Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Oct 17;71(Pt 11):1332–1335. doi: 10.1107/S2056989015018253

Crystal structure of 2-amino-1,3-di­bromo-6-oxo-5,6-di­hydro­pyrido[1,2-a]quinoxalin-11-ium bromide monohydrate

Md Serajul Haque Faizi a, Yuliia Parashchenko b,*
PMCID: PMC4645018  PMID: 26594504

In the title compound, the 2-amino-1,3-di­bromo-6-oxo-5,6-di­hydro­pyrido[1,2-a]quinoxalin-11-ium cations are non-planar and are linked through centrosymmetric hydrogen-bonded cyclic Br2(H2O)2 anion–water units by N—H⋯Br, N—H⋯O and O—H⋯Br hydrogen bonds, forming one-dimensional ribbons, with the planes of the cations lying parallel to (100).

Keywords: crystal structure; hydrogen bonding; quinoxaline derivatives; pyrido[1,2-a]quinoxalines

Abstract

In the title hydrated salt, C12H8Br2N3O+·Br·H2O, which was synthesized by the reaction of the pyridine derivative Schiff base N 1,N 4-bis­(pyridine-2-yl­methyl­ene)benzene-1,4-di­amine with bromine, the asymmetric unit contains a 2-amino-1,3-di­bromo-6-oxo-5,6-di­hydro­pyrido[1,2-a]quinoxalin-11-ium cation, with a protonated pyridine moiety, a bromide anion and a water mol­ecule of solvation. The cation is non-planar with the di­bromo-substituted benzene ring, forming dihedral angles of 24.3 (4) and 11.5 (4)° with the fused pyridine and pyrazine ring moieties, respectively. In the crystal, the cations are linked through a centrosymmetric hydrogen-bonded cyclic R 4 2(8) Br2(H2O)2 unit by N—H⋯Br, N—H⋯O and O—H⋯Br hydrogen bonds, forming one-dimensional ribbons extending along b, with the planes of the cations lying parallel to (100).

Chemical context  

Quinoxaline and its derivatives are an important class of benzo-heterocycles (Kurasawa et al., 1988; Cheeseman & Werstiuk, 1978), displaying a broad spectrum of biological activities (Seitz et al., 2002; Toshima et al., 2002) which have made them important structures in combinatorial drug-discovery literature (Wu & Ede, 2001; Lee et al., 1997). These compounds have also found applications as dyes (Zaragoza et al., 1999; Sonawane & Rangnekar, 2002) and building blocks in the synthesis of organic semiconductors (Katoh et al., 2000; Dailey et al., 2001) and they also serve as useful rigid subunits in macrocyclic receptors for mol­ecular recognition (Mizuno et al., 2002) and chemically controllable switches (Elwahy, 2000). The present work is a part of an ongoing structural study of Schiff bases and their utilization in the synthesis of new organic and polynuclear coordination compounds (Faizi & Sen, 2014; Moroz et al., 2012). We report here the synthesis and crystal structure of 2-amino-1,3-di­bromo-6-oxo-5,6-di­hydro­pyrido[1,2-a]quinoxalin-11-ium bromide monohydrate (refcode ADOQBM). Previously, we have reported new methods for the preparation of substituted quinoxaline derivatives together with their crystallographic characterization. However, there are very few reported structures of compounds similar to the title compound, one being the doubly protonated dibromide salt 2-aza­niumyl-3-bromo-6-oxo-5,6-di­hydro­pyrido[1,2-a]quinoxalin-11-ium dibromide (Faizi et al., 2015).

The title singly protonated monobromide monohydrate salt, C12H8Br2N3O+·Br·H2O, was synthesized from the reaction the pyridine derivative Schiff base N1,N4–bis­(pyridine-2-yl­methyl­ene)benzene-1,4-di­amine (BPYBD) with mol­ecular bromine. The cyclization occurs by oxidation of BPYBD, reduction of mol­ecular bromine and finally hydrolysis of the imine bond which creates the charge at the pyridine nitro­gen atom in the quinoxaline ring system. The structure is reported herein.graphic file with name e-71-01332-scheme1.jpg

Structural commentary  

The asymmetric unit of the title compound contains a discrete 2-amino-1,3-di­bromo-6-oxo-5,6-di­hydro­pyrido[1,2-a]quinoxalin-11-ium cation with a protonated pyridine moiety, and a bromide counter-anion and a water mol­ecule of solvation (Fig. 1). The cation is non-planar compared to the previously reported structure (Faizi et al., 2015). The mean plane of the pyridine ring forms a dihedral angle of 24.2 (4)° with the benzene ring and 14.6 (4)° with the pyrazine ring of the fused system while the dihedral angle between the pyrazine and the benzene ring is 11.5 (4)°. A shorter C10—N3 distance of 1.367 (9) Å, compared to the usual aromatic C—Namine single bond distance of 1.43 (3) Å, might be due to the electron-withdrawing effect of the positively charged pyridine N atom, and the ortho-substituted bromine atom which decreases the C—Namine bond order. Other C—C and C—N bond distances are well within the limits expected for aromatic rings (Koner & Ray, 2008; Kanderal et al., 2005; Fritsky et al., 2006). Present also in the cations are intra­molecular N3—H⋯Br1 and N3—H⋯Br2 inter­actions [3.048 (7), 3.006 (7) Å, respectively, Table 1].

Figure 1.

Figure 1

The mol­ecular conformation and atom-numbering scheme for the title compound, with non-H atoms drawn as 40% probability displacement ellipsoids.

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
N2H5Br3i 0.86 2.49 3.332(6) 166
N3H3BBr1 0.86 2.60 3.048(7) 113
N3H3BBr3ii 0.86 2.84 3.581(7) 145
N3H3AO1iii 0.86 2.17 2.977(9) 155
N3H3ABr2 0.86 2.56 3.006(7) 113
O2H11Br3iv 0.89 2.50 3.383(6) 180
O2H12Br1v 0.88 2.61 3.309(7) 137

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Supra­molecular features  

In the crystal, the cations are linked through a centrosymmetric hydrogen-bonded cyclic Inline graphic(8) Br2(H2O)2 unit and N—H⋯Br, N—H⋯O and O—H⋯Br hydrogen bonds (Table 1), forming broad one-dimensional ribbons extending along b (Fig. 2). The planes of the cations lie parallel to (100). Fig. 3 shows the packing in the unit cell, viewed along the b axis, in which layers of quinoxalinium cations are embedded between ionic layers of anions and vice versa, forming an alternating hydro­carbon–ionic layer structure. No inter­molecular π–π inter­ations are evident in the hydro­carbon layer in the structure.

Figure 2.

Figure 2

The one-dimensional hydrogen-bonded ribbon structure, viewed along the a-axis direction. Inter-species inter­actions are shown as dashed lines.

Figure 3.

Figure 3

The layering of the ribbon structures, viewed along the b axis.

Database survey  

There are very few examples of similar compounds in the literature, a search of the Cambridge Structural Database (Version 5.35, May 2014; Groom & Allen, 2014) revealing the structure of 2-aza­niumyl-3-bromo-6-oxo-5,6-di­hydro­pyrido[1,2-a]quinoxalin-11-ium dibromide (Faizi et al., 2015), in which the 2-amino-1,2-dibromide ring in the title compound is replaced by a 2-aza­niumyl-3-bromo ring. Other similar structures have been reported (Faizi & Sen, 2014; Koner et al., 2008).

Synthesis and crystallization  

Mol­ecular bromine (440 mg, 144.0 µL, 2.80 mmol) was added to a methano­lic solution (10 mL) of Schiff base, N1,N4-bis (pyridine-2-yl­methyl­ene)benzene-1,4-di­amine (BPYBD) (197 mg, 0.70 mmol). The color of the solution immediately changed from yellow to orange. The reaction mixture was stirred for 4 h at room temperature under a fume hood. The resulting yellow precipitate was recovered by filtration, washed several times with small portions of acetone and then with diethyl ether to give 200 mg (yield: 64%) of 2-amino-1,3-di­bromo-6-oxo-5,6-di­hydro­pyrido[1,2-a]quinoxalin-11-ium bromide monohydrate (ADOQBM). The crystal of the title compound suitable for X-ray analysis was obtained within three days by slow evaporation of a solution of the compound in methanol.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. All N-bound H atoms were located in difference-Fourier maps and their positions were then held fixed. The isotropic displacement parameters were refined for these atoms. Aromatic H atoms were placed in calculated positions and treated as riding on their parent C atoms [C—H = 0.93 Å and U iso(H) = 1.2 or 1.5U eq(C)].

Table 2. Experimental details.

Crystal data
Chemical formula C12H8Br2N3O+BrH2O
M r 467.93
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 100
a, b, c () 7.5069(7), 9.7435(10), 10.782(1)
, , () 88.490(7), 73.798(7), 71.981(7)
V (3) 718.61(12)
Z 2
Radiation type Mo K
(mm1) 8.42
Crystal size (mm) 0.20 0.15 0.11
 
Data collection
Diffractometer Bruker SMART APEX CCD
Absorption correction Multi-scan (SADABS; Bruker, 2003)
T min, T max 0.259, 0.365
No. of measured, independent and observed [I > 2(I)] reflections 8077, 2187, 1681
R int 0.163
max () 23.8
(sin /)max (1) 0.568
 
Refinement
R[F 2 > 2(F 2)], wR(F 2), S 0.059, 0.155, 1.00
No. of reflections 2187
No. of parameters 181
H-atom treatment H-atom parameters constrained
max, min (e 3) 1.18, 1.16

Computer programs: SMART and SAINT (Bruker, 2003), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008) and DIAMOND (Brandenberg Putz, 2006).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989015018253/zs2343sup1.cif

e-71-01332-sup1.cif (21.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015018253/zs2343Isup2.hkl

e-71-01332-Isup2.hkl (105.3KB, hkl)

CCDC reference: 1428593

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful to the Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, UP-208016, India, for X-ray data collection.

supplementary crystallographic information

Crystal data

C12H8Br2N3O+·Br·H2O Z = 2
Mr = 467.93 F(000) = 448
Triclinic, P1 Dx = 2.163 Mg m3
a = 7.5069 (7) Å Mo Kα radiation, λ = 0.71073 Å
b = 9.7435 (10) Å Cell parameters from 1023 reflections
c = 10.782 (1) Å θ = 1.5–23.5°
α = 88.490 (7)° µ = 8.42 mm1
β = 73.798 (7)° T = 100 K
γ = 71.981 (7)° Block, yellow
V = 718.61 (12) Å3 0.20 × 0.15 × 0.11 mm

Data collection

Bruker SMART APEX CCD diffractometer 2187 independent reflections
Radiation source: fine-focus sealed tube 1681 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.163
/w–scans θmax = 23.8°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Bruker, 2003) h = −8→8
Tmin = 0.259, Tmax = 0.365 k = −11→10
8077 measured reflections l = −12→12

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.155 H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0902P)2] where P = (Fo2 + 2Fc2)/3
2187 reflections (Δ/σ)max < 0.001
181 parameters Δρmax = 1.18 e Å3
0 restraints Δρmin = −1.16 e Å3

Special details

Experimental. The OH H-atom was located in difference Fourier map and refined with with Uiso(H) = 1.2Ueq(O). The N- and C-bound H-atoms were positioned geometrically and refined using a riding model: N—H = 0.86 Å and C—H = 0.93 Å with Uiso(H) = 1.2Ueq(parent atom).
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br3 0.26076 (12) 0.03614 (8) 0.73364 (8) 0.0441 (3)
Br2 0.27561 (13) 0.36785 (8) 0.22264 (8) 0.0446 (3)
Br1 0.30008 (13) 0.45076 (9) −0.29950 (8) 0.0480 (3)
C3 0.1893 (12) 0.8452 (10) 0.4590 (8) 0.048 (2)
H3 0.2041 0.8791 0.5342 0.058*
C1 0.1158 (12) 0.6740 (8) 0.3479 (7) 0.0388 (19)
H1 0.0617 0.5998 0.3495 0.047*
N1 0.1941 (9) 0.7217 (6) 0.2309 (6) 0.0316 (14)
C2 0.1146 (14) 0.7316 (9) 0.4612 (8) 0.048 (2)
H2 0.0644 0.6953 0.5393 0.057*
C4 0.2417 (12) 0.9077 (9) 0.3430 (8) 0.046 (2)
H4 0.2805 0.9898 0.3414 0.055*
C12 0.2134 (10) 0.6506 (7) 0.1102 (7) 0.0306 (17)
N2 0.2314 (10) 0.8738 (6) 0.0112 (6) 0.0377 (16)
H5 0.2190 0.9269 −0.0528 0.045*
C7 0.2241 (11) 0.7334 (7) 0.0019 (7) 0.0327 (18)
C11 0.2384 (11) 0.5009 (7) 0.0921 (7) 0.0318 (18)
C9 0.2558 (11) 0.5314 (8) −0.1296 (8) 0.0362 (19)
C10 0.2586 (10) 0.4390 (7) −0.0288 (7) 0.0324 (18)
C8 0.2379 (11) 0.6744 (7) −0.1175 (8) 0.0349 (18)
H6 0.2351 0.7313 −0.1879 0.042*
C5 0.2364 (11) 0.8482 (8) 0.2307 (8) 0.0353 (18)
C6 0.2565 (12) 0.9308 (8) 0.1142 (8) 0.042 (2)
O1 0.2841 (12) 1.0476 (6) 0.1172 (7) 0.071 (2)
N3 0.2950 (11) 0.2940 (7) −0.0508 (7) 0.0457 (18)
H3A 0.3064 0.2371 0.0109 0.055*
H3B 0.3066 0.2597 −0.1263 0.055*
O2 0.3545 (11) 0.2190 (7) 0.4635 (6) 0.072 (2)
H12 0.3415 0.2338 0.5459 0.108*
H11 0.4550 0.1520 0.4120 0.108*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br3 0.0499 (5) 0.0360 (5) 0.0489 (5) −0.0143 (4) −0.0173 (4) 0.0057 (4)
Br2 0.0516 (6) 0.0273 (5) 0.0573 (6) −0.0140 (4) −0.0184 (4) 0.0127 (4)
Br1 0.0565 (6) 0.0389 (5) 0.0510 (6) −0.0130 (4) −0.0206 (4) −0.0041 (4)
C3 0.044 (5) 0.051 (6) 0.051 (5) −0.013 (4) −0.017 (4) −0.003 (4)
C1 0.046 (5) 0.029 (4) 0.043 (5) −0.014 (4) −0.012 (4) 0.004 (4)
N1 0.033 (3) 0.022 (3) 0.045 (4) −0.012 (3) −0.016 (3) 0.007 (3)
C2 0.061 (6) 0.042 (5) 0.040 (5) −0.016 (5) −0.017 (4) 0.012 (4)
C4 0.052 (5) 0.033 (4) 0.060 (6) −0.018 (4) −0.021 (4) −0.006 (4)
C12 0.032 (4) 0.022 (4) 0.040 (4) −0.011 (3) −0.010 (3) 0.000 (3)
N2 0.052 (4) 0.018 (3) 0.044 (4) −0.010 (3) −0.016 (3) 0.006 (3)
C7 0.036 (4) 0.016 (4) 0.047 (5) −0.007 (3) −0.015 (4) 0.006 (3)
C11 0.033 (4) 0.017 (4) 0.051 (5) −0.014 (3) −0.014 (3) 0.009 (3)
C9 0.037 (4) 0.030 (4) 0.048 (5) −0.013 (4) −0.018 (4) −0.004 (4)
C10 0.029 (4) 0.016 (4) 0.053 (5) −0.005 (3) −0.017 (4) 0.004 (4)
C8 0.038 (4) 0.020 (4) 0.045 (5) −0.008 (3) −0.009 (4) 0.002 (3)
C5 0.036 (4) 0.018 (4) 0.049 (5) −0.002 (3) −0.014 (4) −0.004 (3)
C6 0.053 (5) 0.017 (4) 0.057 (5) −0.013 (4) −0.016 (4) 0.002 (4)
O1 0.115 (6) 0.030 (3) 0.086 (5) −0.041 (4) −0.038 (4) 0.007 (3)
N3 0.069 (5) 0.022 (3) 0.052 (4) −0.019 (3) −0.022 (4) 0.003 (3)
O2 0.077 (5) 0.063 (4) 0.064 (4) −0.005 (4) −0.020 (4) 0.015 (4)

Geometric parameters (Å, º)

Br2—C11 1.907 (7) N2—C6 1.338 (10)
Br1—C9 1.912 (8) N2—C7 1.393 (9)
C3—C2 1.384 (12) N2—H5 0.8600
C3—C4 1.387 (12) C7—C8 1.388 (11)
C3—H3 0.9300 C11—C10 1.400 (11)
C1—C2 1.355 (11) C9—C8 1.364 (10)
C1—N1 1.370 (10) C9—C10 1.394 (11)
C1—H1 0.9300 C10—N3 1.367 (9)
N1—C5 1.364 (9) C8—H6 0.9300
N1—C12 1.440 (9) C5—C6 1.471 (11)
C2—H2 0.9300 C6—O1 1.222 (9)
C4—C5 1.373 (11) N3—H3A 0.8600
C4—H4 0.9300 N3—H3B 0.8600
C12—C7 1.399 (10) O2—H12 0.8769
C12—C11 1.423 (9) O2—H11 0.8900
C2—C3—C4 119.0 (8) C12—C7—N2 120.3 (7)
C2—C3—H3 120.5 C10—C11—C12 121.3 (7)
C4—C3—H3 120.5 C10—C11—Br2 115.3 (5)
C2—C1—N1 122.1 (8) C12—C11—Br2 123.0 (6)
C2—C1—H1 119.0 C8—C9—C10 124.3 (7)
N1—C1—H1 119.0 C8—C9—Br1 117.2 (6)
C5—N1—C1 118.1 (6) C10—C9—Br1 118.3 (5)
C5—N1—C12 119.7 (6) N3—C10—C11 122.5 (7)
C1—N1—C12 121.9 (6) N3—C10—C9 121.0 (7)
C1—C2—C3 118.9 (8) C11—C10—C9 116.3 (6)
C1—C2—H2 120.5 C9—C8—C7 118.8 (7)
C3—C2—H2 120.5 C9—C8—H6 120.6
C5—C4—C3 119.9 (8) C7—C8—H6 120.6
C5—C4—H4 120.1 N1—C5—C4 120.2 (7)
C3—C4—H4 120.1 N1—C5—C6 120.8 (7)
C7—C12—C11 118.4 (7) C4—C5—C6 118.7 (7)
C7—C12—N1 116.8 (6) O1—C6—N2 123.8 (8)
C11—C12—N1 124.6 (6) O1—C6—C5 120.2 (8)
C6—N2—C7 123.7 (6) N2—C6—C5 115.9 (7)
C6—N2—H5 118.2 C10—N3—H3A 120.0
C7—N2—H5 118.2 C10—N3—H3B 120.0
C8—C7—C12 120.5 (7) H3A—N3—H3B 120.0
C8—C7—N2 119.1 (7) H12—O2—H11 123.0
C2—C1—N1—C5 −13.0 (11) Br2—C11—C10—C9 −172.4 (6)
C2—C1—N1—C12 173.4 (7) C8—C9—C10—N3 −173.9 (8)
N1—C1—C2—C3 2.1 (12) Br1—C9—C10—N3 1.0 (10)
C4—C3—C2—C1 7.5 (12) C8—C9—C10—C11 1.0 (12)
C2—C3—C4—C5 −6.1 (13) Br1—C9—C10—C11 175.9 (5)
C5—N1—C12—C7 −16.6 (10) C10—C9—C8—C7 0.9 (12)
C1—N1—C12—C7 156.8 (7) Br1—C9—C8—C7 −174.0 (6)
C5—N1—C12—C11 157.9 (7) C12—C7—C8—C9 −4.9 (11)
C1—N1—C12—C11 −28.7 (11) N2—C7—C8—C9 171.8 (7)
C11—C12—C7—C8 6.7 (11) C1—N1—C5—C4 14.3 (10)
N1—C12—C7—C8 −178.4 (7) C12—N1—C5—C4 −172.0 (7)
C11—C12—C7—N2 −169.9 (7) C1—N1—C5—C6 −159.2 (7)
N1—C12—C7—N2 5.0 (11) C12—N1—C5—C6 14.4 (10)
C6—N2—C7—C8 −166.8 (7) C3—C4—C5—N1 −5.0 (12)
C6—N2—C7—C12 9.8 (12) C3—C4—C5—C6 168.7 (8)
C7—C12—C11—C10 −4.7 (11) C7—N2—C6—O1 171.7 (9)
N1—C12—C11—C10 −179.2 (7) C7—N2—C6—C5 −12.2 (11)
C7—C12—C11—Br2 168.1 (6) N1—C5—C6—O1 176.1 (8)
N1—C12—C11—Br2 −6.4 (11) C4—C5—C6—O1 2.5 (12)
C12—C11—C10—N3 175.8 (7) N1—C5—C6—N2 −0.1 (11)
Br2—C11—C10—N3 2.4 (10) C4—C5—C6—N2 −173.8 (7)
C12—C11—C10—C9 0.9 (11)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N2—H5···Br3i 0.86 2.49 3.332 (6) 166
N3—H3B···Br1 0.86 2.60 3.048 (7) 113
N3—H3B···Br3ii 0.86 2.84 3.581 (7) 145
N3—H3A···O1iii 0.86 2.17 2.977 (9) 155
N3—H3A···Br2 0.86 2.56 3.006 (7) 113
O2—H11···Br3iv 0.89 2.50 3.383 (6) 180
O2—H12···Br1v 0.88 2.61 3.309 (7) 137
O2—H12···Br3 0.88 2.83 3.393 (6) 123

Symmetry codes: (i) x, y+1, z−1; (ii) x, y, z−1; (iii) x, y−1, z; (iv) −x+1, −y, −z+1; (v) x, y, z+1.

References

  1. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
  2. Brandenberg, K. & Putz, H. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  3. Bruker (2003). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Cheeseman, G. W. H. & Werstiuk, E. S. G. (1978). Adv. Heterocycl. Chem. 22, 367–431.
  5. Dailey, S., Feast, J. W., Peace, R. J., Sage, I. C., Till, S. & Wood, E. L. (2001). J. Mater. Chem. 11, 2238–2243.
  6. Elwahy, A. H. M. (2000). Tetrahedron, 56, 897–907.
  7. Faizi, M. S. H. & Sen, P. (2014). Acta Cryst. E70, m206–m207. [DOI] [PMC free article] [PubMed]
  8. Faizi, M. S. H., Sharkina, N. O. & Iskenderov, T. S. (2015). Acta Cryst. E71, o17–o18. [DOI] [PMC free article] [PubMed]
  9. Fritsky, I. O., Kozłowski, H., Kanderal, O. M., Haukka, M., Świątek-Kozłowska, J., Gumienna-Kontecka, E. & Meyer, F. (2006). Chem. Commun. pp. 4125–4127. [DOI] [PubMed]
  10. Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. [DOI] [PubMed]
  11. Kanderal, O. M., Kozłowski, H., Dobosz, A., Świątek-Kozłowska, J., Meyer, F. & Fritsky, I. O. (2005). Dalton Trans. pp. 1428. [DOI] [PubMed]
  12. Katoh, A., Yoshida, T. & Ohkanda, J. (2000). Heterocycles, 52, 911–920.
  13. Koner, R. R. & Ray, M. (2008). Inorg. Chem. 47, 9122–9124. [DOI] [PubMed]
  14. Kurasawa, Y., Sakata, G. & Makino, K. (1988). Heterocycles, 27, 2481–2515.
  15. Lee, J., Murray, W. V. & Rivero, R. A. (1997). J. Org. Chem. 62, 3874–3879.
  16. Mizuno, T., Wei, W.-H., Eller, L. R. & Sessler, J. L. (2002). J. Am. Chem. Soc. 124, 1134–1135. [DOI] [PubMed]
  17. Moroz, Y. S., Demeshko, S., Haukka, M., Mokhir, A., Mitra, U., Stocker, M., Müller, P., Meyer, F. & Fritsky, I. O. (2012). Inorg. Chem. 51, 7445–7447. [DOI] [PubMed]
  18. Seitz, L. E., Suling, W. J. & Reynolds, R. C. (2002). J. Med. Chem. 45, 5604–5606. [DOI] [PubMed]
  19. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  20. Sonawane, N. D. & Rangnekar, D. W. (2002). J. Heterocycl. Chem. 39, 303–308.
  21. Toshima, K., Takano, R., Ozawa, T. & Matsumura, S. (2002). Chem. Commun. pp. 212–213. [DOI] [PubMed]
  22. Wu, Z. & Ede, N. J. (2001). Tetrahedron Lett. 42, 8115–8118.
  23. Zaragoza, F. & Stephensen, H. (1999). J. Org. Chem. 64, 2555–2557.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989015018253/zs2343sup1.cif

e-71-01332-sup1.cif (21.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015018253/zs2343Isup2.hkl

e-71-01332-Isup2.hkl (105.3KB, hkl)

CCDC reference: 1428593

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES