Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Oct 24;71(Pt 11):o882–o883. doi: 10.1107/S2056989015019192

Crystal structure of 2-fluoro-N-(1,3-thia­zol-2-yl)benzamide

Rodolfo Moreno-Fuquen a,*, Juan C Castillo b, Diana Becerra a, Hernando Camargo c, José A Henao d
PMCID: PMC4645012  PMID: 26594578

Abstract

In the title compound, C10H7FN2OS, the mean plane of the central amide fragment (r.m.s. deviation = 0.048 Å) makes dihedral angles of 35.28 (8) and 10.14 (12)° with those of the fluoro­benzene and thia­zole rings, respectively. The thia­zole S and amide O atoms lie to the same side of the mol­ecule. In the crystal, pairs of N—H⋯N hydrogen bonds connect the mol­ecules into inversion dimers with R 2 2(8) motifs, and weak C—H⋯O inter­actions connect the mol­ecules into C(6) [001] chains. Together, the N—H⋯N and C—H⋯O hydrogen bonds generate (100) sheets.

Keywords: crystal structure; thia­zole derivatives; cancer cell-growth inhibitors; carboxamides; 1,3-thia­zole; benzamide; hydrogen bonding

Related literature  

For thia­zole derivatives as inhibitors for cancer cell growth, see: Schade et al. (2008). For carboxamides with synthetic and biological inter­est, see: Moreno-Fuquen et al. (2014a ,b ). For related structures, see: Zonouzi et al. (2009); Saeed et al. (2010).graphic file with name e-71-0o882-scheme1.jpg

Experimental  

Crystal data  

  • C10H7FN2OS

  • M r = 222.24

  • Monoclinic, Inline graphic

  • a = 12.2171 (8) Å

  • b = 5.0741 (3) Å

  • c = 15.7078 (10) Å

  • β = 98.820 (6)°

  • V = 962.22 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.32 mm−1

  • T = 295 K

  • 0.40 × 0.17 × 0.08 mm

Data collection  

  • Rigaku Pilatus 200K diffractometer

  • Absorption correction: multi-scan CrystalClear; Rigaku, 2008 T min = 0.701, T max = 1.000

  • 8722 measured reflections

  • 2169 independent reflections

  • 1556 reflections with I > 2σ(I)

  • R int = 0.060

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.046

  • wR(F 2) = 0.098

  • S = 0.89

  • 2169 reflections

  • 136 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.30 e Å−3

Data collection: CrystalClear (Rigaku, 2008); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 2012).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989015019192/hb7520sup1.cif

e-71-0o882-sup1.cif (778.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015019192/hb7520Isup2.hkl

e-71-0o882-Isup2.hkl (119.3KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015019192/hb7520Isup3.cml

. DOI: 10.1107/S2056989015019192/hb7520fig1.tif

The mol­ecular structure of (I) with displacement ellipsoids drawn at the 50% probability level.

x y z . DOI: 10.1107/S2056989015019192/hb7520fig2.tif

Part of the crystal structure of (I), showing the formation of hydrogen-bonded C(13) chains parallel to [31Inline graphic] [Symmetry code: (i) −x − Inline graphic, y − Inline graphic, −z + Inline graphic].

CCDC reference: 1430605

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
N1H1N2i 0.86 2.11 2.944(2) 165
C3H3O1ii 0.93 2.62 3.474(2) 153

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

RMF is grateful to the Universidad del Valle, Colombia, for partial financial support. JAH also wants to thank Universidad Industrial de Santander (UIS) and Laboratorio de Rayos X, Guatiguara, for partial financial support.

supplementary crystallographic information

S1. Comment

Continuing with our current studies on the synthesis of new N-heterocyclic carboxamide derivatives of synthetic and biological interest (Moreno-Fuquen et al., 2014a, Moreno-Fuquen et al., 2014b), the title compound 2-fluoro-N-(thiazol-2-yl)benzamide (I) was obtained by direct reaction of 2-fluorobenzoyl chloride and 2-aminothiazole in the presence of triethylamine as base under mild conditions. Structures of similar molecules were compared with (I), i.e. N-(1,3-thiazol-2-yl)benzamide (Zonouzi et al., 2009) and 2,4-dichloro-N-(1,3-thiazol-2-yl)benzamide (Saeed et al., 2010). The molecular structure of (I) is shown in Fig. 1. The central amide moiety, C8-N1-C7(-O1)-C1, is essentially planar (r.m.s. deviation for all non-H atoms = 0.048 Å) and it forms dihedral angles of 35.28 (8)° with the C1-C6 ring and 10.14 (12)° with the thiazole ring. The C=O bond is anti to the o-F1 substituent in the aromatic ring. The N-H and C=O bonds in the central amide group are also anti to each other. Comparing (I) with the two aforementioned similar structures, reveals that significant differences in bond lengths and bond angles are not observed. In the crystal structure, dimer formation is observed. Molecules of (I) are linked by hydrogen bonding of moderate strength. The N-H group of the central amide moiety, in the molecule at (x,y,z) acts as hydrogen bond donor to N2 atom of the thiazole molecule at (-x,-y+1,-z+2), (see Table 1). In turn these dimers are connected by weak hydrogen bonds: The C-H group in the molecule at (x,y,z) acts as hydrogen bond donor to carbonyl O1 atom in the molecule at (x,-y+3/2,z+1/2), forming chains C(6) of molecules along [001], see Fig. 2.

S2. Experimental

2-Fluorobenzoyl chloride (143 µl, 1.2 mmol) was added dropwise to a solution of 2-aminothiazole (100 mg, 1.0 mmol) and triethylamine (278 µl, 2.0 mmol) in dichloromethane (3.0 mL). The mixture was stirred at room temperature for 4 h until the starting amine was not longer detected by thin-layer chromatography. After solvent was removed under reduced pressure, the resulting solid was dissolved in H2O (3.0 ml) and extracted with EtOAc (2 × 3.0 ml). The combined organic layers were dried with MgSO4 anhydrous and the solvent was removed under reduced pressure to afford the pure amide product. Colourless plates of (I) were grown by slow evaporation, at room temperature and in air, from a solution in methanol [61% yield, m.p. 443 (1) K].

S3. Refinement

All H-atoms were located in difference Fourier maps and were positioned geometrically [C—H = 0.93 Å for aromatic and N—H= 0.86 Å] and were refined using a riding-model approximation with Uiso(H) constrained to 1.2 times Ueq of the respective parent atom.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) with displacement ellipsoids drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Part of the crystal structure of (I), showing the formation of hydrogen-bonded C(13) chains parallel to [311] [Symmetry code: (i) -x - 1/2, y - 1/2, -z + 1/2].

Crystal data

C10H7FN2OS Dx = 1.534 Mg m3
Mr = 222.24 Melting point: 443(1) K
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 12.2171 (8) Å Cell parameters from 8732 reflections
b = 5.0741 (3) Å θ = 3.3–27.5°
c = 15.7078 (10) Å µ = 0.32 mm1
β = 98.820 (6)° T = 295 K
V = 962.22 (11) Å3 Plate, colourless
Z = 4 0.40 × 0.17 × 0.08 mm
F(000) = 456

Data collection

Rigaku Pilatus 200K diffractometer 2169 independent reflections
Radiation source: Sealed tube_Mo 1556 reflections with I > 2σ(I)
Graphite Monochromator monochromator Rint = 0.060
profile data from ω–scans θmax = 27.5°, θmin = 3.3°
Absorption correction: multi-scan CrystalClear; Rigaku, 2008 h = −15→15
Tmin = 0.701, Tmax = 1.000 k = −6→6
8722 measured reflections l = −20→20

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098 H-atom parameters constrained
S = 0.89 w = 1/[σ2(Fo2) + (0.0481P)2] where P = (Fo2 + 2Fc2)/3
2169 reflections (Δ/σ)max < 0.001
136 parameters Δρmax = 0.22 e Å3
0 restraints Δρmin = −0.30 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.18106 (4) 0.17354 (10) 0.85154 (3) 0.04570 (16)
F1 0.21170 (8) 0.5331 (2) 1.16166 (6) 0.0518 (3)
C1 0.30360 (13) 0.7730 (4) 1.06395 (10) 0.0358 (4)
O1 0.31999 (9) 0.5432 (3) 0.93486 (8) 0.0496 (3)
C8 0.11054 (13) 0.3206 (3) 0.92625 (10) 0.0343 (4)
N1 0.15631 (11) 0.5105 (3) 0.98371 (9) 0.0383 (3)
H1 0.1156 0.5758 1.0185 0.046*
C3 0.32638 (15) 0.8821 (4) 1.21586 (12) 0.0479 (5)
H3 0.3093 0.8492 1.2706 0.057*
N2 0.01031 (11) 0.2339 (3) 0.92704 (9) 0.0398 (3)
C2 0.28064 (13) 0.7317 (4) 1.14663 (11) 0.0380 (4)
C5 0.42365 (16) 1.1283 (4) 1.12149 (14) 0.0533 (5)
H5 0.4722 1.2635 1.1129 0.064*
C9 −0.01271 (15) 0.0323 (4) 0.86792 (11) 0.0432 (4)
H9 −0.0799 −0.0572 0.8604 0.052*
C7 0.26161 (13) 0.6006 (4) 0.98871 (10) 0.0362 (4)
C10 0.06810 (15) −0.0259 (4) 0.82218 (11) 0.0466 (5)
H10 0.0636 −0.1565 0.7802 0.056*
C6 0.37735 (14) 0.9737 (4) 1.05305 (12) 0.0442 (4)
H6 0.3959 1.0045 0.9987 0.053*
C4 0.39778 (16) 1.0819 (4) 1.20273 (14) 0.0549 (5)
H4 0.4289 1.1864 1.2488 0.066*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0485 (3) 0.0515 (3) 0.0392 (3) 0.0029 (2) 0.01349 (19) −0.0103 (2)
F1 0.0561 (6) 0.0604 (8) 0.0405 (6) −0.0113 (6) 0.0126 (5) 0.0059 (5)
C1 0.0343 (8) 0.0378 (9) 0.0358 (9) 0.0023 (8) 0.0067 (6) −0.0007 (7)
O1 0.0485 (7) 0.0616 (9) 0.0425 (7) −0.0039 (7) 0.0198 (6) −0.0084 (6)
C8 0.0403 (9) 0.0355 (9) 0.0279 (8) 0.0032 (7) 0.0077 (6) 0.0002 (7)
N1 0.0380 (7) 0.0433 (9) 0.0351 (7) −0.0017 (7) 0.0109 (6) −0.0090 (6)
C3 0.0443 (9) 0.0626 (13) 0.0361 (9) 0.0066 (9) 0.0042 (7) −0.0049 (9)
N2 0.0415 (8) 0.0404 (8) 0.0385 (8) −0.0017 (7) 0.0097 (6) −0.0049 (7)
C2 0.0345 (8) 0.0425 (10) 0.0375 (9) 0.0023 (8) 0.0065 (6) 0.0019 (8)
C5 0.0442 (10) 0.0454 (12) 0.0687 (14) −0.0062 (9) 0.0037 (9) −0.0016 (10)
C9 0.0482 (10) 0.0382 (10) 0.0421 (10) −0.0024 (9) 0.0037 (8) −0.0026 (8)
C7 0.0392 (8) 0.0370 (10) 0.0335 (9) 0.0012 (8) 0.0088 (7) 0.0014 (7)
C10 0.0588 (11) 0.0410 (11) 0.0392 (10) 0.0036 (9) 0.0047 (8) −0.0094 (8)
C6 0.0401 (9) 0.0467 (11) 0.0470 (10) −0.0022 (8) 0.0105 (8) 0.0036 (9)
C4 0.0489 (10) 0.0569 (13) 0.0551 (12) 0.0012 (10) −0.0045 (9) −0.0170 (11)

Geometric parameters (Å, º)

S1—C10 1.716 (2) C3—C2 1.375 (2)
S1—C8 1.7280 (16) C3—H3 0.9300
F1—C2 1.357 (2) N2—C9 1.381 (2)
C1—C2 1.386 (2) C5—C6 1.380 (3)
C1—C6 1.388 (2) C5—C4 1.381 (3)
C1—C7 1.496 (2) C5—H5 0.9300
O1—C7 1.2223 (18) C9—C10 1.340 (2)
C8—N2 1.303 (2) C9—H9 0.9300
C8—N1 1.379 (2) C10—H10 0.9300
N1—C7 1.356 (2) C6—H6 0.9300
N1—H1 0.8600 C4—H4 0.9300
C3—C4 1.373 (3)
C10—S1—C8 88.45 (8) C6—C5—H5 120.1
C2—C1—C6 117.07 (16) C4—C5—H5 120.1
C2—C1—C7 123.89 (16) C10—C9—N2 115.65 (16)
C6—C1—C7 118.82 (15) C10—C9—H9 122.2
N2—C8—N1 121.13 (14) N2—C9—H9 122.2
N2—C8—S1 115.33 (13) O1—C7—N1 121.90 (16)
N1—C8—S1 123.50 (12) O1—C7—C1 121.34 (15)
C7—N1—C8 124.02 (14) N1—C7—C1 116.75 (14)
C7—N1—H1 118.0 C9—C10—S1 110.75 (14)
C8—N1—H1 118.0 C9—C10—H10 124.6
C4—C3—C2 118.77 (18) S1—C10—H10 124.6
C4—C3—H3 120.6 C5—C6—C1 121.16 (18)
C2—C3—H3 120.6 C5—C6—H6 119.4
C8—N2—C9 109.78 (14) C1—C6—H6 119.4
F1—C2—C3 117.53 (15) C3—C4—C5 120.35 (18)
F1—C2—C1 119.71 (15) C3—C4—H4 119.8
C3—C2—C1 122.75 (17) C5—C4—H4 119.8
C6—C5—C4 119.88 (19)
C10—S1—C8—N2 −1.98 (14) C8—N1—C7—O1 9.4 (3)
C10—S1—C8—N1 175.93 (15) C8—N1—C7—C1 −170.15 (15)
N2—C8—N1—C7 177.02 (16) C2—C1—C7—O1 −140.34 (18)
S1—C8—N1—C7 −0.8 (2) C6—C1—C7—O1 34.1 (3)
N1—C8—N2—C9 −175.59 (15) C2—C1—C7—N1 39.2 (2)
S1—C8—N2—C9 2.38 (19) C6—C1—C7—N1 −146.37 (16)
C4—C3—C2—F1 179.02 (16) N2—C9—C10—S1 0.2 (2)
C4—C3—C2—C1 0.0 (3) C8—S1—C10—C9 0.94 (14)
C6—C1—C2—F1 −178.05 (14) C4—C5—C6—C1 0.8 (3)
C7—C1—C2—F1 −3.6 (3) C2—C1—C6—C5 −1.3 (3)
C6—C1—C2—C3 0.9 (3) C7—C1—C6—C5 −176.13 (16)
C7—C1—C2—C3 175.41 (16) C2—C3—C4—C5 −0.6 (3)
C8—N2—C9—C10 −1.6 (2) C6—C5—C4—C3 0.2 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1···N2i 0.86 2.11 2.944 (2) 165
C3—H3···O1ii 0.93 2.62 3.474 (2) 153

Symmetry codes: (i) −x, −y+1, −z+2; (ii) x, −y+3/2, z+1/2.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: HB7520).

References

  1. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  2. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  3. Moreno-Fuquen, R., Azcárate, A. & Kennedy, A. R. (2014b). Acta Cryst. E70, o613. [DOI] [PMC free article] [PubMed]
  4. Moreno-Fuquen, R., Sánchez, D. F. & Ellena, J. (2014a). Acta Cryst. E70, o1252. [DOI] [PMC free article] [PubMed]
  5. Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.
  6. Saeed, S., Rashid, N. & Wong, W.-T. (2010). Acta Cryst. E66, o3078. [DOI] [PMC free article] [PubMed]
  7. Schade, A. E., Schieven, G. L., Townsend, R., Jankowska, A. M., Susulic, V., Zhang, R., Szpurka, H. & Maciejewski, J. P. (2008). Blood. 111, 1366-1377. [DOI] [PMC free article] [PubMed]
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  10. Zonouzi, A., Mirzazadeh, R., Rahmani, H. & Ng, S. W. (2009). Acta Cryst. E65, o817. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989015019192/hb7520sup1.cif

e-71-0o882-sup1.cif (778.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015019192/hb7520Isup2.hkl

e-71-0o882-Isup2.hkl (119.3KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015019192/hb7520Isup3.cml

. DOI: 10.1107/S2056989015019192/hb7520fig1.tif

The mol­ecular structure of (I) with displacement ellipsoids drawn at the 50% probability level.

x y z . DOI: 10.1107/S2056989015019192/hb7520fig2.tif

Part of the crystal structure of (I), showing the formation of hydrogen-bonded C(13) chains parallel to [31Inline graphic] [Symmetry code: (i) −x − Inline graphic, y − Inline graphic, −z + Inline graphic].

CCDC reference: 1430605

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES