Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Oct 24;71(Pt 11):o880–o881. doi: 10.1107/S2056989015019453

Crystal structure of 5-(furan-2-yl)-N-phenyl-1,3,4-oxa­diazol-2-amine

Santosh Paswan a, Manoj K Bharty a,*, Sanyucta Kumari a, Sushil K Gupta b, Nand K Singh a
PMCID: PMC4645015  PMID: 26594577

Abstract

The title compound, C12H9N3O2, was obtained as a cyclized oxa­diazole derivative from substituted thio­semicarbazide in the presence of manganese(II) acetate. The furan ring is disordered over two orientations, with occupancies of 0.76 (2) and 0.24 (2). The dihedral angles between the central oxa­diazole ring and the pendant phenyl ring and furan ring (major disorder component) are 3.34 (18) and 5.7 (6)°, respectively. A short intra­molecular C—H⋯O contact generates an S(6) ring. In the crystal, inversion dimers linked by pairs of N—H⋯N hydrogen bonds generate R 2 2[8] loops. The dimers are linked by C—H⋯π and π–π inter­actions [range of centroid–centroid distances = 3.291 (2)–3.460 (8) Å], generating a three-dimensional network.

Keywords: crystal structure, cyclized oxa­diazole derivative, hydrogen bonding, C—H⋯π inter­actions, π–π inter­actions

Related literature  

For heterocyclic ligands that form metal complexes, see: Tarafder et al. (2001); Ali & Ali (2007); Singh et al. (2007); Zhao et al. (2007); Zhang et al. (2007); Amin et al. (2004). For applications in medicine and agriculture, see: Pachhamia & Parikh (1988); Xu et al. (2002). For related structures, see: Foks et al. (2002); Dani et al. (2013).graphic file with name e-71-0o880-scheme1.jpg

Experimental  

Crystal data  

  • C12H9N3O2

  • M r = 227.22

  • Monoclinic, Inline graphic

  • a = 13.195 (3) Å

  • b = 5.6162 (8) Å

  • c = 14.958 (3) Å

  • β = 107.00 (2)°

  • V = 1060.0 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.4 × 0.3 × 0.15 mm

Data collection  

  • Agilent Xcalibur Eos diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) T min = 0.941, T max = 1.000

  • 4305 measured reflections

  • 2405 independent reflections

  • 1057 reflections with I > 2σ(I)

  • R int = 0.039

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.064

  • wR(F 2) = 0.142

  • S = 1.01

  • 2405 reflections

  • 174 parameters

  • 40 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015019453/hb7522sup1.cif

e-71-0o880-sup1.cif (153.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015019453/hb7522Isup2.hkl

e-71-0o880-Isup2.hkl (192.8KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015019453/hb7522Isup3.cml

. DOI: 10.1107/S2056989015019453/hb7522fig1.tif

Scheme showing the synthesis of the title compound.

. DOI: 10.1107/S2056989015019453/hb7522fig2.tif

The mol­ecular structure of (I) showing 50% probability displacement ellipsoids.

b . DOI: 10.1107/S2056989015019453/hb7522fig3.tif

The mol­ecular packing of the title compound, viewed along the b-axis. Dashed lines indicate weak N—H⋯N inter­molecular hydrogen bonding between the oxa­diazole ring and the amine group, forming dimers with an Inline graphic[8] ring motif.

CCDC reference: 1431289

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (, ).

Cg1 and Cg4 are the centroids of the O1A/C1/C2/C3/C4 and C7C12 five- and six-membered rings, respectively.

DHA DH HA D A DHA
N3H3N3N2i 1.02(3) 1.87(3) 2.892(3) 178(2)
C12H12AO2 0.93 2.27 2.892(4) 123
C9H9A Cg1ii 0.93 3.00 3.653(4) 129
C2H2A Cg4iii 0.93 2.93 3.664(5) 137

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

This work was supported by the Department of Science and Technology (DST), New Delhi, India (Young Scientist Project No. SR/FT/CS-63/2011). We express our sincere thanks to Professor Ray J. Butcher for useful discussions.

supplementary crystallographic information

S1. Comment

1,3,4-Oxa­diazole-2-thio­nes, an important class of heterocyclic ligands in the field of coordination chemistry (Tarafder et al., 2001; Ali & Ali, 2007; Singh et al., 2007; Zhao et al., 2007; Zhang et al., 2007; Amin et al., 2004) have wide applications both in medicine and agriculture (Pachhamia & Parikh, 1988; Xu et al., 2002). The cyclization of 3-acyl­dithio­carbazate esters, N-aroyldi­thio­carbaza­tes and their salts to the corresponding 1,3,4-oxa­diazole in the presence of base is reported in the literature (Foks et al., 2002). Further, 5-benzyl-N- phenyl-1,3,4-thia­diazole-2-amine and 2-(5-phenyl-1,3,4-thia­diazol-2-yl)pyridine have also been reported in the presence of managnese(II) nitrate via loss of H2O (Dani et al., 2013). It is known that in the presence of strong acid, N-acyl­hydrazine carbodi­thio­ate is converted into thia­diazole but in presence of weak acid or base they are cyclized into oxa­diazole. In the present case, managanese(II) acetate behaves like a weak acid and thus converts thio­semicarbazide into oxa­diazole via loss of H2S.

In the title compound (Fig. 2), the mean plane of the central oxa­diazole ring (O2/C5/N1/N2/C6) forms dihedral angles of 5.65 and 3.34° with the furan (O1/C1–C4) and phenyl rings (C7–C12), respectively. Both the furan and phenyl rings are twisted by an angle of 7.51°. The C–N bond lengths, N1–C5 1.290 (4) and N2–C6 1.302 (4) Å, are similar to standard C ═N 1.28 Å. The distances found within the oxa­diazole ring are inter­mediate between single and double bond, suggesting considerable delocalization in the ring. In the crystal, pairs of inter­molecular N—H···N hydrogen bonds between the oxa­diazole ring and the amine group forming dimers with an R22[8] ring motif (Fig. 3, Table 1) and an intra­molecular C—H···O inter­action is also found. Molecules are further linked by weak C—H···N and two C—H···π inter­actions, involving (C7–C12) and (O1/C1–C4) rings. In addition, weak π···π inter­molecular stacking inter­actions [Cg1···Cg2 (x, 1+y, z) = 3.460 (8)Å; Cg2···Cg2 (1–x, 1–y, 1–z) = 3.291 (2)Å; Cg2···Cg3 (x, –1+y, z) = 3.431 (4)Å; Cg1: O1/C1–C4; Cg2: O2/C5/N1/N2/C6; Cg3: O1A/C1A–C4A] are present and influences the crystal packing. The furan ring is disordered over two positions, with occupancies of 0.76 (2) and 0.24 (2).

S2. Experimental

Referring to Fig. 1, a mixture of furan-2-carb­oxy­lic acid hydrazide (1.260 g, 10 mmol) and phenyl iso­thio­cyanate (1.2 ml, 10 mmol) in absolute ethanol (20 mL) was refluxed for 4 h. The solid N-(furan-2-carbonyl)-4-phenyl­thio­semicarbazide obtained upon cooling was filtered off and washed with water and ether (50:50 v/v). A mixture of methano­lic solution of N-(furan-2-carbonyl)-4-phenyl­thio­semicarbazide (0.261 g, 1.00 mmol) and Mn(OAc)2.4H2O (0.246 g, 1 mmol) was stirred for 4 h. A clear yellow solution obtained was filtered off and kept for crystallization. Colourless needles were obtained after 10 days. Yield: 60%; m.p.: 476–478 K. Anal. Calc. for C12H9N3O2(%):C 63.43, H 3.99, N 18.49. Found: C 63.68, H 4.05, N 18.61. 1H NMR (DMSO-d6): δ [ppm] = 11.60 (s, 1H, NH), 8.80–7.31 (m, 3H, furan), 7.80–6.76 (m, 5H, Phenyl). 13C NMR (DMSO-d6): δ [ppm] = 161.3 (C6), 162.0 (C5), 153.7 (C4), 146.9 (C1), 144.8 (C3), 140.7 (C2) (furan C); 120.6–145.2 (phenyl C) (Fig. 2). IR (selected, KBr): 3210 [ν(N– H)], 1605 [ν(C═N)], 1076 [ν(N – N)] cm-1.

S3. Refinement

The H atom bonded to N3 was located in a difference Fourier map and refined freely; N3–H3N3 = 1.02 (3) Å. Other H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93 Å, and with Uiso(H) = 1.2Ueq(C). The ISOR restraint and EADP constraint commands in the SHELXL2014 software were used for the disordered atoms.

Figures

Fig. 1.

Fig. 1.

Scheme showing the synthesis of the title compound.

Fig. 2.

Fig. 2.

The molecular structure of (I) showing 50% probability displacement ellipsoids.

Fig. 3.

Fig. 3.

The molecular packing of the title compound, viewed along the b-axis. Dashed lines indicate weak N—H···N intermolecular hydrogen bonding between the oxadiazole ring and the amine group, forming dimers with an R22[8] ring motif.

Crystal data

C12H9N3O2 F(000) = 472
Mr = 227.22 Dx = 1.424 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 13.195 (3) Å Cell parameters from 594 reflections
b = 5.6162 (8) Å θ = 3.1–29.0°
c = 14.958 (3) Å µ = 0.10 mm1
β = 107.00 (2)° T = 293 K
V = 1060.0 (3) Å3 Needle, colourless
Z = 4 0.4 × 0.3 × 0.15 mm

Data collection

Agilent Xcalibur Eos diffractometer 2405 independent reflections
Radiation source: Enhance (Mo) X-ray Source 1057 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.039
Detector resolution: 16.0938 pixels mm-1 θmax = 29.1°, θmin = 3.2°
ω scans h = −18→13
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) k = −7→7
Tmin = 0.941, Tmax = 1.000 l = −19→17
4305 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.064 Hydrogen site location: mixed
wR(F2) = 0.142 H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0308P)2] where P = (Fo2 + 2Fc2)/3
2405 reflections (Δ/σ)max < 0.001
174 parameters Δρmax = 0.19 e Å3
40 restraints Δρmin = −0.21 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
O2 0.65450 (17) 0.5460 (3) 0.46696 (13) 0.0425 (6)
N1 0.6233 (2) 0.5577 (4) 0.60530 (17) 0.0463 (7)
N2 0.5682 (2) 0.7470 (4) 0.54975 (17) 0.0445 (7)
N3 0.5544 (2) 0.8799 (4) 0.39788 (17) 0.0449 (7)
H3N3 0.512 (2) 1.014 (5) 0.4150 (19) 0.067 (11)*
O1 0.7733 (7) 0.1580 (16) 0.5086 (4) 0.0560 (14) 0.76 (2)
C1 0.8374 (6) −0.0405 (14) 0.5478 (9) 0.057 (2) 0.76 (2)
H1A 0.8716 −0.1392 0.5158 0.068* 0.76 (2)
C2 0.8412 (7) −0.0643 (15) 0.6370 (8) 0.062 (2) 0.76 (2)
H2A 0.8780 −0.1815 0.6776 0.074* 0.76 (2)
C3 0.7797 (8) 0.1194 (18) 0.6598 (6) 0.0470 (17) 0.76 (2)
H3A 0.7692 0.1477 0.7177 0.056* 0.76 (2)
C4 0.740 (2) 0.244 (4) 0.5812 (9) 0.0395 (13) 0.76 (2)
O1A 0.790 (3) 0.093 (5) 0.5177 (17) 0.0560 (14) 0.24 (2)
C1A 0.844 (3) −0.073 (5) 0.587 (2) 0.057 (2) 0.24 (2)
H1AA 0.8868 −0.1956 0.5766 0.068* 0.24 (2)
C2A 0.826 (3) −0.029 (5) 0.6672 (18) 0.062 (2) 0.24 (2)
H2AA 0.8545 −0.1113 0.7226 0.074* 0.24 (2)
C3A 0.755 (3) 0.163 (6) 0.655 (2) 0.0470 (17) 0.24 (2)
H3AA 0.7244 0.2242 0.6989 0.056* 0.24 (2)
C4A 0.741 (8) 0.238 (13) 0.568 (3) 0.0395 (13) 0.24 (2)
C5 0.6717 (3) 0.4467 (5) 0.5543 (2) 0.0411 (8)
C6 0.5901 (3) 0.7321 (5) 0.4705 (2) 0.0409 (8)
C7 0.5742 (3) 0.8830 (5) 0.3105 (2) 0.0408 (8)
C8 0.5304 (3) 1.0704 (5) 0.2521 (2) 0.0515 (9)
H8A 0.4916 1.1860 0.2722 0.062*
C9 0.5436 (3) 1.0878 (6) 0.1647 (2) 0.0627 (11)
H9A 0.5129 1.2139 0.1259 0.075*
C10 0.6013 (3) 0.9215 (6) 0.1342 (2) 0.0607 (11)
H10A 0.6097 0.9332 0.0748 0.073*
C11 0.6470 (3) 0.7360 (6) 0.1925 (2) 0.0593 (10)
H11A 0.6876 0.6238 0.1727 0.071*
C12 0.6330 (3) 0.7158 (5) 0.2798 (2) 0.0518 (9)
H12A 0.6633 0.5889 0.3183 0.062*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O2 0.0432 (14) 0.0445 (12) 0.0412 (12) 0.0048 (11) 0.0147 (11) 0.0035 (9)
N1 0.0496 (18) 0.0517 (15) 0.0372 (15) −0.0012 (15) 0.0123 (14) −0.0020 (12)
N2 0.0463 (18) 0.0501 (16) 0.0384 (15) 0.0039 (14) 0.0146 (14) 0.0015 (12)
N3 0.0511 (19) 0.0456 (16) 0.0418 (16) 0.0102 (14) 0.0192 (15) 0.0040 (12)
O1 0.061 (3) 0.044 (4) 0.065 (2) 0.017 (3) 0.022 (2) 0.006 (2)
C1 0.049 (3) 0.036 (3) 0.081 (6) 0.014 (2) 0.014 (4) 0.012 (4)
C2 0.060 (4) 0.064 (3) 0.055 (5) 0.001 (3) 0.007 (4) 0.014 (4)
C3 0.043 (5) 0.048 (4) 0.042 (2) 0.017 (3) −0.001 (3) 0.017 (2)
C4 0.042 (2) 0.043 (2) 0.035 (4) −0.0025 (17) 0.013 (5) −0.002 (4)
O1A 0.061 (3) 0.044 (4) 0.065 (2) 0.017 (3) 0.022 (2) 0.006 (2)
C1A 0.049 (3) 0.036 (3) 0.081 (6) 0.014 (2) 0.014 (4) 0.012 (4)
C2A 0.060 (4) 0.064 (3) 0.055 (5) 0.001 (3) 0.007 (4) 0.014 (4)
C3A 0.043 (5) 0.048 (4) 0.042 (2) 0.017 (3) −0.001 (3) 0.017 (2)
C4A 0.042 (2) 0.043 (2) 0.035 (4) −0.0025 (17) 0.013 (5) −0.002 (4)
C5 0.042 (2) 0.0453 (18) 0.0321 (17) −0.0056 (17) 0.0056 (16) 0.0040 (14)
C6 0.039 (2) 0.0412 (18) 0.0430 (19) −0.0004 (16) 0.0122 (16) −0.0018 (15)
C7 0.041 (2) 0.0437 (18) 0.0377 (18) −0.0019 (17) 0.0112 (16) 0.0004 (14)
C8 0.062 (2) 0.0446 (19) 0.052 (2) 0.0121 (18) 0.023 (2) 0.0051 (16)
C9 0.079 (3) 0.062 (2) 0.052 (2) 0.020 (2) 0.026 (2) 0.0165 (17)
C10 0.073 (3) 0.070 (2) 0.047 (2) 0.010 (2) 0.030 (2) 0.0091 (18)
C11 0.070 (3) 0.061 (2) 0.056 (2) 0.013 (2) 0.033 (2) −0.0006 (18)
C12 0.058 (2) 0.0509 (19) 0.051 (2) 0.0180 (19) 0.0230 (19) 0.0114 (16)

Geometric parameters (Å, º)

O2—C6 1.358 (3) C1A—C2A 1.321 (16)
O2—C5 1.376 (3) C1A—H1AA 0.9300
N1—C5 1.290 (4) C2A—C3A 1.397 (16)
N1—N2 1.413 (3) C2A—H2AA 0.9300
N2—C6 1.302 (4) C3A—C4A 1.335 (16)
N3—C6 1.339 (3) C3A—H3AA 0.9300
N3—C7 1.406 (4) C4A—C5 1.46 (2)
N3—H3N3 1.02 (3) C7—C12 1.379 (4)
O1—C4 1.375 (6) C7—C8 1.382 (4)
O1—C1 1.418 (6) C8—C9 1.371 (4)
C1—C2 1.328 (7) C8—H8A 0.9300
C1—H1A 0.9300 C9—C10 1.365 (4)
C2—C3 1.414 (7) C9—H9A 0.9300
C2—H2A 0.9300 C10—C11 1.379 (4)
C3—C4 1.337 (6) C10—H10A 0.9300
C3—H3A 0.9300 C11—C12 1.376 (4)
C4—C5 1.433 (8) C11—H11A 0.9300
O1A—C4A 1.387 (16) C12—H12A 0.9300
O1A—C1A 1.418 (16)
C6—O2—C5 101.9 (2) C3A—C4A—O1A 112.9 (16)
C5—N1—N2 105.9 (2) C3A—C4A—C5 107 (2)
C6—N2—N1 105.9 (3) O1A—C4A—C5 140 (3)
C6—N3—C7 130.2 (3) N1—C5—O2 113.1 (3)
C6—N3—H3N3 110.1 (16) N1—C5—C4 126.5 (5)
C7—N3—H3N3 119.5 (16) O2—C5—C4 120.3 (5)
C4—O1—C1 103.9 (5) N1—C5—C4A 134.6 (14)
C2—C1—O1 109.7 (5) O2—C5—C4A 112.2 (13)
C2—C1—H1A 125.1 N2—C6—N3 125.4 (3)
O1—C1—H1A 125.1 N2—C6—O2 113.2 (3)
C1—C2—C3 108.3 (5) N3—C6—O2 121.4 (3)
C1—C2—H2A 125.9 C12—C7—C8 118.7 (3)
C3—C2—H2A 125.9 C12—C7—N3 125.2 (3)
C4—C3—C2 106.1 (5) C8—C7—N3 116.1 (3)
C4—C3—H3A 127.0 C9—C8—C7 120.7 (3)
C2—C3—H3A 127.0 C9—C8—H8A 119.6
C3—C4—O1 112.1 (6) C7—C8—H8A 119.6
C3—C4—C5 135.8 (8) C10—C9—C8 120.6 (3)
O1—C4—C5 112.1 (8) C10—C9—H9A 119.7
C4A—O1A—C1A 102.0 (14) C8—C9—H9A 119.7
C2A—C1A—O1A 110.6 (15) C9—C10—C11 119.2 (3)
C2A—C1A—H1AA 124.7 C9—C10—H10A 120.4
O1A—C1A—H1AA 124.7 C11—C10—H10A 120.4
C1A—C2A—C3A 108.7 (16) C12—C11—C10 120.5 (3)
C1A—C2A—H2AA 125.6 C12—C11—H11A 119.8
C3A—C2A—H2AA 125.6 C10—C11—H11A 119.8
C4A—C3A—C2A 105.5 (16) C11—C12—C7 120.3 (3)
C4A—C3A—H3AA 127.3 C11—C12—H12A 119.9
C2A—C3A—H3AA 127.3 C7—C12—H12A 119.9
C5—N1—N2—C6 −0.7 (3) C3—C4—C5—O2 173 (3)
C4—O1—C1—C2 −0.7 (18) O1—C4—C5—O2 −6 (3)
O1—C1—C2—C3 −0.2 (11) C3A—C4A—C5—N1 −2 (12)
C1—C2—C3—C4 1.1 (19) O1A—C4A—C5—N1 173 (9)
C2—C3—C4—O1 −2 (3) C3A—C4A—C5—O2 178 (5)
C2—C3—C4—C5 179 (3) O1A—C4A—C5—O2 −7 (15)
C1—O1—C4—C3 1 (3) N1—N2—C6—N3 −179.4 (3)
C1—O1—C4—C5 −179.2 (18) N1—N2—C6—O2 0.9 (3)
C4A—O1A—C1A—C2A 1 (7) C7—N3—C6—N2 178.8 (3)
O1A—C1A—C2A—C3A 2 (5) C7—N3—C6—O2 −1.5 (5)
C1A—C2A—C3A—C4A −5 (7) C5—O2—C6—N2 −0.7 (3)
C2A—C3A—C4A—O1A 6 (10) C5—O2—C6—N3 179.6 (3)
C2A—C3A—C4A—C5 −177 (5) C6—N3—C7—C12 4.1 (5)
C1A—O1A—C4A—C3A −5 (9) C6—N3—C7—C8 −175.8 (3)
C1A—O1A—C4A—C5 −180 (12) C12—C7—C8—C9 1.1 (5)
N2—N1—C5—O2 0.2 (3) N3—C7—C8—C9 −178.9 (3)
N2—N1—C5—C4 178.7 (18) C7—C8—C9—C10 −0.8 (6)
N2—N1—C5—C4A −180 (7) C8—C9—C10—C11 −0.4 (6)
C6—O2—C5—N1 0.3 (3) C9—C10—C11—C12 1.3 (6)
C6—O2—C5—C4 −178.3 (17) C10—C11—C12—C7 −0.9 (6)
C6—O2—C5—C4A −180 (5) C8—C7—C12—C11 −0.3 (5)
C3—C4—C5—N1 −5 (5) N3—C7—C12—C11 179.8 (3)
O1—C4—C5—N1 175.9 (13)

Hydrogen-bond geometry (Å, º)

Cg1 and Cg4 are the centroids of the O1A/C1/C2/C3/C4 and C7–C12 five- and six-membered rings, respectively.

D—H···A D—H H···A D···A D—H···A
N3—H3N3···N2i 1.02 (3) 1.87 (3) 2.892 (3) 178 (2)
C12—H12A···O2 0.93 2.27 2.892 (4) 123
C9—H9A···Cg1ii 0.93 3.00 3.653 (4) 129
C2—H2A···Cg4iii 0.93 2.93 3.664 (5) 137

Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) x−1/2, −y−1/2, z−1/2; (iii) x−3/2, −y+1/2, z−3/2.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: HB7522).

References

  1. Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.
  2. Ali, S. & Ali, R. (2007). Tetrahedron Lett. 48, 1549–1551.
  3. Amin, O. H., Al-Hayaly, L. J., Al-Jibori, S. A. & Al-Allaf, T. A. K. (2004). Polyhedron, 23, 2013–2020.
  4. Dani, R. K., Bharty, M. K., Kushawaha, S. K., Paswan, S., Prakash, O., Singh, N. K. & Singh, N. K. (2013). J. Mol. Struct. 1054–1055, 251–261.
  5. Foks, H., Mieczkowska, J., Janowiec, M., Zwolska, Z. & Andrzejczyk, Z. (2002). Chem. Heterocycl. Compd. 38, 810–816.
  6. Pachhamia, V. L. & Parikh, A. R. (1988). J. Indian Chem. Soc. 65, 357–361.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  9. Singh, N. K., Butcher, R. J., Tripathi, P., Srivastava, A. K. & Bharty, M. K. (2007). Acta Cryst. E63, o782–o784.
  10. Tarafder, Md. T. H., Saravanan, N., Crouse, K. A. & Ali, A. M. b. (2001). Transition Met. Chem. 26, 613–618.
  11. Xu, L. Z., Jiao, K., Zhang, S. S. & Kuang, S. P. (2002). Bull. Korean. Chem. Soc. 23, 1699–1701.
  12. Zhang, Z.-H., Tian, Y.-L. & Guo, Y.-M. (2007). Inorg. Chim. Acta, 360, 2783–2788.
  13. Zhao, X.-X., Ma, J.-P., Dong, Y. B., Huang, R.-Q. & Lai, T. (2007). Cryst. Growth Des. 7, 1058–1068.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015019453/hb7522sup1.cif

e-71-0o880-sup1.cif (153.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015019453/hb7522Isup2.hkl

e-71-0o880-Isup2.hkl (192.8KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015019453/hb7522Isup3.cml

. DOI: 10.1107/S2056989015019453/hb7522fig1.tif

Scheme showing the synthesis of the title compound.

. DOI: 10.1107/S2056989015019453/hb7522fig2.tif

The mol­ecular structure of (I) showing 50% probability displacement ellipsoids.

b . DOI: 10.1107/S2056989015019453/hb7522fig3.tif

The mol­ecular packing of the title compound, viewed along the b-axis. Dashed lines indicate weak N—H⋯N inter­molecular hydrogen bonding between the oxa­diazole ring and the amine group, forming dimers with an Inline graphic[8] ring motif.

CCDC reference: 1431289

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES