Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Oct 7;71(Pt 11):o822–o823. doi: 10.1107/S2056989015018058

Crystal structure of 5-(5-chloro-2-hydroxy­benzo­yl)-2-(2-methyl-1H-indol-3-yl)nicotino­nitrile

G Vimala a, N Poomathi b, Y AaminaNaaz a, P T Perumal b, A SubbiahPandi a,*
PMCID: PMC4645016  PMID: 26594546

Abstract

In the title compound, C22H14ClN3O2, the indole unit is essentially coplanar, with a maximum deviation of 0.035 Å for the C atom bearing the methyl group. The central pyridine ring is inclined to the indole ring system by 43.7 (1)°. The dihedral angle between the phenyl ring and the indole ring system is 15.7 (2)°, while that between the phenyl ring and the central pyridine ring is 46.3 (1)°. The mol­ecular structure is stabilized by an intra­molecular O—H⋯O hydrogen bonding, forming an S(6) ring motif. In the crystal, mol­ecules are linked via pairs of N—H⋯N hydrogen bonds, forming inversion dimers with an R 2 2(16) ring motif. The crystal structure also features C—H⋯π and π–π inter­actions [centroid–centroid separation = 3.688 (1) Å].

Keywords: crystal structure, nicotino­nitrile, acrylate derivatives, indole unit, N—H⋯N hydrogen bonds, C—H⋯π inter­actions, π–π inter­actions

Related literature  

For applications of acrylate derivatives, see: Barden (2011); Chai et al. (2006); Nieto et al. (2005); Singh et al. (2000); Andreani et al. (2001); Quetin-Leclercq (1994); Mukhopadhyay et al. (1981). For related crystal structures, see: Penthala et al. (2008). For graph-set analysis, see: Grell et al. (2000). graphic file with name e-71-0o822-scheme1.jpg

Experimental  

Crystal data  

  • C22H14ClN3O2

  • M r = 387.81

  • Monoclinic Inline graphic

  • a = 16.0673 (15) Å

  • b = 7.4804 (7) Å

  • c = 17.0159 (15) Å

  • β = 113.452 (3)°

  • V = 1876.2 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 293 K

  • 0.27 × 0.23 × 0.18 mm

Data collection  

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008) T min = 0.941, T max = 0.960

  • 7690 measured reflections

  • 3638 independent reflections

  • 2447 reflections with I > 2σ(I)

  • R int = 0.038

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.057

  • wR(F 2) = 0.170

  • S = 1.01

  • 3638 reflections

  • 254 parameters

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.36 e Å−3

Data collection: APEX2 (Bruker, 2008); cell refinement: APEX2 and SAINT (Bruker, 2008); data reduction: SAINT and XPREP (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989015018058/zp2018sup1.cif

e-71-0o822-sup1.cif (20.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015018058/zp2018Isup2.hkl

e-71-0o822-Isup2.hkl (174.8KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015018058/zp2018Isup3.cml

. DOI: 10.1107/S2056989015018058/zp2018fig1.tif

The mol­ecular structure of the title compound, with the atomic numbering scheme and displacement ellipsoids drawn at 30% probability level.

b . DOI: 10.1107/S2056989015018058/zp2018fig2.tif

O—H⋯O intra and N—H⋯N inter­mlecular inter­actions (dotted lines) in the crystal structure of the title compound. The crystal packing of the mol­ecules is viewed down the b axis.

CCDC reference: 1427861

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (, ).

Cg3 and Cg4 are the centroids of the C1C6 and C16C21 rings, respectively.

DHA DH HA D A DHA
O1H1O2 0.82 1.91 2.596(3) 140
N3H3AN2i 0.86 2.27 3.110(4) 164
C2H2Cg3ii 0.90 2.93 3.656(4) 136
C12H12Cg4iii 0.93 2.99 3.361(4) 106

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors thank the Department of Chemistry, IIT, Chennai, India, for the X-ray intensity data collection.

supplementary crystallographic information

S1. Comment

In modern times, analogs based on indole are significant players in a diverse array of markets such as dyes, plastics, agriculture, vitamin supplements, over-the-counterdrugs, flavour enhancers and perfumery (Barden, 2011). Indole derivatives exhibit antihepatitis B virus (Chai et al., 2006) and antibacterial (Nieto et al., 2005) activities. Indole derivatives have been found to exhibit antibacterial, antifungal (Singh et al., 2000) and antitumour activities (Andreani et al., 2001). Some of the indole alkaloids extracted from plants possess interesting cytotoxic, antitumour or antiparasitic properties (Quetin-Leclercq, 1994; Mukhopadhyay et al., 1981). Against this background, the crystal structure of the title compound has been determined and the results are presented herein.

In the title molecule, the indole unit is essentially co-planar with a maximum deviation of -0.035 Å for the C15 atom. The central pyridine (N1/C8—C12) ring is almost halfway to be orthogonal to the indole ring system (N3/C14—C21), making a dihedral angle of 43.7 (1)°. The carbonyl-bound phenyl ring (C16—C21) forms a dihedral angle of 15.7 (2)° with the plane of the indole ring system. The pyridine ring and the phenyl ring are inclined at an angle of 46.3 (1)°. The cyano bond distance C13≡N2 agrees well with the reported value of 1.141 (4) Å.

The crystal packing (Fig. 2 and Table 1) is stabilized by an intramolecular O—H···O hydrogen bond, forms S(6) ring motif. The molecules are linked into inversion dimers via N—H···N hydrogen bonds resulting in an R22(16) graph-set motif, which are stablized by C—H···π (Table 1) and π-π interactions. The Cg1···Cg2ii seperation is 3.688 (1) Å (Fig.2; Cg1 and Cg2 are centroids of the N3/C14—C16/C21 ring and N1/C8—C12 pyridine ring, repectively; symmetry codes: (ii) 1/2 - x, y - 1/2, 1/2 - z).

S2. Experimental

A mixture of 6-chlorol-3-formylchromone (1 mmol), cyanoacetylindole (1 mmol) and ammonium acetate (1 mmol) in DMF and a catalytic amount of SnCl2.2H2O (0.020 mol %) was added and refluxed for about 3 hrs. After completition of the reaction, the solvent was removed under reduced pressure and the residue was purified by column chromatography on siliga gel (3:97% ethylacetate and petether) to afford pure product. The purified compound was recrystalized from ethanol by using slow evaporation method. The yield of the isolated product was 92%, giving block like crystals suitable for X ray diffraction.

S3. Refinement

All H atoms were fixed geometrically and allowed to ride on their parent C atoms, with C—H distances fixed in the range 0.93–0.97 Å with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for all other H atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, with the atomic numbering scheme and displacement ellipsoids drawn at 30% probability level.

Fig. 2.

Fig. 2.

O—H···O intra and N—H···N intermlecular interactions (dotted lines) in the crystal structure of the title compound. The crystal packing of the molecules is viewed down the b axis.

Crystal data

C22H14ClN3O2 F(000) = 800
Mr = 387.81 Dx = 1.373 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 2447 reflections
a = 16.0673 (15) Å θ = 1.5–25.9°
b = 7.4804 (7) Å µ = 0.23 mm1
c = 17.0159 (15) Å T = 293 K
β = 113.452 (3)° Block, colourless
V = 1876.2 (3) Å3 0.27 × 0.23 × 0.18 mm
Z = 4

Data collection

Bruker Kappa APEXII CCD diffractometer 3638 independent reflections
Radiation source: fine-focus sealed tube 2447 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.038
Detector resolution: 0 pixels mm-1 θmax = 25.9°, θmin = 1.5°
ω and φ scan h = −19→15
Absorption correction: multi-scan (SADABS; Bruker, 2008) k = −7→9
Tmin = 0.941, Tmax = 0.960 l = −20→20
7690 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.170 H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0793P)2 + 1.1008P] where P = (Fo2 + 2Fc2)/3
3638 reflections (Δ/σ)max < 0.001
254 parameters Δρmax = 0.43 e Å3
0 restraints Δρmin = −0.36 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.6829 (2) 1.0448 (4) 0.2799 (2) 0.0475 (8)
C2 0.7315 (2) 1.0614 (5) 0.2278 (2) 0.0599 (9)
H2 0.7877 1.1176 0.2487 0.072*
C3 0.6961 (2) 0.9945 (5) 0.1459 (2) 0.0608 (9)
H3 0.7285 1.0055 0.1115 0.073*
C4 0.6122 (2) 0.9108 (5) 0.11432 (19) 0.0497 (8)
C5 0.56120 (19) 0.9038 (4) 0.16240 (17) 0.0416 (7)
H5 0.5036 0.8532 0.1393 0.050*
C6 0.59480 (17) 0.9718 (4) 0.24590 (17) 0.0377 (6)
C7 0.54170 (18) 0.9672 (4) 0.29877 (17) 0.0363 (6)
C8 0.44084 (17) 0.9513 (4) 0.26081 (16) 0.0327 (6)
C9 0.39945 (18) 0.8749 (4) 0.31059 (17) 0.0382 (6)
H9 0.4370 0.8306 0.3641 0.046*
C10 0.25482 (17) 0.9246 (3) 0.21050 (15) 0.0309 (6)
C11 0.29038 (17) 1.0110 (4) 0.15727 (15) 0.0328 (6)
C12 0.38420 (17) 1.0235 (4) 0.18271 (16) 0.0341 (6)
H12 0.4084 1.0794 0.1477 0.041*
C13 0.23147 (18) 1.0979 (4) 0.07944 (17) 0.0391 (7)
C14 0.15806 (17) 0.9068 (4) 0.19015 (16) 0.0331 (6)
C15 0.09024 (19) 0.8498 (4) 0.11465 (17) 0.0411 (7)
C16 0.02316 (18) 0.9066 (4) 0.20583 (19) 0.0424 (7)
C17 −0.0377 (2) 0.9216 (5) 0.2447 (3) 0.0577 (9)
H17 −0.0992 0.8991 0.2146 0.069*
C18 −0.0039 (2) 0.9706 (5) 0.3289 (3) 0.0625 (10)
H18 −0.0430 0.9798 0.3569 0.075*
C19 0.0883 (2) 1.0074 (4) 0.3739 (2) 0.0565 (9)
H19 0.1091 1.0423 0.4310 0.068*
C20 0.1487 (2) 0.9931 (4) 0.33560 (18) 0.0428 (7)
H20 0.2100 1.0177 0.3662 0.051*
C21 0.11658 (17) 0.9409 (3) 0.25004 (17) 0.0356 (6)
C22 0.0944 (2) 0.7734 (5) 0.03518 (18) 0.0563 (9)
H22A 0.0340 0.7473 −0.0054 0.084*
H22B 0.1296 0.6654 0.0490 0.084*
H22C 0.1221 0.8583 0.0108 0.084*
N1 0.31060 (14) 0.8602 (3) 0.28774 (13) 0.0373 (6)
N2 0.18555 (17) 1.1658 (4) 0.01731 (16) 0.0565 (7)
N3 0.00999 (15) 0.8531 (3) 0.12427 (16) 0.0481 (7)
H3A −0.0417 0.8255 0.0849 0.058*
O1 0.72328 (15) 1.1053 (4) 0.36103 (15) 0.0673 (7)
H1 0.6973 1.0640 0.3898 0.101*
O2 0.58003 (13) 0.9826 (3) 0.37762 (12) 0.0537 (6)
Cl1 0.57239 (7) 0.81118 (15) 0.01424 (5) 0.0737 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0320 (16) 0.0497 (19) 0.0610 (19) 0.0020 (13) 0.0186 (14) −0.0031 (15)
C2 0.0342 (18) 0.072 (2) 0.083 (2) −0.0061 (16) 0.0330 (17) −0.0059 (19)
C3 0.047 (2) 0.073 (2) 0.078 (2) 0.0088 (18) 0.0412 (19) 0.0046 (19)
C4 0.0410 (18) 0.061 (2) 0.0480 (17) 0.0175 (15) 0.0186 (14) 0.0019 (15)
C5 0.0311 (15) 0.0455 (17) 0.0471 (16) 0.0076 (13) 0.0143 (13) 0.0030 (13)
C6 0.0244 (14) 0.0397 (15) 0.0473 (16) 0.0027 (12) 0.0125 (12) 0.0018 (12)
C7 0.0276 (14) 0.0419 (16) 0.0384 (15) 0.0000 (12) 0.0121 (12) 0.0023 (12)
C8 0.0249 (13) 0.0380 (15) 0.0340 (13) 0.0006 (11) 0.0104 (11) −0.0015 (11)
C9 0.0284 (14) 0.0479 (17) 0.0333 (14) 0.0022 (12) 0.0072 (11) 0.0052 (12)
C10 0.0264 (13) 0.0334 (14) 0.0303 (13) −0.0008 (11) 0.0084 (11) −0.0012 (10)
C11 0.0272 (14) 0.0383 (14) 0.0295 (13) 0.0006 (11) 0.0078 (11) 0.0003 (11)
C12 0.0287 (14) 0.0394 (15) 0.0357 (14) −0.0006 (11) 0.0143 (11) 0.0017 (11)
C13 0.0300 (15) 0.0510 (17) 0.0354 (15) −0.0029 (13) 0.0119 (12) 0.0032 (13)
C14 0.0257 (14) 0.0356 (14) 0.0356 (14) −0.0015 (11) 0.0098 (11) 0.0032 (11)
C15 0.0326 (16) 0.0429 (16) 0.0404 (15) −0.0040 (12) 0.0067 (12) 0.0056 (12)
C16 0.0290 (15) 0.0383 (16) 0.0590 (18) 0.0020 (12) 0.0164 (13) 0.0113 (13)
C17 0.0327 (17) 0.054 (2) 0.091 (3) 0.0040 (14) 0.0296 (18) 0.0153 (18)
C18 0.057 (2) 0.057 (2) 0.096 (3) 0.0111 (17) 0.053 (2) 0.0110 (19)
C19 0.067 (2) 0.0496 (19) 0.066 (2) 0.0045 (17) 0.0405 (18) 0.0023 (16)
C20 0.0400 (17) 0.0411 (16) 0.0504 (17) −0.0008 (13) 0.0213 (14) 0.0007 (13)
C21 0.0255 (13) 0.0325 (14) 0.0478 (16) 0.0006 (11) 0.0134 (12) 0.0066 (12)
C22 0.058 (2) 0.058 (2) 0.0391 (16) −0.0120 (16) 0.0050 (15) −0.0068 (14)
N1 0.0286 (12) 0.0456 (14) 0.0353 (12) −0.0018 (10) 0.0102 (10) 0.0055 (10)
N2 0.0393 (15) 0.074 (2) 0.0440 (15) −0.0056 (13) 0.0042 (12) 0.0157 (14)
N3 0.0230 (13) 0.0574 (16) 0.0514 (15) −0.0069 (11) 0.0018 (11) 0.0063 (12)
O1 0.0365 (13) 0.0949 (19) 0.0668 (15) −0.0177 (12) 0.0167 (11) −0.0186 (14)
O2 0.0325 (11) 0.0819 (16) 0.0400 (11) −0.0051 (10) 0.0074 (9) 0.0039 (11)
Cl1 0.0757 (7) 0.0959 (8) 0.0522 (5) 0.0250 (5) 0.0283 (5) −0.0047 (5)

Geometric parameters (Å, º)

C1—O1 1.349 (4) C12—H12 0.9300
C1—C2 1.399 (4) C13—N2 1.140 (3)
C1—C6 1.409 (4) C14—C15 1.380 (4)
C2—C3 1.373 (5) C14—C21 1.445 (4)
C2—H2 0.9300 C15—N3 1.363 (4)
C3—C4 1.386 (5) C15—C22 1.494 (4)
C3—H3 0.9300 C16—N3 1.377 (4)
C4—C5 1.370 (4) C16—C17 1.386 (4)
C4—Cl1 1.731 (3) C16—C21 1.409 (4)
C5—C6 1.399 (4) C17—C18 1.365 (5)
C5—H5 0.9300 C17—H17 0.9300
C6—C7 1.466 (4) C18—C19 1.398 (5)
C7—O2 1.239 (3) C18—H18 0.9300
C7—C8 1.491 (4) C19—C20 1.372 (4)
C8—C12 1.387 (4) C19—H19 0.9300
C8—C9 1.391 (4) C20—C21 1.393 (4)
C9—N1 1.327 (3) C20—H20 0.9300
C9—H9 0.9300 C22—H22A 0.9600
C10—N1 1.351 (3) C22—H22B 0.9600
C10—C11 1.405 (4) C22—H22C 0.9600
C10—C14 1.458 (3) N3—H3A 0.8600
C11—C12 1.396 (3) O1—H1 0.8200
C11—C13 1.441 (4)
O1—C1—C2 117.2 (3) N2—C13—C11 179.1 (3)
O1—C1—C6 123.0 (3) C15—C14—C21 107.2 (2)
C2—C1—C6 119.8 (3) C15—C14—C10 128.4 (2)
C3—C2—C1 120.0 (3) C21—C14—C10 124.3 (2)
C3—C2—H2 120.0 N3—C15—C14 108.5 (3)
C1—C2—H2 120.0 N3—C15—C22 120.0 (3)
C2—C3—C4 120.3 (3) C14—C15—C22 131.1 (3)
C2—C3—H3 119.9 N3—C16—C17 130.5 (3)
C4—C3—H3 119.9 N3—C16—C21 107.1 (2)
C5—C4—C3 120.4 (3) C17—C16—C21 122.3 (3)
C5—C4—Cl1 119.8 (3) C18—C17—C16 117.4 (3)
C3—C4—Cl1 119.8 (2) C18—C17—H17 121.3
C4—C5—C6 120.8 (3) C16—C17—H17 121.3
C4—C5—H5 119.6 C17—C18—C19 121.3 (3)
C6—C5—H5 119.6 C17—C18—H18 119.3
C5—C6—C1 118.4 (3) C19—C18—H18 119.3
C5—C6—C7 122.1 (2) C20—C19—C18 121.4 (3)
C1—C6—C7 119.5 (3) C20—C19—H19 119.3
O2—C7—C6 120.2 (2) C18—C19—H19 119.3
O2—C7—C8 117.5 (2) C19—C20—C21 118.7 (3)
C6—C7—C8 122.2 (2) C19—C20—H20 120.6
C12—C8—C9 116.9 (2) C21—C20—H20 120.6
C12—C8—C7 124.7 (2) C20—C21—C16 118.8 (3)
C9—C8—C7 118.0 (2) C20—C21—C14 134.7 (2)
N1—C9—C8 125.1 (2) C16—C21—C14 106.5 (2)
N1—C9—H9 117.4 C15—C22—H22A 109.5
C8—C9—H9 117.4 C15—C22—H22B 109.5
N1—C10—C11 120.6 (2) H22A—C22—H22B 109.5
N1—C10—C14 115.5 (2) C15—C22—H22C 109.5
C11—C10—C14 123.9 (2) H22A—C22—H22C 109.5
C12—C11—C10 119.8 (2) H22B—C22—H22C 109.5
C12—C11—C13 119.2 (2) C9—N1—C10 118.4 (2)
C10—C11—C13 120.9 (2) C15—N3—C16 110.7 (2)
C8—C12—C11 119.1 (2) C15—N3—H3A 124.7
C8—C12—H12 120.4 C16—N3—H3A 124.7
C11—C12—H12 120.4 C1—O1—H1 109.5
O1—C1—C2—C3 176.8 (3) C10—C11—C13—N2 −138 (22)
C6—C1—C2—C3 −4.8 (5) N1—C10—C14—C15 −135.0 (3)
C1—C2—C3—C4 0.1 (5) C11—C10—C14—C15 48.5 (4)
C2—C3—C4—C5 4.1 (5) N1—C10—C14—C21 42.3 (3)
C2—C3—C4—Cl1 −174.8 (3) C11—C10—C14—C21 −134.3 (3)
C3—C4—C5—C6 −3.6 (5) C21—C14—C15—N3 2.0 (3)
Cl1—C4—C5—C6 175.3 (2) C10—C14—C15—N3 179.6 (2)
C4—C5—C6—C1 −1.1 (4) C21—C14—C15—C22 −170.9 (3)
C4—C5—C6—C7 179.7 (3) C10—C14—C15—C22 6.7 (5)
O1—C1—C6—C5 −176.5 (3) N3—C16—C17—C18 176.8 (3)
C2—C1—C6—C5 5.3 (4) C21—C16—C17—C18 −0.3 (4)
O1—C1—C6—C7 2.8 (5) C16—C17—C18—C19 1.1 (5)
C2—C1—C6—C7 −175.4 (3) C17—C18—C19—C20 −1.0 (5)
C5—C6—C7—O2 160.6 (3) C18—C19—C20—C21 0.1 (4)
C1—C6—C7—O2 −18.6 (4) C19—C20—C21—C16 0.6 (4)
C5—C6—C7—C8 −21.8 (4) C19—C20—C21—C14 −177.9 (3)
C1—C6—C7—C8 158.9 (3) N3—C16—C21—C20 −178.3 (2)
O2—C7—C8—C12 144.3 (3) C17—C16—C21—C20 −0.5 (4)
C6—C7—C8—C12 −33.3 (4) N3—C16—C21—C14 0.6 (3)
O2—C7—C8—C9 −28.8 (4) C17—C16—C21—C14 178.4 (3)
C6—C7—C8—C9 153.6 (3) C15—C14—C21—C20 177.0 (3)
C12—C8—C9—N1 2.6 (4) C10—C14—C21—C20 −0.7 (5)
C7—C8—C9—N1 176.2 (2) C15—C14—C21—C16 −1.6 (3)
N1—C10—C11—C12 2.8 (4) C10—C14—C21—C16 −179.4 (2)
C14—C10—C11—C12 179.2 (2) C8—C9—N1—C10 −0.4 (4)
N1—C10—C11—C13 −172.8 (2) C11—C10—N1—C9 −2.3 (4)
C14—C10—C11—C13 3.5 (4) C14—C10—N1—C9 −179.0 (2)
C9—C8—C12—C11 −2.0 (4) C14—C15—N3—C16 −1.7 (3)
C7—C8—C12—C11 −175.1 (2) C22—C15—N3—C16 172.1 (3)
C10—C11—C12—C8 −0.5 (4) C17—C16—N3—C15 −176.9 (3)
C13—C11—C12—C8 175.2 (2) C21—C16—N3—C15 0.6 (3)
C12—C11—C13—N2 47 (22)

Hydrogen-bond geometry (Å, º)

Cg3 and Cg4 are the centroids of the C1–C6 and C16–C21 rings, respectively.

D—H···A D—H H···A D···A D—H···A
O1—H1···O2 0.82 1.91 2.596 (3) 140
N3—H3A···N2i 0.86 2.27 3.110 (4) 164
C2—H2···Cg3ii 0.90 2.93 3.656 (4) 136
C12—H12···Cg4iii 0.93 2.99 3.361 (4) 106

Symmetry codes: (i) −x, −y+2, −z; (ii) −x+3/2, y+1/2, −z+1/2; (iii) −x+1/2, y+1/2, −z+1/2.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: ZP2018).

References

  1. Andreani, A., Granaiola, M., Leoni, A., Locatelli, A., Morigi, R., Rambaldi, M., Giorgi, G., Salvini, L. & Garaliene, V. (2001). Anticancer Drug. Des. 16, 167–174. [PubMed]
  2. Barden, T. C. (2011). Top Heterocycl. Chem. 26, 31–46.
  3. Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Chai, H., Zhao, C., Zhao, C. & Gong, P. (2006). Bioorg. Med. Chem. 14, 911–917. [DOI] [PubMed]
  5. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  6. Grell, J., Bernstein, J. & Tinhofer, G. (2000). Acta Cryst. B56, 166. [DOI] [PubMed]
  7. Mukhopadhyay, S., Handy, G. A., Funayama, S. & Cordell, G. A. (1981). J. Nat. Prod. 44, 696–700. [DOI] [PubMed]
  8. Nieto, M. J., Alovero, F. L., Manzo, R. H. & Mazzieri, M. R. (2005). Eur. J. Med. Chem. 40, 361–369. [DOI] [PubMed]
  9. Penthala, N. R., Reddy, T. R. Y., Parkin, S. & Crooks, P. A. (2008). Acta Cryst. E64, o2122. [DOI] [PMC free article] [PubMed]
  10. Quetin-Leclercq, J. (1994). J. Pharm. Belg. 49, 181–192. [PubMed]
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Singh, U. P., Sarma, B. K., Mishra, P. K. & Ray, A. B. (2000). Fol. Microbiol. 45, 173–176. [DOI] [PubMed]
  13. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989015018058/zp2018sup1.cif

e-71-0o822-sup1.cif (20.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015018058/zp2018Isup2.hkl

e-71-0o822-Isup2.hkl (174.8KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015018058/zp2018Isup3.cml

. DOI: 10.1107/S2056989015018058/zp2018fig1.tif

The mol­ecular structure of the title compound, with the atomic numbering scheme and displacement ellipsoids drawn at 30% probability level.

b . DOI: 10.1107/S2056989015018058/zp2018fig2.tif

O—H⋯O intra and N—H⋯N inter­mlecular inter­actions (dotted lines) in the crystal structure of the title compound. The crystal packing of the mol­ecules is viewed down the b axis.

CCDC reference: 1427861

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES