3—C6—C7 −172.22 (14) N5—N6—C12—C13 180.00 (14)
C1—N5—N6—C12 173.41 (11) N5—C10—C11—C12 0.69 (16)
C1—N5—C10—C11 −172.24 (13) N6—N5—C10—C11 −1.10 (16)
N2—N1—C1—N3 71.12 (16) C6—N3—N4—C8 0.94 (16)
N2—N1—C1—N5 −53.63 (16) C6—C7—C8—N4 0.29 (18)
N2—N1—C2—C3 −0.06 (18) C6—C7—C8—C9 −179.89 (18)
C2—N1—C1—N3 −107.19 (16) C10—N5—N6—C12 1.03 (15)
C2—N1—C1—N5 128.06 (15) C10—C11—C12—N6 −0.07 (17)
C2—N1—N2—C4 0.15 (16) C10—C11—C12—C13 179.30 (17)
C2—C3—C4—N2 0.1 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C1—H1···N6i 0.96 (2) 2.44 (2) 3.3796 (19) 167 (1)
C6—H6···N2 0.932 (17) 2.529 (16) 3.0918 (19) 119.2 (13)

Symmetry code: (i) −x+2, −y+1, −z+2.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: ZL2643).

References

  1. Bruker (2013). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Bruker (2014). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  4. Goodman, M. A., Nazarenko, A. Y., Casavant, B. J., Li, Z., Brennessel, W. W., DeMarco, M. J., Long, G. & Goodman, M. S. (2012). Inorg. Chem. 51, 1084–1093. [DOI] [PubMed]
  5. Jameson, D. L. & Castellano, R. K. (1998). Inorg. Synth 32, 51–63.
  6. Reger, D. L., Grattan, T. C., Brown, K. J., Little, C. A., Lamba, J. J. S., Rheingold, A. L. & Sommer, R. D. (2000). J. Organomet. Chem. 607, 120–128.
  7. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  8. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015017247/zl2643sup1.cif

e-71-0o816-sup1.cif (667.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015017247/zl2643Isup2.hkl

e-71-0o816-Isup2.hkl (209.1KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015017247/zl2643Isup3.cdx

Supporting information file. DOI: 10.1107/S2056989015017247/zl2643Isup4.cml

. DOI: 10.1107/S2056989015017247/zl2643fig1.tif

The mol­ecular structure of the title compound. Displacement elipsoids are drawn at the 50% probability level. Disorder of H atoms bonded to C5 are omitted for clarity.

c . DOI: 10.1107/S2056989015017247/zl2643fig2.tif

Packing diagram of the title mol­ecule. View along the c axis.

CCDC reference: 1424633

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES