Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Oct 3;71(Pt 11):o813. doi: 10.1107/S2056989015017946

Crystal structure of 2-bromo-4,6-di­nitroaniline

Gihaeng Kang a, Tae Ho Kim a,*, Eui-Jae Lee b, Chang Ho Kang c,*
PMCID: PMC4645020  PMID: 26594540

Abstract

In the title compound, C6H4BrN3O4, the dihedral angles between the nitro groups and the aniline ring are 2.04 (3) and 1.18 (4)°, respectively. In the crystal, N—H⋯O and C—H⋯O hydrogen bonds and weak side-on C—Br⋯π inter­actions [3.5024 (12) Å] link adjacent mol­ecules, forming a three-dimensional network. A close O⋯Br contact [3.259 (2) Å] may also add additional stability.

Keywords: crystal structure, aniline derivative, hydrogen bonding, C—Br⋯π inter­actions

Related literature  

For information on the title compound, see: Yadav & Sharma (2010). For a related crystal structure, see: Glidewell et al. (2002).graphic file with name e-71-0o813-scheme1.jpg

Experimental  

Crystal data  

  • C6H4BrN3O4

  • M r = 262.03

  • Monoclinic Inline graphic

  • a = 6.6955 (2) Å

  • b = 7.7720 (2) Å

  • c = 16.0608 (4) Å

  • β = 95.4182 (14)°

  • V = 832.03 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.93 mm−1

  • T = 173 K

  • 0.20 × 0.15 × 0.08 mm

Data collection  

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2013) T min = 0.534, T max = 0.746

  • 12322 measured reflections

  • 1892 independent reflections

  • 1648 reflections with I > 2σ(I)

  • R int = 0.030

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.033

  • wR(F 2) = 0.083

  • S = 1.06

  • 1892 reflections

  • 127 parameters

  • H-atom parameters constrained

  • Δρmax = 0.85 e Å−3

  • Δρmin = −0.51 e Å−3

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989015017946/sj5477sup1.cif

e-71-0o813-sup1.cif (383.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015017946/sj5477Isup2.hkl

e-71-0o813-Isup2.hkl (104.2KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015017946/sj5477Isup3.cml

. DOI: 10.1107/S2056989015017946/sj5477fig1.tif

The asymmetric unit of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are shown as small spheres of arbitrary radius.

a . DOI: 10.1107/S2056989015017946/sj5477fig2.tif

Crystal packing viewed along the a axis. The inter­molecular inter­actions are shown as dashed lines.

CCDC reference: 1427403

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
N1H1AO2i 0.88 2.16 2.893(3) 141
N1H1BO4ii 0.88 2.36 3.139(4) 148
C5H5O1iii 0.95 2.55 3.209(4) 127

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (No. 2015R1D1A4A01020317).

supplementary crystallographic information

S1. Comment

The title compound, C6H4BrN3O4, is an aniline derivative with additional bromine and nitro substituents. Aniline is the simplest of the primary aromatic amines an organic base used, as are its derivatives, to make dyes, drugs, explosives, plastics and chemicals for the rubber industry (Yadav & Sharma, 2010). Its crystal structure is reported herein. In this compound (Fig. 1), the dihedral angles between the nitro groups and the aniline ring are 2.04 (3) and 1.18 (4)°, respectively. All bond lengths and bond angles are normal and comparable to those observed in the crystal structure of a similar compound (Glidewell et al., 2002).

The crystal structure (Fig. 2) is stabilized by N—H···O and C—H···O hydrogen bonds (Table 1), as well as an intermolecular side-on C2—Br1···Cg1iv interaction [Br1···Cg = 3.5024 (12) Å, C2—Br1···Cg = 96.90 (9) °] (Cg1 is the centroid of the C1–C6 ring) [symmetry code: (iv), -x, -y + 1, -z + 2]. A close O3···Br1iv contact, 3.259 (2) Å may also contribute, iv = -1/2+x,1.5-y, -1/2+z. These contacts result in a three-dimensional network.

S2. Experimental

The title compound was supplied by the Kyung In Synthetic Corporation. Slow evaporation of a solution in CH2Cl2 gave single crystals suitable for X-ray analysis.

S3. Refinement

All H-atoms were positioned geometrically and refined using a riding model with d(N—H) = 0.88 Å, Uiso = 1.2Ueq(C) for amine group, d(C—H) = 0.95 Å, Uiso = 1.2Ueq(C) for aromatic C—H.

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are shown as small spheres of arbitrary radius.

Fig. 2.

Fig. 2.

Crystal packing viewed along the a axis. The intermolecular interactions are shown as dashed lines.

Crystal data

C6H4BrN3O4 F(000) = 512
Mr = 262.03 Dx = 2.092 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 6.6955 (2) Å Cell parameters from 6099 reflections
b = 7.7720 (2) Å θ = 2.6–27.1°
c = 16.0608 (4) Å µ = 4.93 mm1
β = 95.4182 (14)° T = 173 K
V = 832.03 (4) Å3 Block, yellow
Z = 4 0.20 × 0.15 × 0.08 mm

Data collection

Bruker APEXII CCD diffractometer 1648 reflections with I > 2σ(I)
φ and ω scans Rint = 0.030
Absorption correction: multi-scan (SADABS; Bruker, 2013) θmax = 27.5°, θmin = 2.6°
Tmin = 0.534, Tmax = 0.746 h = −8→8
12322 measured reflections k = −10→10
1892 independent reflections l = −20→20

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033 H-atom parameters constrained
wR(F2) = 0.083 w = 1/[σ2(Fo2) + (0.0334P)2 + 1.6027P] where P = (Fo2 + 2Fc2)/3
S = 1.06 (Δ/σ)max = 0.002
1892 reflections Δρmax = 0.85 e Å3
127 parameters Δρmin = −0.51 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.19258 (6) 0.64018 (4) 1.10024 (2) 0.04116 (14)
O1 0.4575 (4) 0.6238 (3) 0.79915 (19) 0.0484 (7)
O2 0.2420 (4) 0.7493 (4) 0.71047 (15) 0.0544 (8)
O3 −0.3569 (3) 0.9745 (3) 0.79238 (13) 0.0379 (5)
O4 −0.4360 (3) 0.9614 (3) 0.91874 (15) 0.0397 (6)
N1 −0.1949 (4) 0.8183 (4) 1.03776 (15) 0.0327 (6)
H1A −0.1531 0.7837 1.0886 0.039*
H1B −0.3120 0.8696 1.0282 0.039*
N2 0.2978 (4) 0.6977 (4) 0.78113 (17) 0.0348 (6)
N3 −0.3276 (3) 0.9358 (3) 0.86609 (13) 0.0212 (5)
C1 −0.0806 (4) 0.7930 (4) 0.97511 (16) 0.0230 (6)
C2 0.1093 (4) 0.7101 (4) 0.98987 (17) 0.0256 (6)
C3 0.2302 (4) 0.6777 (4) 0.92827 (19) 0.0277 (6)
H3 0.3551 0.6208 0.9404 0.033*
C4 0.1671 (4) 0.7299 (4) 0.84695 (18) 0.0263 (6)
C5 −0.0114 (4) 0.8115 (4) 0.82743 (17) 0.0233 (6)
H5 −0.0513 0.8456 0.7715 0.028*
C6 −0.1333 (4) 0.8435 (3) 0.89051 (16) 0.0214 (5)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.0571 (2) 0.0375 (2) 0.02593 (18) −0.01145 (16) −0.01191 (14) 0.00718 (13)
O1 0.0422 (14) 0.0411 (14) 0.0655 (18) 0.0096 (11) 0.0239 (13) −0.0063 (12)
O2 0.0471 (15) 0.094 (2) 0.0241 (12) −0.0027 (15) 0.0165 (11) −0.0089 (13)
O3 0.0415 (13) 0.0450 (14) 0.0268 (11) 0.0051 (11) 0.0004 (10) 0.0036 (10)
O4 0.0329 (12) 0.0438 (14) 0.0437 (14) 0.0057 (10) 0.0111 (11) 0.0000 (11)
N1 0.0409 (15) 0.0416 (15) 0.0168 (11) −0.0026 (12) 0.0096 (11) −0.0002 (11)
N2 0.0351 (15) 0.0381 (15) 0.0340 (15) −0.0082 (12) 0.0174 (12) −0.0124 (12)
N3 0.0269 (12) 0.0220 (11) 0.0147 (10) −0.0105 (9) 0.0011 (9) 0.0003 (9)
C1 0.0323 (15) 0.0214 (13) 0.0156 (12) −0.0095 (11) 0.0051 (11) −0.0032 (10)
C2 0.0339 (15) 0.0246 (14) 0.0175 (13) −0.0095 (12) −0.0025 (11) 0.0019 (11)
C3 0.0274 (14) 0.0242 (14) 0.0308 (15) −0.0045 (11) −0.0010 (12) −0.0003 (12)
C4 0.0290 (15) 0.0289 (15) 0.0224 (13) −0.0054 (12) 0.0100 (12) −0.0058 (11)
C5 0.0276 (14) 0.0274 (14) 0.0153 (12) −0.0069 (11) 0.0046 (11) −0.0009 (10)
C6 0.0257 (13) 0.0218 (13) 0.0170 (12) −0.0045 (11) 0.0031 (10) −0.0019 (10)

Geometric parameters (Å, º)

Br1—C2 1.887 (3) N3—C6 1.505 (4)
O1—N2 1.224 (4) C1—C2 1.425 (4)
O2—N2 1.228 (4) C1—C6 1.426 (4)
O3—N3 1.219 (3) C2—C3 1.360 (4)
O4—N3 1.182 (3) C3—C4 1.395 (4)
N1—C1 1.335 (4) C3—H3 0.9500
N1—H1A 0.8800 C4—C5 1.363 (4)
N1—H1B 0.8800 C5—C6 1.382 (4)
N2—C4 1.456 (4) C5—H5 0.9500
C1—N1—H1A 120.0 C1—C2—Br1 117.8 (2)
C1—N1—H1B 120.0 C2—C3—C4 118.6 (3)
H1A—N1—H1B 120.0 C2—C3—H3 120.7
O1—N2—O2 123.7 (3) C4—C3—H3 120.7
O1—N2—C4 118.7 (3) C5—C4—C3 122.2 (3)
O2—N2—C4 117.6 (3) C5—C4—N2 119.1 (3)
O4—N3—O3 126.8 (3) C3—C4—N2 118.7 (3)
O4—N3—C6 117.9 (2) C4—C5—C6 118.7 (3)
O3—N3—C6 115.3 (2) C4—C5—H5 120.6
N1—C1—C2 120.5 (3) C6—C5—H5 120.6
N1—C1—C6 124.7 (3) C5—C6—C1 122.6 (3)
C2—C1—C6 114.8 (2) C5—C6—N3 116.8 (2)
C3—C2—C1 123.1 (3) C1—C6—N3 120.6 (2)
C3—C2—Br1 119.1 (2)
N1—C1—C2—C3 178.6 (3) C3—C4—C5—C6 0.1 (4)
C6—C1—C2—C3 −1.3 (4) N2—C4—C5—C6 −179.2 (3)
N1—C1—C2—Br1 −0.5 (4) C4—C5—C6—C1 −0.7 (4)
C6—C1—C2—Br1 179.52 (19) C4—C5—C6—N3 179.3 (2)
C1—C2—C3—C4 0.9 (4) N1—C1—C6—C5 −178.7 (3)
Br1—C2—C3—C4 180.0 (2) C2—C1—C6—C5 1.3 (4)
C2—C3—C4—C5 −0.2 (4) N1—C1—C6—N3 1.3 (4)
C2—C3—C4—N2 179.1 (3) C2—C1—C6—N3 −178.7 (2)
O1—N2—C4—C5 −179.7 (3) O4—N3—C6—C5 178.5 (3)
O2—N2—C4—C5 1.4 (4) O3—N3—C6—C5 −0.6 (3)
O1—N2—C4—C3 1.0 (4) O4—N3—C6—C1 −1.5 (4)
O2—N2—C4—C3 −177.9 (3) O3—N3—C6—C1 179.4 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1A···O2i 0.88 2.16 2.893 (3) 141
N1—H1B···O4ii 0.88 2.36 3.139 (4) 148
C5—H5···O1iii 0.95 2.55 3.209 (4) 127

Symmetry codes: (i) x−1/2, −y+3/2, z+1/2; (ii) −x−1, −y+2, −z+2; (iii) −x+1/2, y+1/2, −z+3/2.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: SJ5477).

References

  1. Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  2. Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Glidewell, C., Low, J. N., McWilliam, S. A., Skakle, J. M. S. & Wardell, J. L. (2002). Acta Cryst. C58, o100–o102. [DOI] [PubMed]
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  6. Yadav, M. K. & Sharma, B. (2010). Der Pharma Chem. 2. 368–377.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989015017946/sj5477sup1.cif

e-71-0o813-sup1.cif (383.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015017946/sj5477Isup2.hkl

e-71-0o813-Isup2.hkl (104.2KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015017946/sj5477Isup3.cml

. DOI: 10.1107/S2056989015017946/sj5477fig1.tif

The asymmetric unit of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are shown as small spheres of arbitrary radius.

a . DOI: 10.1107/S2056989015017946/sj5477fig2.tif

Crystal packing viewed along the a axis. The inter­molecular inter­actions are shown as dashed lines.

CCDC reference: 1427403

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES