Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Oct 31;71(Pt 11):1411–1413. doi: 10.1107/S2056989015020101

Crystal structure of 4-({(1E,2E)-3-[3-(4-fluoro­phen­yl)-1-isopropyl-1H-indol-2-yl]allyl­idene}amino)-5-methyl-1H-1,2,4-triazole-5(4H)-thione

Ajaykumar D Kulkarni a, Md Lutfor Rahman b,*, Mashitah Mohd Yusoff b, Huey Chong Kwong c, Ching Kheng Quah d
PMCID: PMC4645009  PMID: 26594522

The title compound exists in a trans conformation with respect to the methene C=C and the acyclic N=C bonds, with the 1,2,4-triazole-5(4H)-thione ring almost normal to the indole and benzene rings. In the crystal, mol­ecules are linked by pairs of N—H⋯S hydrogen bonds, forming inversion dimers with an Inline graphic(8) ring motif.

Keywords: crystal structure; 1,2,4-triazole-5(4H)-thione; indole; Schiff base; N—H⋯S hydrogen bonds; C—H⋯π and π–π inter­actions

Abstract

The title compound, C23H22FN5S, exists in a trans conformation with respect to the methene C=C and the acyclic N=C bonds. The 1,2,4-triazole-5(4H)-thione ring makes dihedral angles of 88.66 (9) and 84.51 (10)°, respectively, with the indole and benzene rings. In the crystal, mol­ecules are linked by pairs of N—H⋯S hydrogen bonds, forming inversion dimers with an R 2 2(8) ring motif. The dimers are linked via C—H⋯π inter­actions, forming chains along [1-10]. The chains are linked via π—π inter­actions involving inversion-related triazole rings [centroid–centroid distance = 3.4340 (13) Å], forming layers parallel to the ab plane.

Chemical context  

The synthesis and functionalization of indoles has been a major area of focus for researchers for several decades. Indoles are of great importance in view of their natural occurrence as a prominent sub-structure of a large number of alkaloids (Somei & Yamada, 2003; Hibino & Choshi, 2002) and wide-ranging biological activities (Gribble, 1995). They also constitute an important moiety of various drugs. In addition, 1,2,4-triazoles are an important class of heterocyclic compounds which are well known for their potential anti­microbial properties. Substituted 1,2,4-triazoles are associated with diverse biological activities such as fungicidal, anti­microbial, anti­convulsant and anti­viral activities (Walser et al., 1991; Eweiss et al., 1986; Bhat et al., 2001; Kitazaki et al., 1996; Todoulou et al., 1994). The proper design of indoles and triazoles can be used to prepare Schiff bases. The wide spectrum of biological applications of 1,2,4-triazoles prompted us to synthesize Schiff bases derived from triazole and indole derivatives. The formation of the azomethine functional group CH=N is thought to be the main reason for the biological properties of Schiff bases. We have reported a number of metal complexes of Schiff bases, recently, which possess very good anti­microbial properties (Kulkarni et al., 2009a ,b , 2011).

Structural commentary  

The title compound, Fig. 1, exists in a trans conformations with respect to the methene C9=C10 [1.322 (2) Å] and acyclic N2=C11 bonds [1.278 (2) Å]. The triazole ring is almost planar [maximum deviation of 0.011 (2) Å for atom C13], as is the indole ring [maximum deviation of 0.031 (2) Å for atom C4]. The triazole ring is almost normal to both the indole and benzene rings with dihedral angles of 88.66 (9) and 84.51 (10)°, respectively, while the indole and benzene ring are inclined to one another by 61.25 (8)°. The bond lengths and angles in the triazole-thione moiety of the title mol­ecule are comparable to those reported for related compounds (Fun et al., 2008; Goh et al., 2009; Asad et al., 2010).graphic file with name e-71-01411-scheme1.jpg

Figure 1.

Figure 1

The mol­ecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level.

Supra­molecular features  

In the crystal, mol­ecules are linked via pairs of N4—H4B⋯S1 hydrogen bonds, forming inversion dimers with an Inline graphic(8)ring motif (Table 1 and Fig. 2). The dimers are linked by C—H⋯π inter­actions (Table 1), forming chains along [1Inline graphic0]. The chains are linked by slipped parallel π–·π inter­actions involving inversion-related triazole rings [Cg2⋯Cg2i = 3.4339 (13) Å; Cg2 is the centroid of the triazole ring (N3–N5/C12/C13); inter­planar distance = 3.3696 (8) Å, slippage = 0.662 Å; symmetry code: (i) −x, −y + 1, −z + 2], forming layers parallel to the ab plane.

Table 1. Hydrogen-bond geometry (, ).

Cg1 is the centroid of the C18C23 ring.

DHA DH HA D A DHA
N4H4BS1i 0.91(2) 2.35(2) 3.257(2) 177.1(15)
C4H4A Cg1ii 0.93 2.93 3.724(2) 144

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Figure 2.

Figure 2

The crystal packing of the title compound viewed along the a axis. The N—H⋯S hydrogen bonds are shown as dashed lines (see Table 1). H atoms not involved in hydrogen bonding have been omitted for clarity.

Database survey  

A search of the Cambridge Structural Database (CSD, Version 35.6, last update May 2015; Groom and Allen, 2014) revealed the presence of 60 structures containing the triazole-thione moiety but only four structures containing the fluvastatin [systematic name: (3R,5S,6E)-7-[3-(4-fluoro­phen­yl)-1-(propan-2-yl)-1H-indol-2-yl]-3,5-di­hydroxy­hept-6-enoic acid] nucleus. These include 5-[3-(4-fluoro­phen­yl)-1-isopropyl-1H-indol-2-yl]-1-(X)penta-2,4-diene-1-one (Kalalbandi et al., 2015), where X = 4-nitro­phenyl (NUHNAH), 2-hy­droxy­phenyl (NUHNEL), 4-meth­oxy­phenyl (NUHNIP) and 4-chloro­phenyl (NUHNOV). In the four compounds, the 4-fluoro­phenyl ring of the fluvastatin nucleus is inclined to the indole ring by dihedral angles ranging from ca 46.66 to 68.59°, compared to 61.25 (8)° for the title compound.

Synthesis and crystallization  

The title compound was synthesized following a reported procedure (Kulkarni et al., 2011). A hot ethano­lic solution (60 ml) of 3-substituted-4-amino-5-mercapto-1,2,4-triazole (0.01 mol) and fluvastatin (0.01 mol) were refluxed for 4–5 h with addition of 4–5 drops of concentrated hydro­chloric acid. The precipitate obtained after evaporation of the solvent was filtered and washed with cold ethanol and recrystallized from hot ethanol. Crystals suitable for single-crystal diffraction analysis were obtained by slow evaporation of a solution in chloro­form (yield: 76%; m.p.: 469 K). 1H NMR (d 6-DMSO): 10.6 (s, 1H, NH), 10.04 (s, 1H, CH=N), 7.1–7.6 (m, 8H, Ar–H), 6.47–6.56 (d, 2H, –CH=CH–), 2.38 (s, 1H, –CH3), 6.47–6.56 (s, 6H, isopropyl group). IR (KBr) cm−1: 3220, 3180 (N—H), 2753 (C—H), 1619 (C=N), 1500–1600 47 (C=C), 1102 (C=S). FAB MS: m/z 419. Elemental analysis: observed (calculated for C23H22FN5S) C, 65.94 (65.87); H, 5.19 (5.25); N, 16.66 (16.71) %.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. The N-bound H atom was located in a difference Fourier map and freely refined. The C-bound H atoms were positioned geometrically [C—H = 0.93–0.98 Å] and refined using a riding model with U iso(H) = 1.5U eq(C-meth­yl) and 1.2U eq(C) for other H atoms.

Table 2. Experimental details.

Crystal data
Chemical formula C23H22FN5S
M r 419.51
Crystal system, space group Monoclinic, P21/c
Temperature (K) 297
a, b, c () 6.4388(8), 23.482(3), 14.572(3)
() 100.5009(19)
V (3) 2166.3(6)
Z 4
Radiation type Mo K
(mm1) 0.18
Crystal size (mm) 0.40 0.27 0.09
 
Data collection
Diffractometer Bruker APEXII DUO CCD area-detector
Absorption correction Multi-scan (SADABS; Bruker, 2009)
T min, T max 0.779, 0.932
No. of measured, independent and observed [I > 2(I)] reflections 24228, 5094, 3393
R int 0.041
(sin /)max (1) 0.657
 
Refinement
R[F 2 > 2(F 2)], wR(F 2), S 0.046, 0.127, 1.04
No. of reflections 5094
No. of parameters 278
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
max, min (e 3) 0.24, 0.19

Computer programs: APEX2 and SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL2013 (Sheldrick, 2015), Mercury (Macrae et al., 2008) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989015020101/su5226sup1.cif

e-71-01411-sup1.cif (824.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015020101/su5226Isup2.hkl

e-71-01411-Isup2.hkl (279.3KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015020101/su5226Isup3.cml

CCDC reference: 1433130

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

This research was supported by a PRGS Research Grant (No. RDU 130803).

supplementary crystallographic information

Crystal data

C23H22FN5S F(000) = 880
Mr = 419.51 Dx = 1.286 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 6.4388 (8) Å Cell parameters from 5835 reflections
b = 23.482 (3) Å θ = 2.8–27.5°
c = 14.572 (3) Å µ = 0.18 mm1
β = 100.5009 (19)° T = 297 K
V = 2166.3 (6) Å3 Block, yellow
Z = 4 0.40 × 0.27 × 0.09 mm

Data collection

Bruker APEXII DUO CCD area-detector diffractometer 5094 independent reflections
Radiation source: fine-focus sealed tube 3393 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.041
φ and ω scans θmax = 27.8°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −8→8
Tmin = 0.779, Tmax = 0.932 k = −30→30
24228 measured reflections l = −19→18

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046 Hydrogen site location: mixed
wR(F2) = 0.127 H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0559P)2 + 0.3794P] where P = (Fo2 + 2Fc2)/3
5094 reflections (Δ/σ)max = 0.001
278 parameters Δρmax = 0.24 e Å3
0 restraints Δρmin = −0.19 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.39854 (8) 0.40778 (2) 0.98203 (4) 0.06099 (17)
F1 0.5717 (2) 0.13276 (6) 1.27264 (9) 0.0912 (4)
N1 −0.3776 (2) 0.17803 (6) 0.86118 (10) 0.0523 (4)
N2 0.0328 (2) 0.36814 (6) 1.09831 (11) 0.0512 (4)
N3 0.0953 (2) 0.42497 (6) 1.09021 (10) 0.0464 (3)
N4 0.2694 (3) 0.49906 (7) 1.07257 (11) 0.0540 (4)
H4B 0.358 (3) 0.5255 (9) 1.0558 (15) 0.073 (7)*
N5 0.1315 (3) 0.51498 (7) 1.13047 (11) 0.0564 (4)
C1 −0.4000 (3) 0.12025 (8) 0.87117 (12) 0.0497 (4)
C2 −0.5378 (3) 0.08101 (9) 0.81951 (14) 0.0598 (5)
H2A −0.6413 0.0929 0.7702 0.072*
C3 −0.5163 (3) 0.02485 (9) 0.84345 (15) 0.0655 (6)
H3A −0.6061 −0.0017 0.8093 0.079*
C4 −0.3635 (3) 0.00615 (9) 0.91768 (15) 0.0636 (5)
H4A −0.3509 −0.0325 0.9313 0.076*
C5 −0.2315 (3) 0.04425 (8) 0.97074 (14) 0.0547 (5)
H5A −0.1318 0.0318 1.0211 0.066*
C6 −0.2489 (3) 0.10201 (7) 0.94809 (12) 0.0457 (4)
C7 −0.1334 (3) 0.15099 (7) 0.98611 (11) 0.0446 (4)
C8 −0.2146 (3) 0.19687 (8) 0.93150 (12) 0.0474 (4)
C9 −0.1544 (3) 0.25633 (8) 0.93989 (13) 0.0529 (4)
H9A −0.1696 0.2772 0.8848 0.063*
C10 −0.0801 (3) 0.28383 (8) 1.01813 (13) 0.0503 (4)
H10A −0.0641 0.2640 1.0743 0.060*
C11 −0.0232 (3) 0.34278 (8) 1.02010 (13) 0.0498 (4)
H11A −0.0270 0.3626 0.9646 0.060*
C12 0.2548 (3) 0.44453 (8) 1.04702 (12) 0.0478 (4)
C13 0.0300 (3) 0.46845 (8) 1.14103 (13) 0.0507 (4)
C14 −0.1374 (3) 0.46154 (10) 1.19744 (16) 0.0702 (6)
H14A −0.2661 0.4498 1.1578 0.105*
H14B −0.1598 0.4971 1.2265 0.105*
H14C −0.0951 0.4332 1.2446 0.105*
C15 −0.4963 (3) 0.21375 (9) 0.78577 (13) 0.0592 (5)
H15A −0.4358 0.2520 0.7967 0.071*
C16 −0.7234 (4) 0.22020 (12) 0.79263 (17) 0.0881 (8)
H16A −0.7933 0.2432 0.7418 0.132*
H16B −0.7342 0.2382 0.8508 0.132*
H16C −0.7888 0.1833 0.7897 0.132*
C17 −0.4518 (4) 0.19635 (11) 0.69253 (15) 0.0850 (7)
H17A −0.5220 0.2219 0.6456 0.127*
H17B −0.5024 0.1583 0.6785 0.127*
H17C −0.3023 0.1976 0.6937 0.127*
C18 0.0509 (3) 0.14878 (7) 1.06333 (12) 0.0446 (4)
C19 0.0324 (3) 0.12700 (8) 1.15036 (13) 0.0536 (5)
H19A −0.0996 0.1158 1.1611 0.064*
C20 0.2057 (3) 0.12172 (9) 1.22087 (14) 0.0604 (5)
H20A 0.1915 0.1075 1.2789 0.072*
C21 0.3980 (3) 0.13781 (9) 1.20369 (14) 0.0602 (5)
C22 0.4252 (3) 0.15878 (9) 1.11945 (15) 0.0624 (5)
H22A 0.5585 0.1693 1.1094 0.075*
C23 0.2508 (3) 0.16406 (8) 1.04971 (13) 0.0548 (5)
H23A 0.2676 0.1783 0.9919 0.066*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0679 (3) 0.0568 (3) 0.0619 (3) −0.0073 (2) 0.0215 (3) −0.0065 (2)
F1 0.0731 (8) 0.1057 (11) 0.0794 (9) 0.0101 (7) −0.0271 (7) 0.0028 (8)
N1 0.0596 (9) 0.0492 (9) 0.0423 (8) 0.0011 (7) −0.0065 (7) 0.0004 (7)
N2 0.0588 (9) 0.0437 (8) 0.0510 (9) −0.0046 (7) 0.0099 (7) −0.0012 (7)
N3 0.0505 (8) 0.0427 (8) 0.0439 (8) −0.0035 (6) 0.0032 (7) −0.0005 (6)
N4 0.0575 (9) 0.0487 (9) 0.0558 (10) −0.0077 (8) 0.0106 (8) −0.0006 (7)
N5 0.0577 (9) 0.0509 (9) 0.0594 (10) −0.0023 (8) 0.0073 (8) −0.0055 (8)
C1 0.0537 (10) 0.0520 (11) 0.0423 (10) −0.0005 (8) 0.0059 (8) −0.0043 (8)
C2 0.0636 (12) 0.0635 (13) 0.0485 (11) −0.0081 (10) 0.0005 (9) −0.0069 (9)
C3 0.0713 (13) 0.0632 (13) 0.0612 (13) −0.0189 (11) 0.0100 (11) −0.0146 (10)
C4 0.0787 (14) 0.0463 (11) 0.0681 (13) −0.0077 (10) 0.0197 (12) −0.0062 (10)
C5 0.0589 (11) 0.0493 (11) 0.0564 (11) 0.0029 (9) 0.0121 (9) 0.0011 (9)
C6 0.0490 (10) 0.0459 (10) 0.0424 (9) 0.0021 (8) 0.0091 (8) −0.0026 (8)
C7 0.0495 (10) 0.0432 (9) 0.0402 (9) 0.0031 (8) 0.0061 (8) −0.0008 (7)
C8 0.0523 (10) 0.0471 (10) 0.0407 (9) 0.0010 (8) 0.0023 (8) −0.0023 (8)
C9 0.0603 (11) 0.0470 (10) 0.0474 (10) 0.0030 (8) −0.0005 (9) 0.0053 (8)
C10 0.0557 (10) 0.0455 (10) 0.0495 (10) 0.0001 (8) 0.0091 (8) 0.0010 (8)
C11 0.0499 (10) 0.0483 (10) 0.0494 (11) −0.0007 (8) 0.0040 (8) 0.0022 (8)
C12 0.0503 (10) 0.0486 (10) 0.0416 (9) −0.0048 (8) 0.0007 (8) 0.0028 (8)
C13 0.0515 (10) 0.0502 (11) 0.0481 (10) 0.0006 (8) 0.0029 (8) −0.0056 (8)
C14 0.0722 (13) 0.0654 (13) 0.0783 (15) −0.0021 (11) 0.0277 (12) −0.0120 (11)
C15 0.0663 (12) 0.0599 (12) 0.0457 (11) 0.0063 (10) −0.0046 (9) 0.0045 (9)
C16 0.0896 (17) 0.0990 (19) 0.0737 (15) 0.0358 (15) 0.0092 (13) 0.0178 (14)
C17 0.1087 (19) 0.0920 (18) 0.0548 (13) 0.0203 (15) 0.0165 (13) 0.0172 (12)
C18 0.0495 (10) 0.0391 (9) 0.0436 (9) 0.0042 (7) 0.0041 (8) −0.0019 (7)
C19 0.0544 (10) 0.0573 (11) 0.0481 (10) 0.0006 (9) 0.0064 (8) 0.0038 (9)
C20 0.0727 (13) 0.0614 (12) 0.0437 (10) 0.0064 (10) 0.0016 (9) 0.0065 (9)
C21 0.0584 (12) 0.0567 (12) 0.0572 (12) 0.0080 (9) −0.0111 (9) −0.0031 (10)
C22 0.0464 (10) 0.0647 (13) 0.0736 (14) 0.0022 (9) 0.0042 (10) −0.0006 (11)
C23 0.0555 (11) 0.0580 (11) 0.0508 (11) 0.0036 (9) 0.0094 (9) 0.0054 (9)

Geometric parameters (Å, º)

S1—C12 1.6785 (19) C9—H9A 0.9300
F1—C21 1.365 (2) C10—C11 1.431 (3)
N1—C1 1.375 (2) C10—H10A 0.9300
N1—C8 1.398 (2) C11—H11A 0.9300
N1—C15 1.480 (2) C13—C14 1.479 (3)
N2—C11 1.278 (2) C14—H14A 0.9600
N2—N3 1.405 (2) C14—H14B 0.9600
N3—C13 1.372 (2) C14—H14C 0.9600
N3—C12 1.377 (2) C15—C16 1.491 (3)
N4—C12 1.332 (2) C15—C17 1.496 (3)
N4—N5 1.383 (2) C15—H15A 0.9800
N4—H4B 0.91 (2) C16—H16A 0.9600
N5—C13 1.297 (2) C16—H16B 0.9600
C1—C2 1.400 (3) C16—H16C 0.9600
C1—C6 1.410 (2) C17—H17A 0.9600
C2—C3 1.365 (3) C17—H17B 0.9600
C2—H2A 0.9300 C17—H17C 0.9600
C3—C4 1.394 (3) C18—C23 1.385 (2)
C3—H3A 0.9300 C18—C19 1.393 (2)
C4—C5 1.371 (3) C19—C20 1.377 (3)
C4—H4A 0.9300 C19—H19A 0.9300
C5—C6 1.396 (3) C20—C21 1.361 (3)
C5—H5A 0.9300 C20—H20A 0.9300
C6—C7 1.426 (2) C21—C22 1.363 (3)
C7—C8 1.384 (2) C22—C23 1.376 (3)
C7—C18 1.480 (2) C22—H22A 0.9300
C8—C9 1.448 (3) C23—H23A 0.9300
C9—C10 1.322 (2)
C1—N1—C8 108.31 (14) N3—C12—S1 128.32 (14)
C1—N1—C15 126.00 (15) N5—C13—N3 110.63 (16)
C8—N1—C15 125.60 (16) N5—C13—C14 126.34 (17)
C11—N2—N3 113.96 (15) N3—C13—C14 123.02 (17)
C13—N3—C12 109.04 (15) C13—C14—H14A 109.5
C13—N3—N2 122.74 (14) C13—C14—H14B 109.5
C12—N3—N2 127.16 (15) H14A—C14—H14B 109.5
C12—N4—N5 114.22 (16) C13—C14—H14C 109.5
C12—N4—H4B 126.7 (14) H14A—C14—H14C 109.5
N5—N4—H4B 119.1 (14) H14B—C14—H14C 109.5
C13—N5—N4 103.77 (15) N1—C15—C16 112.83 (18)
N1—C1—C2 131.40 (17) N1—C15—C17 111.16 (17)
N1—C1—C6 108.25 (15) C16—C15—C17 116.2 (2)
C2—C1—C6 120.35 (18) N1—C15—H15A 105.2
C3—C2—C1 118.28 (19) C16—C15—H15A 105.2
C3—C2—H2A 120.9 C17—C15—H15A 105.2
C1—C2—H2A 120.9 C15—C16—H16A 109.5
C2—C3—C4 121.82 (19) C15—C16—H16B 109.5
C2—C3—H3A 119.1 H16A—C16—H16B 109.5
C4—C3—H3A 119.1 C15—C16—H16C 109.5
C5—C4—C3 120.6 (2) H16A—C16—H16C 109.5
C5—C4—H4A 119.7 H16B—C16—H16C 109.5
C3—C4—H4A 119.7 C15—C17—H17A 109.5
C4—C5—C6 119.07 (19) C15—C17—H17B 109.5
C4—C5—H5A 120.5 H17A—C17—H17B 109.5
C6—C5—H5A 120.5 C15—C17—H17C 109.5
C5—C6—C1 119.82 (17) H17A—C17—H17C 109.5
C5—C6—C7 132.71 (17) H17B—C17—H17C 109.5
C1—C6—C7 107.42 (15) C23—C18—C19 117.50 (17)
C8—C7—C6 106.79 (15) C23—C18—C7 121.29 (16)
C8—C7—C18 129.11 (16) C19—C18—C7 121.02 (16)
C6—C7—C18 123.81 (15) C20—C19—C18 121.35 (18)
C7—C8—N1 109.23 (15) C20—C19—H19A 119.3
C7—C8—C9 129.40 (16) C18—C19—H19A 119.3
N1—C8—C9 121.36 (16) C21—C20—C19 118.57 (18)
C10—C9—C8 126.37 (17) C21—C20—H20A 120.7
C10—C9—H9A 116.8 C19—C20—H20A 120.7
C8—C9—H9A 116.8 C20—C21—C22 122.43 (18)
C9—C10—C11 122.75 (17) C20—C21—F1 119.42 (19)
C9—C10—H10A 118.6 C22—C21—F1 118.15 (19)
C11—C10—H10A 118.6 C21—C22—C23 118.45 (19)
N2—C11—C10 119.87 (17) C21—C22—H22A 120.8
N2—C11—H11A 120.1 C23—C22—H22A 120.8
C10—C11—H11A 120.1 C22—C23—C18 121.70 (18)
N4—C12—N3 102.30 (15) C22—C23—H23A 119.2
N4—C12—S1 129.35 (14) C18—C23—H23A 119.2
C11—N2—N3—C13 135.05 (17) N3—N2—C11—C10 176.73 (15)
C11—N2—N3—C12 −58.1 (2) C9—C10—C11—N2 174.77 (18)
C12—N4—N5—C13 0.3 (2) N5—N4—C12—N3 1.0 (2)
C8—N1—C1—C2 −179.70 (19) N5—N4—C12—S1 −177.04 (13)
C15—N1—C1—C2 −3.0 (3) C13—N3—C12—N4 −1.95 (18)
C8—N1—C1—C6 −0.5 (2) N2—N3—C12—N4 −170.26 (15)
C15—N1—C1—C6 176.20 (16) C13—N3—C12—S1 176.15 (14)
N1—C1—C2—C3 176.7 (2) N2—N3—C12—S1 7.8 (2)
C6—C1—C2—C3 −2.4 (3) N4—N5—C13—N3 −1.6 (2)
C1—C2—C3—C4 0.6 (3) N4—N5—C13—C14 179.73 (18)
C2—C3—C4—C5 1.4 (3) C12—N3—C13—N5 2.3 (2)
C3—C4—C5—C6 −1.5 (3) N2—N3—C13—N5 171.27 (15)
C4—C5—C6—C1 −0.4 (3) C12—N3—C13—C14 −178.93 (17)
C4—C5—C6—C7 −177.33 (19) N2—N3—C13—C14 −10.0 (3)
N1—C1—C6—C5 −176.99 (16) C1—N1—C15—C16 69.7 (3)
C2—C1—C6—C5 2.3 (3) C8—N1—C15—C16 −114.2 (2)
N1—C1—C6—C7 0.7 (2) C1—N1—C15—C17 −62.8 (3)
C2—C1—C6—C7 −179.99 (17) C8—N1—C15—C17 113.3 (2)
C5—C6—C7—C8 176.61 (19) C8—C7—C18—C23 −58.3 (3)
C1—C6—C7—C8 −0.63 (19) C6—C7—C18—C23 114.7 (2)
C5—C6—C7—C18 2.3 (3) C8—C7—C18—C19 126.8 (2)
C1—C6—C7—C18 −174.99 (15) C6—C7—C18—C19 −60.2 (2)
C6—C7—C8—N1 0.35 (19) C23—C18—C19—C20 1.1 (3)
C18—C7—C8—N1 174.31 (16) C7—C18—C19—C20 176.15 (17)
C6—C7—C8—C9 179.80 (18) C18—C19—C20—C21 −0.6 (3)
C18—C7—C8—C9 −6.2 (3) C19—C20—C21—C22 −0.1 (3)
C1—N1—C8—C7 0.1 (2) C19—C20—C21—F1 −179.84 (17)
C15—N1—C8—C7 −176.62 (17) C20—C21—C22—C23 0.4 (3)
C1—N1—C8—C9 −179.43 (17) F1—C21—C22—C23 −179.90 (18)
C15—N1—C8—C9 3.9 (3) C21—C22—C23—C18 0.1 (3)
C7—C8—C9—C10 −31.3 (3) C19—C18—C23—C22 −0.8 (3)
N1—C8—C9—C10 148.07 (19) C7—C18—C23—C22 −175.87 (17)
C8—C9—C10—C11 179.64 (17)

Hydrogen-bond geometry (Å, º)

Cg1 is the centroid of the C18–C23 ring.

D—H···A D—H H···A D···A D—H···A
N4—H4B···S1i 0.91 (2) 2.35 (2) 3.257 (2) 177.1 (15)
C4—H4A···Cg1ii 0.93 2.93 3.724 (2) 144

Symmetry codes: (i) −x+1, −y+1, −z+2; (ii) −x, −y, −z+2.

References

  1. Asad, M., Oo, C.-W., Osman, H., Yeap, C. S. & Fun, H.-K. (2010). Acta Cryst. E66, o2861–o2862. [DOI] [PMC free article] [PubMed]
  2. Bhat, A. R., Bhat, G. V. & Shenoy, G. G. (2001). J. Pharm. Pharmacol. 53, 267–272. [DOI] [PubMed]
  3. Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Eweiss, N. F., Bahajaj, A. A. & Elsherbini, E. A. (1986). J. Heterocycl. Chem. 23, 1451–1458.
  5. Fun, H.-K., Jebas, S. R., Sujith, K. V., Patil, P. S., Kalluraya, B. & Dharmaprakash, S. M. (2008). Acta Cryst. E64, o1528–o1529. [DOI] [PMC free article] [PubMed]
  6. Goh, J. H., Fun, H.-K., Adhikari, A. & Kalluraya, B. (2009). Acta Cryst. E65, o3235–o3236. [DOI] [PMC free article] [PubMed]
  7. Gribble, G. W. (1995). Comprehensive Heterocyclic Chemistry, edited by C. W. Bird, A. R. Katrizky, C. W. Rees & E. F. V. Scriven, Vol 2., 2nd ed., p. 207. Oxford: Pergamon.
  8. Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. [DOI] [PubMed]
  9. Hibino, S. & Choshi, T. (2002). Nat. Prod. Rep. 19, 148–180. [DOI] [PubMed]
  10. Kalalbandi, V. K. A., Seetharamappa, J. & Katrahalli, U. (2015). RSC Adv. 5, 38748–38759.
  11. Kitazaki, T., Tamura, N., Tasaka, A., Matsushita, Y., Hayashi, R., Okonogi, K. & Itoh, K. (1996). Chem. Pharm. Bull. 44, 314–327. [DOI] [PubMed]
  12. Kulkarni, A. D., Patil, S. A. & Badami, P. S. (2009a). J. Sulfur Chem. 30, 145–159.
  13. Kulkarni, A. D., Patil, S. A., Naik, V. H. & Badami, P. S. (2009b). Int. J. Electrochem. Sci. 4, 717–729.
  14. Kulkarni, A. D., Patil, S. A., Naik, V. H. & Badami, P. S. (2011). Med. Chem. Res. 20, 346–354.
  15. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  16. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  17. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  18. Somei, M. & Yamada, F. (2003). Nat. Prod. Rep. 20, 216–242. [DOI] [PubMed]
  19. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  20. Todoulou, O. G., Papadaki-Valiraki, A. E., Filippatos, E. C., Ikeda, S. & De Clercq, E. (1994). Eur. J. Med. Chem. 29, 127–131.
  21. Walser, A., Flynn, T. & Mason, C. (1991). J. Heterocycl. Chem. 28, 1121–1125.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989015020101/su5226sup1.cif

e-71-01411-sup1.cif (824.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015020101/su5226Isup2.hkl

e-71-01411-Isup2.hkl (279.3KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015020101/su5226Isup3.cml

CCDC reference: 1433130

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES