Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Oct 31;71(Pt 11):1401–1407. doi: 10.1107/S2056989015020046

Crystal structure and absolute configuration of (3S,4aS,8aS)-N-tert-butyl-2-[(S)-3-(2-chloro-4-nitro­benzamido)-2-hy­droxy­prop­yl]deca­hydro­isoquinoline-3-carboxamide and (3S,4aS,8aS)-N-tert-butyl-2-{(S)-2-[(S)-1-(2-chloro-4-nitro­benzoyl)pyrrolidin-2-yl]-2-hy­droxy­eth­yl}deca­hydro­iso­quinoline-3-carboxamide

Tucker Maxson a, Jeffery A Bertke b,*, Danielle L Gray b, Douglas A Mitchell a
PMCID: PMC4645022  PMID: 26594520

The crystal structure and absolute configuration of two new nelfinavir analogs have been determined. Inter­molecular hydrogen bonding leads to two-dimensional sheets in one analog and one-dimensional chains in the other.

Keywords: crystal structure, chiral crystal, absolute configuration, nelfinavir, HIV protease inhibitor

Abstract

The crystal structure and absolute configuration of the two new title nelfinavir analogs, C24H35ClN4O5, (I), and C27H39ClN4O5, (II), have been determined. Each of these mol­ecules exhibits a number of disordered moieties. There are intra­molecular N—H⋯O hydrogen bonds in both (I) and (II). In (I) it involves the two carboxamide groups, while in (II) it involves the N-tert-butyl carboxamide group and the 2-hydroxyl O atom. The inter­molecular hydrogen bonding in (I) (O—H⋯O and N—H⋯O) leads to two-dimensional sheets that extend parallel to the ac plane. The inter­molecular hydrogen bonding in (II) (O—H⋯O) leads to chains that extend parallel to the a axis.

Chemical context  

Nelfinavir (Viracept) is an FDA approved HIV protease inhibitor identified through structure-based design with a low nanomolar inhibitory concentration against the HIV aspartyl protease (Kaldor et al., 1997). Although nelfinavir is no longer recommended as a first-line treatment against HIV due to its inferior efficacy compared to alternative protease inhibitors (Panel on Anti­retroviral Guidelines, 2015), it has been found to have a number of additional biological activities that may have therapeutic utility, including anti­viral (against other human viruses) (Yamamoto et al., 2004; Kalu et al., 2014), anti­cancer (Gantt et al., 2013; Koltai, 2015), and anti­virulence activity (Maxson et al., 2015). However, nelfinavir was originally designed with only the HIV protease active site in mind and the structure is likely not optimal for binding to the alternative targets involved in these other activities. We recently reported on the synthesis of a collection of nelfinavir analogs that may be of inter­est for efforts to repurpose the drug (Maxson et al., 2015).

The syntheses of the title compounds were achieved by a previously reported route that utilizes the configuration of the amino acid starting material to control the stereochemical outcome of the sodium borohydride reduction of the chloro­methyl ketone (Kaldor et al., 1997). However, the reduction of compound (I), derived from achiral glycine, results in a racemic mixture (Fig. 1), while the reduction of compound (II), derived from l-proline, does not benefit from a strong directing influence from the existing chiral center (Fig. 2). The products of the two reductions were carried forward through the remainder of each synthesis to generate the title compounds. The absolute configurations of compounds (I) and (II), as well as the conformations they adopt due to the increased flexibility and rigidity, respectively, relative to nelfinavir was investigated by X-ray diffraction.graphic file with name e-71-01401-scheme1.jpg

Figure 1.

Figure 1

The synthesis of (I).

Figure 2.

Figure 2

The synthesis of (II).

Structural commentary  

The core mol­ecular structures of (I) and (II) are comprised of N-tert-butyl-2-(2-hy­droxy­alk­yl)deca­hydro­iso­quinoline-3-carb­ox­amide groups. The difference between the two species comes from the substitution at the N position of the deca­hydro­iso­quinoline group. Compound (I) has a (2-chloro-4-nitro­benzamido)-2-hy­droxy­propyl group at the N-atom position of the deca­hydro­iso­quinoline ring (Fig. 3). Compound (II) has a (2-chloro-4-nitro­benzo­yl)pyrrolidin-2-yl)-2-hy­droxy­ethyl group at the N-atom position (Fig. 4).

Figure 3.

Figure 3

Plot showing 35% probability ellipsoids for non-H atoms and circles of arbitrary size for H atoms for (I). Only the major component of disordered sites is shown.

Figure 4.

Figure 4

Plot showing 35% probability ellipsoids for non-H atoms and circles of arbitrary size for H atoms for (II). Only the major component of disordered sites is shown.

There is disorder of the Cl group in (I) over two positions with the site occupancies refining to 0.941 (8) and 0.059 (8) for Cl1 and Cl1B, respectively. The nitro group is disordered over two positions, with the site occupancies refining to 0.60 (2) and 0.40 (2). The NO2 group in one orientation is essentially coplanar with the phenyl ring [O1B—N1B—C4—C3; τ = 1(2)°] and in the other orientation is twisted slightly more out of plane [O1—N1—C4—C3; τ = −9.0 (13)°]. Both six-membered rings of the deca­hydro­iso­quinoline group in (I) adopt a chair conformation, the dihedral angle between the best-fit planes of the cyclo­hexyl and piperidine moieties is 119.9 (15)°. There is one intra­molecular hydrogen-bonding inter­action in (I) which involves the two carboxamide groups (N2—H2⋯O5; Table 1). The Flack x parameter of −0.008 (18) and the Hooft y parameter of −0.010 (19) indicate that the absolute configuration of (I) has been assigned correctly.

Table 1. Hydrogen-bond geometry (Å, °) for (I) .

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4B⋯O5i 0.87 (4) 1.94 (4) 2.791 (2) 169 (3)
N2—H2⋯O5 0.83 (3) 2.11 (3) 2.928 (3) 169 (3)
N4—H4⋯O3ii 0.84 (3) 2.15 (3) 2.964 (2) 161 (3)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

There are multiple disordered moieties in (II), the nitro group is disordered over two positions with the site occupancies for the two orientations refining to 0.967 (6) and 0.033 (8). In both orientations, the NO2 group is twisted out of the plane of the phenyl ring; the major orientation is twisted out of the plane less [O1—N1—C3—C2; τ = 10.9 (4)°] than the minor orientation [O1B—N1B—C3—C2; τ = −26 (6)°]. The carbonyl C7—O3 group is disordered over two positions, with the site occupancies refining to 0.58 (2) and 0.42 (2). In the minor orientation, the CO group is nearly normal to the plane of the phenyl ring [O3B—C7B—C6—C5; τ = −89 (3)°], while the major orientation is significantly less out of plane [O3—C7—C6—C5; τ = −44 (3)°]. The final two disordered moieties of (II) are a portion of the pyrrolidin-2-yl group and the three methyl groups of tert-butyl. The C10 and C11 atoms of the pyrrolidin-2-yl group are disordered over two positions, with site occupancies of 0.669 (16) and 0.331 (16). The tert-butyl methyl groups are also disordered over two positions via a slight rotation around the N4—C24 bond, the site occupancies refining to 0.811 (17) and 0.189 (17). Similar to (I), both six-membered rings of the deca­hydro­iso­quinoline group in (II) adopt a chair conformation, with a dihedral angle between the best-fit planes of the cyclo­hexyl and piperidine moieties of 116.3 (17)°. There is one weak intra­molecular hydrogen-bonding inter­action in (II), involving the N-tert-butyl carboxamide group and the 2-hydroxyl O atom (N4—H4C⋯O4; Table 2). The Flack x parameter of 0.036 (19) and the Hooft y parameter of 0.03 (2) indicate that the absolute configuration of (II) has been assigned correctly.

Table 2. Hydrogen-bond geometry (Å, °) for (II) .

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4C⋯O4 0.88 (3) 2.60 (3) 3.219 (3) 129 (3)
O4—H4B⋯O5i 0.82 (1) 1.89 (2) 2.709 (2) 170 (4)

Symmetry code: (i) Inline graphic.

Supra­molecular features  

The extended structure of (I) is a two-dimensional sheet of hydrogen-bonded mol­ecules extending in the ac plane (Fig. 5 a). Each mol­ecule of (I) is hydrogen bonded to four neighboring mol­ecules via O—H⋯O and N—H⋯O inter­actions; the details of these inter­actions can be found in Table 1. The two-dimensional layers stack in an ABAB pattern along the crystallographic b axis (Fig. 5 b). The layers are separated by the bulky deca­hydro­iso­quinoline groups, which protrude above and below the sheets. The layers alternate between these bulky groups pointing ‘left’ and ‘right’, this along with a slight offset between the A and B layers allows them to inter­digitate.

Figure 5.

Figure 5

A plot of the packing of (I) viewed (a) along the b axis, showing a hydrogen-bonded two-dimensional sheet overlaid with the unit cell, and (b) along the c axis, showing how two layers stack together along the b axis. Only the major component of disordered sites are shown. Red dashed lines indicate inter­molecular hydrogen bonding and blue dashed lines indicate intra­molecular hydrogen bonding.

The extended structure of (II) is a one-dimensional chain of hydrogen-bonded mol­ecules extending parallel to the crystallographic a axis (Fig. 6 a). Each mol­ecule of (II) is hydrogen bonded to two neighboring mol­ecules via O—H⋯O inter­actions, the details of these inter­actions can be found in Table 2. The one-dimensional chains are separated by the bulky deca­hydro­iso­quinoline groups and the tert-butyl groups, which prevent the chains from linking via further hydrogen-bonding inter­actions (Fig. 6 b).

Figure 6.

Figure 6

A plot of the packing of (II) viewed (a) along the c axis, showing a hydrogen-bonded one-dimensional chain, and (b) along the a axis, showing how the one-dimensional chains pack together overlaid with the unit cell. Only the major component of disordered sites is shown. Red dashed lines indicate inter­molecular hydrogen bonding and blue dashed lines indicate intra­molecular hydrogen bonding.

Database survey  

A search of the Cambridge Crystallographic Database (CSD; Groom & Allen, 2014) returns only three crystal structures with the N-(tert-but­yl)deca­hydro­iso­quinoline-3-carboxamide core. One of the structures is N-(tert-but­yl)deca­hydro­iso­quinoline-3-carboxamide (CSD refcode COVYAO; Zhao et al., 2006). The other two mol­ecules are nelfinavir derivatives like (I) and (II), which were isolated during optimization of the synthesis. The difference between these two mol­ecules comes via the substitution at the N-atom position of the deca­hydro­iso­quinoline group.

One compound has a 3-amino-2-hy­droxy-4-(phenyl­sulfan­yl)butyl group in this position (CSD refcode QONJUY; Inaba et al., 2000) and the other has a 3-acet­oxy-2-(3-acet­oxy-2-methyl­benzoyl­amino)-4-(phenyl­sulfan­yl)butyl group at the N-atom position (CSD refcode GONKOJ; Inaba et al., 1998). Each of these mol­ecules has intra­molecular N—H⋯O hydrogen bonding. In QONJUY it involves the two carboxyamide groups similar to the situation in compound (I). In GONKOJ it involves the N-tert-butyl carboxamide group and the 2-hydroxyl O atom similar to the situation in compound (II). The core structure of each of these previously reported materials is similar to (I) and (II) in that both six-membered rings of the deca­hydro­iso­quinoline groups adopt chair conformations. The dihedral angle between the best-fit planes of the cyclo­hexyl and piperidine moieties for the 3-amino-2-hy­droxy-4-(phenyl­sulfan­yl)butyl-substituted mol­ecule is 117.1 (18)°. Similarly, this angle for the 3-acet­oxy-2-(3-acet­oxy-2-methyl­benzoyl­amino)-4-(phenyl­sulfan­yl)butyl-substituted mol­ecule is 116.8 (14)°.

Synthesis and crystallization  

Compound (I) was synthesized through the inter­mediate chloro­methyl hy­droxy 4 (Fig. 1). Chloro­methyl ketone 3 (571 mg, 2.36 mmol) was dissolved in di­chloro­methane (7 ml) and methanol (4 ml) under nitro­gen. The reaction was cooled to 273 K and sodium borohydride (63 mg, 1.65 mmol) was added in one portion. The reaction was stirred cold for 1h before being quenched by the slow addition of 2 M HCl (2 ml). The reaction was dried and the solid was dissolved in ethyl acetate. The product was washed twice with water and once with brine, dried over sodium sulfate, and concentrated by rotary evaporation. The product was purified by silica flash column chromatography (gradient of 0–8% EtOAc in DCM) to yield racemic 4 as a colorless oil (yield 423 mg, 75% yield). 1H NMR (500 MHz, CDCl3): δ 7.33–7.28 (complex, 5H), 5.63 (t, J = 6 Hz, 1H), 5.06 (s, 2H), 3.88 (s, 2H), 3.48 (m, 2H), 3.39 (m, 1H), 3.22 (m, 1H). 13C NMR (500 MHz, CDCl3): δ 157.23, 135.93, 128.36, 128.06, 127.91, 70.52, 66.90, 46.44, 43.96. HRMS (m/z): [M + H]+ calculated for C11H15ClNO3, 244.0740; observed, 244.0741. For the synthesis of compound (I), compound 5 (104 mg, 0.233 mmol) was dissolved in methanol (15 ml) with 10% palladium on carbon (74 mg, 0.070 mmol). The solution was degassed for 30 min before being placed under 1 atm of hydrogen and stirred for 2 h at room temperature. The reaction was filtered through celite, dried to a solid, and taken up in tetra­hydro­furan (5 ml). 2-Chloro-4-nitro­benzoic acid (52 mg, 0.256 mmol), 3-[3-(di­methyl­amino)­prop­yl]-1-ethyl­carbodi­imide hydro­chloride (49 mg, 0.256 mmol), and hy­droxy­benzotriazole hydrate (42 mg, 0.256 mmol) were added and the reaction was stirred at room temperature overnight. The reaction was taken up in ethyl acetate, washed once with sodium bicarbonate and once with brine, and dried over sodium sulfate. The product was purified by silica flash-column chromatography (gradient of 0–3% MeOH in DCM) to yield (I) as a yellow solid (yield 77 mg, 67%). Crystals suitable for X-ray diffraction were obtained from the vapor diffusion of pentane into a solution of compound (I) in ethyl acetate at room temperature. 1H NMR (500 MHz, CDCl3): δ 8.41 (q, J = 4 Hz, 1H), 8.24 (d, J = 2 Hz, 1H), 8.13 (dd, J1 = 2 Hz, J2 = 8.5 Hz, 1H), 7.76 (d, J = 8.5 Hz, 1H), 5.60 (s, 1H), 4.04 (m, 2H), 3.47 (dt, J1 = 4 Hz, J2 = 14 Hz, 1H), 3.35 (br, 1H), 2.71 (dd, J1 = 2 Hz, J2 = 11.5 Hz, 1H), 2.49 (dd, J1 = 3 Hz, J2 = 11.5 Hz, 1H), 2.36 (dd, J1 = 10 Hz, J2 = 12.5 Hz, 1H), 2.22 (dd, J1 = 5 Hz, J2 = 12.5 Hz, 1H), 2.18 (dd, J1 = 3 Hz, J2 = 11.5 Hz, 1H), 1.95 (q, J = 12 Hz, 1H), 1.80–1.08 (complex, 20H). 13C NMR (500 MHz, CDCl3): δ 174.16, 167.06, 148.39, 142.00, 132.80, 130.18, 124.96, 121.56, 70.40, 68.29, 59.09, 57.54, 51.27, 43.27, 35.83, 33.55, 31.02, 30.86, 28.39, 26.19, 25.52, 20.18. HRMS (m/z): [M + H]+ calculated for C24H36ClN4O5, 495.2374; observed, 495.2376.

Compound (II) was synthesized through the inter­mediate chloro­methyl hydroxyl 7 (Fig. 2). Chloro­methyl ketone 6 (860 mg, 3.05 mmol) was dissolved in di­chloro­methane (7 ml) and methanol (4 ml) under nitro­gen. The reaction was cooled to 273 K and sodium borohydride (81 mg, 2.14 mmol) was added in one portion. The reaction was stirred cold for 1h before being quenched by the slow addition of 2 M HCl (2 ml). The reaction was dried and the solid was dissolved in ethyl acetate. The product was washed twice with water and once with brine, dried over sodium sulfate, and concentrated by rotary evaporation. Thin-layer chromatography (TLC) analysis showed two diastereomers with the higher R F compound being the (S,R) product. Both diastereomers were purified by silica flash-column chromatography (gradient of 0–10% EtOAc in DCM) to yield the (S,S)-isomer as a white solid (yield 279 mg, 32%) and (S,R)-isomer (7) as a white solid (yield 429 mg, 50%). Characterization of the (S,R)-isomer (7): 1H NMR (500 MHz, CDCl3): δ 7.37–7.28 (complex, 5H), 5.13 (dd, J1 = 12.5 Hz, J2 = 16 Hz, 2H), 4.95 (d, J = 2 Hz, 1H), 4.11 (m, 1H), 3.81 (br s, 1H), 3.72 (d, J = 11 Hz, 1H), 3.55 (m, 2H), 3.37 (m, 1H), 2.03 (m, 1H), 1.89 (m, 1H), 1.81 (m, 1H), 1.72 (m, 1H). 13C NMR (500 MHz, CDCl3): δ 157.52, 136.04, 128.27, 127.87, 127.65, 74.69, 67.22, 60.57, 47.91, 47.05, 28.12, 23.94. HRMS (m/z): [M + H]+ calculated for C14H19ClNO3, 284.1053; observed, 284.1055. For the synthesis of compound (II), compound 8 (218 mg, 0.620 mmol) was dissolved in tetra­hydro­furan (6 ml) with 2-chloro-4-nitro­benzoic acid (138 mg, 0.682 mmol), 3-[3-(di­methyl­amino)­prop­yl]-1-ethyl­carbodi­imide hydro­chloride (131 mg, 0.682 mmol), and hy­droxy­benzotriazole hydrate (111 mg, 0.682 mmol). The reaction was stirred at room temperature overnight. The reaction was taken up in ethyl acetate, washed once with sodium bicarbonate and once with brine, and dried over sodium sulfate. The product was purified by silica flash-column chromatography (gradient of 0–5% MeOH in DCM) to yield (II) as a yellow solid (yield 248 mg, 72%). Crystals suitable for X-ray diffraction were obtained by layering pentane over a solution of compound (II) in di­chloro­methane at room temperature. 1H NMR (500 MHz, CDCl3): δ 8.31 (d, J = 2 Hz, 1H), 8.20 (dd, J1 = 2 Hz, J2 = 8.5 Hz, 1H), 7.54 (d, J = 8.5 Hz, 1H), 6.87 (s, 1H), 5.31 (s, 1H), 4.36 (m, 1H), 3.99 (m, 1H), 3.24 (m, 2H), 2.91 (d, J = 11 Hz, 1H), 2.63 (m, 2H), 2.18–1.13 (complex, 26H). 13C NMR (500 MHz, CDCl3): δ 173.83, 172.95, 148.31, 142.45, 128.53, 124.96, 122.35, 121.69, 69.81, 69.73, 60.88, 58.37, 57.98, 50.55, 50.51, 49.05, 35.84, 33.23, 31.07, 30.80, 28.56, 28.20, 26.20, 25.46, 24.53, 20.16. HRMS (m/z): [M + H]+ calculated for C27H40N4O5Cl, 535.2687; observed, 535.2692.

Refinement  

Crystal data, data collection and structure refinement details for (I) and (II) are summarized in Table 3. Structural models consisting of the target mol­ecules were developed for (I) and (II). Several disordered sites on each mol­ecule were modeled with disorder. In each case, like distances were restrained to be similar. Since the major and minor components of each disordered site are in such close proximity to each other, the displacement parameters were constrained to be equal. Methyl H atom positions, R—CH3, were optimized by rotation about R—C bonds with idealized C—H, R–H and H⋯H distances. All hy­droxy and amine H atoms were located in a difference Fourier map in good hydrogen-bonding environments (Hamilton & Ibers, 1968) and their distances were allowed to refine. The O4—H4B distance in (II) was restrained to be 0.84 (2) Å. The remaining H atoms were included as riding idealized contributors. Methyl, hy­droxy and amine H atomU values were assigned as 1.5 times U eq of the carrier atom; remaining H atom U values were assigned as 1.2 times the carrier atom U eq. On the basis of 2237 unmerged Friedel opposites, the fractional contribution of the inverted twin component was negligible (Flack, 1983; Flack & Bernardinelli, 2000) for (I). The absolute structure parameter y was calculated using PLATON (Spek, 2009). The resulting value was y = −0.010 (19), indicating that the absolute structure has been determined correctly (Hooft et al. 2008). On the basis of 2720 unmerged Friedel opposites, the fractional contribution of the inverted twin component was negligible (Flack, 1983; Flack & Bernardinelli, 2000) for (II). The absolute structure parameter y was calculated using PLATON (Spek, 2009). The resulting value was y = 0.03 (2) indicating that the absolute structure has been determined correctly (Hooft et al. 2008).

Table 3. Experimental details.

  (I) (II)
Crystal data
Chemical formula C24H35ClN4O5 C27H39ClN4O5
M r 495.01 535.07
Crystal system, space group Orthorhombic, P21212 Monoclinic, P21
Temperature (K) 193 168
a, b, c (Å) 18.8408 (7), 20.2263 (8), 6.7923 (3) 6.4341 (7), 20.280 (2), 11.0377 (12)
α, β, γ (°) 90, 90, 90 90, 105.248 (1), 90
V3) 2588.41 (18) 1389.5 (3)
Z 4 2
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.19 0.18
Crystal size (mm) 0.37 × 0.36 × 0.29 0.86 × 0.65 × 0.15
 
Data collection
Diffractometer Siemens Platform/APEXII CCD Siemens Platform/APEXII CCD
Absorption correction Integration (SHELXTL/XPREP; Bruker, 2014) Integration (SHELXTL/XPREP; Bruker, 2014)
T min, T max 0.953, 0.960 0.892, 0.980
No. of measured, independent and observed [I > 2σ(I)] reflections 30342, 5243, 4694 16374, 5627, 5222
R int 0.027 0.024
(sin θ/λ)max−1) 0.623 0.625
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.035, 0.085, 1.03 0.032, 0.082, 1.04
No. of reflections 5243 5627
No. of parameters 333 377
No. of restraints 53 14
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.34, −0.43 0.24, −0.21
Absolute structure Flack (1983); Hooft et al. (2008); 2720 Friedels Flack (1983); Hooft et al. (2008); 2720 Friedels
Absolute structure parameter −0.008 (18) 0.036 (19)

Computer programs: APEX2, SAINT, XPREP and XCIF (Bruker, 2014), SHELXS2014 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), SHELXTL (Sheldrick, 2008), CrystalMaker (CrystalMaker, 1994), and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, II. DOI: 10.1107/S2056989015020046/pk2566sup1.cif

e-71-01401-sup1.cif (1.4MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015020046/pk2566Isup2.hkl

e-71-01401-Isup2.hkl (417.3KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015020046/pk2566Isup4.cdx

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989015020046/pk2566IIsup3.hkl

e-71-01401-IIsup3.hkl (447.5KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015020046/pk2566IIsup5.cdx

CCDC references: 1432733, 1432732

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

This research was supported in part by the NIH Director’s New Innovator Award Program (grant No. DP2 OD008463). TM was supported in part by fellowships from the Department of Chemistry at the University of Illinois at Urbana–Champaign and the NIH Chemical Biology Inter­face Training Program (T32 GM070421).

supplementary crystallographic information

(I) (3S,4aS,8aS)-N-tert-Butyl-2-[(S)-3-(2-chloro-4-nitrobenzamido)-2-hydroxypropyl]decahydroisoquinoline-3-carboxamide . Crystal data

C24H35ClN4O5 F(000) = 1056
Mr = 495.01 Dx = 1.270 Mg m3
Orthorhombic, P21212 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2 2ab Cell parameters from 9966 reflections
a = 18.8408 (7) Å θ = 2.3–24.5°
b = 20.2263 (8) Å µ = 0.19 mm1
c = 6.7923 (3) Å T = 193 K
V = 2588.41 (18) Å3 Prism, colourless
Z = 4 0.37 × 0.36 × 0.29 mm

(I) (3S,4aS,8aS)-N-tert-Butyl-2-[(S)-3-(2-chloro-4-nitrobenzamido)-2-hydroxypropyl]decahydroisoquinoline-3-carboxamide . Data collection

Siemens Platform/APEXII CCD diffractometer 5243 independent reflections
Radiation source: normal-focus sealed tube 4694 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.027
profile data from φ and ω scans θmax = 26.3°, θmin = 1.5°
Absorption correction: integration (SHELXTL/XPREP; Bruker, 2014) h = −23→23
Tmin = 0.953, Tmax = 0.960 k = −25→25
30342 measured reflections l = −8→8

(I) (3S,4aS,8aS)-N-tert-Butyl-2-[(S)-3-(2-chloro-4-nitrobenzamido)-2-hydroxypropyl]decahydroisoquinoline-3-carboxamide . Refinement

Refinement on F2 Hydrogen site location: mixed
Least-squares matrix: full H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.035 w = 1/[σ2(Fo2) + (0.0355P)2 + 0.5785P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.085 (Δ/σ)max = 0.001
S = 1.03 Δρmax = 0.34 e Å3
5243 reflections Δρmin = −0.43 e Å3
333 parameters Absolute structure: Flack (1983); Hooft et al. (2008); 2720 Friedels
53 restraints Absolute structure parameter: −0.008 (18)

(I) (3S,4aS,8aS)-N-tert-Butyl-2-[(S)-3-(2-chloro-4-nitrobenzamido)-2-hydroxypropyl]decahydroisoquinoline-3-carboxamide . Special details

Experimental. One distinct cell was identified using APEX2 (Bruker, 2014). Four frame series were integrated and filtered for statistical outliers using SAINT (Bruker, 2014) then corrected for absorption by integration using SHELXTL/XPREP V2005/2 (Bruker, 2014) before using SAINT/SADABS (Bruker, 2014) to sort, merge, and scale the combined data No decay correction was applied.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Structure was phased by direct (Sheldrick, 2015). Systematic conditions suggested the ambiguous space group. The space group choice was confirmed by successful convergence of the full-matrix least-squares refinement on F2. The final map had no significant features. A final analysis of variance between observed and calculated structure factors showed no dependence on amplitude or resolution.

(I) (3S,4aS,8aS)-N-tert-Butyl-2-[(S)-3-(2-chloro-4-nitrobenzamido)-2-hydroxypropyl]decahydroisoquinoline-3-carboxamide . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Cl1 0.29551 (15) 0.69804 (7) 0.67519 (15) 0.0735 (5) 0.941 (8)
Cl1B 0.326 (2) 0.6888 (7) 0.664 (3) 0.0735 (5) 0.059 (8)
O1 0.3558 (8) 0.8988 (8) 0.2519 (16) 0.086 (2) 0.60 (2)
O2 0.4046 (8) 0.9713 (5) 0.445 (2) 0.116 (3) 0.60 (2)
N1 0.3808 (6) 0.9169 (5) 0.4064 (12) 0.0715 (17) 0.60 (2)
O1B 0.3725 (13) 0.9134 (12) 0.271 (3) 0.086 (2) 0.40 (2)
O2B 0.4360 (11) 0.9754 (7) 0.453 (3) 0.116 (3) 0.40 (2)
N1B 0.3991 (9) 0.9260 (7) 0.431 (2) 0.0715 (17) 0.40 (2)
C1 0.38040 (11) 0.78173 (14) 0.8790 (4) 0.0477 (6)
C2 0.34335 (12) 0.77084 (14) 0.7057 (4) 0.0520 (7)
C3 0.34488 (14) 0.81498 (16) 0.5532 (4) 0.0585 (7)
H3A 0.3207 0.8062 0.4333 0.070*
C4 0.38270 (16) 0.87247 (16) 0.5797 (5) 0.0635 (8)
C5 0.41913 (17) 0.88668 (15) 0.7505 (5) 0.0675 (8)
H5A 0.4439 0.9272 0.7658 0.081*
C6 0.41831 (14) 0.84036 (15) 0.8974 (5) 0.0594 (7)
H6A 0.4443 0.8485 1.0148 0.071*
C7 0.38161 (12) 0.73281 (14) 1.0445 (4) 0.0478 (6)
O3 0.32755 (9) 0.71943 (11) 1.1373 (3) 0.0644 (5)
O4 0.48956 (9) 0.73984 (10) 1.4849 (3) 0.0534 (5)
H4B 0.5165 (17) 0.7479 (17) 1.585 (5) 0.080*
O5 0.56221 (7) 0.75831 (7) 0.8387 (2) 0.0372 (3)
N2 0.44567 (10) 0.70759 (11) 1.0807 (3) 0.0438 (5)
H2 0.4786 (16) 0.7171 (15) 1.005 (5) 0.066*
N3 0.60919 (9) 0.66293 (9) 1.1177 (3) 0.0368 (4)
N4 0.67223 (10) 0.80363 (9) 0.8528 (3) 0.0417 (4)
H4 0.7145 (16) 0.7950 (14) 0.884 (4) 0.063*
C8 0.46111 (12) 0.66114 (13) 1.2385 (4) 0.0459 (6)
H8A 0.4766 0.6186 1.1805 0.055*
H8B 0.4172 0.6528 1.3145 0.055*
C9 0.51828 (11) 0.68604 (12) 1.3772 (3) 0.0420 (5)
H9A 0.5310 0.6499 1.4712 0.050*
C10 0.58565 (11) 0.70901 (12) 1.2713 (3) 0.0386 (5)
H10A 0.5767 0.7528 1.2109 0.046*
H10B 0.6242 0.7144 1.3691 0.046*
C11 0.65713 (11) 0.69212 (11) 0.9715 (3) 0.0380 (5)
H11A 0.7036 0.7026 1.0353 0.046*
C12 0.66899 (13) 0.64166 (11) 0.8056 (4) 0.0410 (5)
H12A 0.6230 0.6318 0.7413 0.049*
H12B 0.7010 0.6610 0.7054 0.049*
C13 0.70138 (14) 0.57736 (12) 0.8829 (4) 0.0494 (6)
H13A 0.7500 0.5880 0.9326 0.059*
C14 0.70957 (16) 0.52528 (13) 0.7203 (4) 0.0590 (7)
H14A 0.7303 0.5467 0.6025 0.071*
H14B 0.7434 0.4910 0.7656 0.071*
C15 0.64047 (16) 0.49205 (14) 0.6624 (4) 0.0611 (7)
H15A 0.6503 0.4565 0.5661 0.073*
H15B 0.6089 0.5248 0.5988 0.073*
C16 0.60342 (19) 0.46287 (13) 0.8419 (5) 0.0696 (9)
H16A 0.6333 0.4276 0.8999 0.084*
H16B 0.5576 0.4430 0.8019 0.084*
C17 0.59030 (17) 0.51683 (13) 0.9945 (4) 0.0610 (8)
H17A 0.5575 0.5502 0.9387 0.073*
H17B 0.5671 0.4971 1.1115 0.073*
C18 0.65836 (16) 0.55060 (13) 1.0574 (4) 0.0550 (7)
H18A 0.6883 0.5165 1.1243 0.066*
C19 0.64454 (15) 0.60538 (13) 1.2068 (4) 0.0505 (6)
H19A 0.6145 0.5878 1.3143 0.061*
H19B 0.6902 0.6196 1.2650 0.061*
C20 0.62618 (10) 0.75493 (11) 0.8828 (3) 0.0354 (5)
C21 0.65543 (13) 0.87079 (12) 0.7767 (4) 0.0480 (6)
C22 0.60827 (17) 0.90585 (14) 0.9239 (5) 0.0679 (8)
H22A 0.5644 0.8805 0.9422 0.102*
H22B 0.5967 0.9501 0.8746 0.102*
H22C 0.6332 0.9097 1.0500 0.102*
C23 0.62113 (16) 0.86682 (14) 0.5736 (5) 0.0606 (8)
H23A 0.5739 0.8468 0.5852 0.091*
H23B 0.6507 0.8397 0.4866 0.091*
H23C 0.6167 0.9114 0.5184 0.091*
C24 0.72639 (15) 0.90696 (15) 0.7599 (6) 0.0682 (9)
H24A 0.7496 0.9079 0.8890 0.102*
H24B 0.7182 0.9523 0.7145 0.102*
H24C 0.7569 0.8838 0.6655 0.102*

(I) (3S,4aS,8aS)-N-tert-Butyl-2-[(S)-3-(2-chloro-4-nitrobenzamido)-2-hydroxypropyl]decahydroisoquinoline-3-carboxamide . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0607 (12) 0.1010 (6) 0.0588 (5) −0.0165 (6) −0.0109 (5) −0.0190 (5)
Cl1B 0.0607 (12) 0.1010 (6) 0.0588 (5) −0.0165 (6) −0.0109 (5) −0.0190 (5)
O1 0.088 (6) 0.100 (6) 0.068 (2) 0.018 (4) −0.011 (3) 0.008 (3)
O2 0.141 (8) 0.076 (2) 0.130 (3) −0.009 (4) −0.021 (6) 0.021 (2)
N1 0.071 (4) 0.068 (2) 0.075 (3) 0.023 (2) −0.011 (3) −0.005 (2)
O1B 0.088 (6) 0.100 (6) 0.068 (2) 0.018 (4) −0.011 (3) 0.008 (3)
O2B 0.141 (8) 0.076 (2) 0.130 (3) −0.009 (4) −0.021 (6) 0.021 (2)
N1B 0.071 (4) 0.068 (2) 0.075 (3) 0.023 (2) −0.011 (3) −0.005 (2)
C1 0.0257 (10) 0.0711 (16) 0.0463 (14) 0.0075 (10) −0.0005 (10) −0.0111 (13)
C2 0.0330 (12) 0.0761 (18) 0.0471 (14) 0.0110 (12) −0.0037 (10) −0.0142 (14)
C3 0.0463 (15) 0.0788 (19) 0.0505 (15) 0.0225 (14) −0.0057 (12) −0.0146 (15)
C4 0.0602 (17) 0.0701 (19) 0.0601 (18) 0.0332 (15) 0.0033 (15) −0.0002 (15)
C5 0.0662 (19) 0.0567 (17) 0.079 (2) 0.0106 (14) −0.0035 (17) −0.0068 (16)
C6 0.0464 (14) 0.0732 (19) 0.0586 (17) 0.0057 (14) −0.0091 (13) −0.0124 (15)
C7 0.0284 (11) 0.0747 (17) 0.0404 (13) −0.0032 (11) −0.0024 (10) −0.0109 (12)
O3 0.0297 (8) 0.1063 (15) 0.0571 (11) −0.0049 (9) 0.0044 (8) 0.0005 (12)
O4 0.0413 (9) 0.0750 (13) 0.0440 (9) 0.0114 (9) −0.0038 (8) −0.0169 (9)
O5 0.0280 (7) 0.0430 (8) 0.0407 (8) −0.0008 (6) −0.0039 (6) 0.0031 (7)
N2 0.0275 (9) 0.0655 (14) 0.0384 (10) −0.0050 (9) −0.0011 (8) −0.0050 (10)
N3 0.0375 (9) 0.0411 (10) 0.0318 (9) 0.0061 (8) −0.0012 (8) 0.0013 (8)
N4 0.0298 (9) 0.0432 (10) 0.0521 (12) −0.0032 (8) −0.0044 (9) 0.0001 (10)
C8 0.0373 (12) 0.0565 (14) 0.0440 (13) −0.0060 (11) 0.0017 (10) −0.0014 (12)
C9 0.0383 (12) 0.0525 (13) 0.0352 (11) 0.0052 (10) −0.0004 (9) −0.0039 (11)
C10 0.0334 (11) 0.0482 (13) 0.0342 (11) 0.0029 (9) −0.0056 (9) −0.0047 (10)
C11 0.0282 (10) 0.0457 (12) 0.0400 (12) 0.0033 (9) −0.0032 (9) −0.0016 (10)
C12 0.0393 (12) 0.0460 (12) 0.0378 (12) 0.0059 (10) 0.0050 (10) 0.0019 (10)
C13 0.0482 (13) 0.0531 (14) 0.0470 (14) 0.0192 (12) 0.0032 (12) 0.0006 (12)
C14 0.0673 (17) 0.0557 (16) 0.0540 (16) 0.0224 (14) 0.0116 (14) 0.0021 (13)
C15 0.0818 (19) 0.0466 (14) 0.0549 (16) 0.0096 (13) 0.0141 (15) −0.0024 (14)
C16 0.097 (2) 0.0436 (14) 0.069 (2) 0.0034 (15) 0.0223 (19) 0.0010 (15)
C17 0.085 (2) 0.0426 (14) 0.0550 (16) 0.0062 (14) 0.0222 (15) 0.0059 (12)
C18 0.0689 (17) 0.0510 (14) 0.0451 (14) 0.0261 (14) 0.0048 (13) 0.0117 (12)
C19 0.0580 (15) 0.0566 (15) 0.0369 (13) 0.0178 (12) −0.0022 (12) 0.0067 (12)
C20 0.0301 (10) 0.0414 (11) 0.0348 (11) 0.0002 (9) −0.0006 (9) −0.0043 (9)
C21 0.0411 (13) 0.0378 (12) 0.0653 (17) −0.0065 (10) −0.0019 (12) −0.0007 (12)
C22 0.0653 (18) 0.0512 (15) 0.087 (2) 0.0017 (14) 0.0045 (17) −0.0127 (16)
C23 0.0665 (18) 0.0475 (14) 0.0678 (19) −0.0086 (13) −0.0126 (15) 0.0125 (14)
C24 0.0540 (16) 0.0529 (16) 0.098 (2) −0.0193 (13) −0.0009 (16) 0.0024 (17)

(I) (3S,4aS,8aS)-N-tert-Butyl-2-[(S)-3-(2-chloro-4-nitrobenzamido)-2-hydroxypropyl]decahydroisoquinoline-3-carboxamide . Geometric parameters (Å, º)

Cl1—C2 1.739 (3) C11—C20 1.522 (3)
Cl1B—C2 1.716 (12) C11—C12 1.536 (3)
O1—N1 1.207 (7) C11—H11A 1.0000
O2—N1 1.217 (7) C12—C13 1.529 (3)
N1—C4 1.482 (7) C12—H12A 0.9900
O1B—N1B 1.226 (9) C12—H12B 0.9900
O2B—N1B 1.228 (10) C13—C14 1.534 (4)
N1B—C4 1.511 (9) C13—C18 1.535 (4)
C1—C2 1.386 (3) C13—H13A 1.0000
C1—C6 1.390 (4) C14—C15 1.517 (4)
C1—C7 1.498 (4) C14—H14A 0.9900
C2—C3 1.368 (4) C14—H14B 0.9900
C3—C4 1.376 (5) C15—C16 1.524 (4)
C3—H3A 0.9500 C15—H15A 0.9900
C4—C5 1.379 (5) C15—H15B 0.9900
C5—C6 1.368 (4) C16—C17 1.525 (4)
C5—H5A 0.9500 C16—H16A 0.9900
C6—H6A 0.9500 C16—H16B 0.9900
C7—O3 1.228 (3) C17—C18 1.514 (4)
C7—N2 1.333 (3) C17—H17A 0.9900
O4—C9 1.418 (3) C17—H17B 0.9900
O4—H4B 0.87 (4) C18—C19 1.525 (4)
O5—C20 1.244 (2) C18—H18A 1.0000
N2—C8 1.455 (3) C19—H19A 0.9900
N2—H2 0.83 (3) C19—H19B 0.9900
N3—C11 1.467 (3) C21—C22 1.514 (4)
N3—C10 1.467 (3) C21—C23 1.526 (4)
N3—C19 1.471 (3) C21—C24 1.528 (3)
N4—C20 1.329 (3) C22—H22A 0.9800
N4—C21 1.487 (3) C22—H22B 0.9800
N4—H4 0.84 (3) C22—H22C 0.9800
C8—C9 1.517 (3) C23—H23A 0.9800
C8—H8A 0.9900 C23—H23B 0.9800
C8—H8B 0.9900 C23—H23C 0.9800
C9—C10 1.531 (3) C24—H24A 0.9800
C9—H9A 1.0000 C24—H24B 0.9800
C10—H10A 0.9900 C24—H24C 0.9800
C10—H10B 0.9900
O1—N1—O2 127.3 (9) H12A—C12—H12B 107.9
O1—N1—C4 121.0 (9) C12—C13—C14 112.2 (2)
O2—N1—C4 111.6 (9) C12—C13—C18 110.74 (19)
O1B—N1B—O2B 120.6 (14) C14—C13—C18 111.5 (2)
O1B—N1B—C4 111.2 (14) C12—C13—H13A 107.4
O2B—N1B—C4 128.1 (14) C14—C13—H13A 107.4
C2—C1—C6 118.1 (3) C18—C13—H13A 107.4
C2—C1—C7 122.7 (2) C15—C14—C13 113.9 (2)
C6—C1—C7 119.2 (2) C15—C14—H14A 108.8
C3—C2—C1 121.9 (3) C13—C14—H14A 108.8
C3—C2—Cl1B 120.7 (7) C15—C14—H14B 108.8
C1—C2—Cl1B 113.0 (8) C13—C14—H14B 108.8
C3—C2—Cl1 118.2 (2) H14A—C14—H14B 107.7
C1—C2—Cl1 119.8 (2) C14—C15—C16 110.9 (3)
C2—C3—C4 117.6 (3) C14—C15—H15A 109.5
C2—C3—H3A 121.2 C16—C15—H15A 109.5
C4—C3—H3A 121.2 C14—C15—H15B 109.5
C3—C4—C5 123.0 (3) C16—C15—H15B 109.5
C3—C4—N1 113.4 (5) H15A—C15—H15B 108.0
C5—C4—N1 123.7 (5) C15—C16—C17 109.9 (2)
C3—C4—N1B 128.6 (7) C15—C16—H16A 109.7
C5—C4—N1B 108.1 (7) C17—C16—H16A 109.7
C6—C5—C4 117.7 (3) C15—C16—H16B 109.7
C6—C5—H5A 121.1 C17—C16—H16B 109.7
C4—C5—H5A 121.1 H16A—C16—H16B 108.2
C5—C6—C1 121.6 (3) C18—C17—C16 112.2 (3)
C5—C6—H6A 119.2 C18—C17—H17A 109.2
C1—C6—H6A 119.2 C16—C17—H17A 109.2
O3—C7—N2 124.9 (3) C18—C17—H17B 109.2
O3—C7—C1 121.2 (2) C16—C17—H17B 109.2
N2—C7—C1 113.9 (2) H17A—C17—H17B 107.9
C9—O4—H4B 109 (2) C17—C18—C19 111.8 (2)
C7—N2—C8 124.3 (2) C17—C18—C13 112.8 (2)
C7—N2—H2 118 (2) C19—C18—C13 110.4 (2)
C8—N2—H2 117 (2) C17—C18—H18A 107.2
C11—N3—C10 114.32 (17) C19—C18—H18A 107.2
C11—N3—C19 108.55 (18) C13—C18—H18A 107.2
C10—N3—C19 110.33 (18) N3—C19—C18 112.3 (2)
C20—N4—C21 126.27 (19) N3—C19—H19A 109.2
C20—N4—H4 115 (2) C18—C19—H19A 109.2
C21—N4—H4 119 (2) N3—C19—H19B 109.2
N2—C8—C9 112.7 (2) C18—C19—H19B 109.2
N2—C8—H8A 109.1 H19A—C19—H19B 107.9
C9—C8—H8A 109.1 O5—C20—N4 123.7 (2)
N2—C8—H8B 109.1 O5—C20—C11 120.82 (19)
C9—C8—H8B 109.1 N4—C20—C11 115.44 (18)
H8A—C8—H8B 107.8 N4—C21—C22 108.9 (2)
O4—C9—C8 107.70 (19) N4—C21—C23 110.9 (2)
O4—C9—C10 109.00 (19) C22—C21—C23 111.9 (2)
C8—C9—C10 113.42 (19) N4—C21—C24 106.1 (2)
O4—C9—H9A 108.9 C22—C21—C24 109.8 (2)
C8—C9—H9A 108.9 C23—C21—C24 109.2 (2)
C10—C9—H9A 108.9 C21—C22—H22A 109.5
N3—C10—C9 113.06 (18) C21—C22—H22B 109.5
N3—C10—H10A 109.0 H22A—C22—H22B 109.5
C9—C10—H10A 109.0 C21—C22—H22C 109.5
N3—C10—H10B 109.0 H22A—C22—H22C 109.5
C9—C10—H10B 109.0 H22B—C22—H22C 109.5
H10A—C10—H10B 107.8 C21—C23—H23A 109.5
N3—C11—C20 111.60 (17) C21—C23—H23B 109.5
N3—C11—C12 108.59 (18) H23A—C23—H23B 109.5
C20—C11—C12 108.67 (18) C21—C23—H23C 109.5
N3—C11—H11A 109.3 H23A—C23—H23C 109.5
C20—C11—H11A 109.3 H23B—C23—H23C 109.5
C12—C11—H11A 109.3 C21—C24—H24A 109.5
C13—C12—C11 111.81 (19) C21—C24—H24B 109.5
C13—C12—H12A 109.3 H24A—C24—H24B 109.5
C11—C12—H12A 109.3 C21—C24—H24C 109.5
C13—C12—H12B 109.3 H24A—C24—H24C 109.5
C11—C12—H12B 109.3 H24B—C24—H24C 109.5
C6—C1—C2—C3 1.8 (4) C19—N3—C10—C9 −77.0 (2)
C7—C1—C2—C3 −177.6 (2) O4—C9—C10—N3 −165.33 (18)
C6—C1—C2—Cl1B 158.4 (14) C8—C9—C10—N3 −45.4 (3)
C7—C1—C2—Cl1B −20.9 (14) C10—N3—C11—C20 −52.4 (2)
C6—C1—C2—Cl1 179.7 (2) C19—N3—C11—C20 −176.07 (18)
C7—C1—C2—Cl1 0.3 (3) C10—N3—C11—C12 −172.21 (17)
C1—C2—C3—C4 −2.3 (4) C19—N3—C11—C12 64.2 (2)
Cl1B—C2—C3—C4 −157.2 (15) N3—C11—C12—C13 −59.4 (2)
Cl1—C2—C3—C4 179.8 (2) C20—C11—C12—C13 178.98 (19)
C2—C3—C4—C5 0.7 (4) C11—C12—C13—C14 176.8 (2)
C2—C3—C4—N1 −179.8 (5) C11—C12—C13—C18 51.5 (3)
C2—C3—C4—N1B 173.4 (9) C12—C13—C14—C15 −75.8 (3)
O1—N1—C4—C3 −9.0 (13) C18—C13—C14—C15 49.0 (3)
O2—N1—C4—C3 168.9 (8) C13—C14—C15—C16 −54.1 (3)
O1—N1—C4—C5 170.5 (10) C14—C15—C16—C17 57.2 (3)
O2—N1—C4—C5 −11.6 (11) C15—C16—C17—C18 −57.7 (3)
O1B—N1B—C4—C3 1 (2) C16—C17—C18—C19 178.8 (2)
O2B—N1B—C4—C3 −175.8 (15) C16—C17—C18—C13 53.7 (3)
O1B—N1B—C4—C5 174.8 (17) C12—C13—C18—C17 77.4 (3)
O2B—N1B—C4—C5 −2 (2) C14—C13—C18—C17 −48.3 (3)
C3—C4—C5—C6 1.4 (4) C12—C13—C18—C19 −48.5 (3)
N1—C4—C5—C6 −178.1 (6) C14—C13—C18—C19 −174.2 (2)
N1B—C4—C5—C6 −172.6 (8) C11—N3—C19—C18 −64.1 (3)
C4—C5—C6—C1 −2.0 (4) C10—N3—C19—C18 170.0 (2)
C2—C1—C6—C5 0.5 (4) C17—C18—C19—N3 −70.8 (3)
C7—C1—C6—C5 179.9 (2) C13—C18—C19—N3 55.7 (3)
C2—C1—C7—O3 −65.7 (3) C21—N4—C20—O5 4.6 (4)
C6—C1—C7—O3 115.0 (3) C21—N4—C20—C11 −177.1 (2)
C2—C1—C7—N2 115.6 (3) N3—C11—C20—O5 −41.3 (3)
C6—C1—C7—N2 −63.7 (3) C12—C11—C20—O5 78.4 (3)
O3—C7—N2—C8 −1.1 (4) N3—C11—C20—N4 140.4 (2)
C1—C7—N2—C8 177.5 (2) C12—C11—C20—N4 −99.9 (2)
C7—N2—C8—C9 −122.8 (3) C20—N4—C21—C22 64.5 (3)
N2—C8—C9—O4 69.4 (2) C20—N4—C21—C23 −59.1 (3)
N2—C8—C9—C10 −51.3 (3) C20—N4—C21—C24 −177.5 (2)
C11—N3—C10—C9 160.33 (18)

(I) (3S,4aS,8aS)-N-tert-Butyl-2-[(S)-3-(2-chloro-4-nitrobenzamido)-2-hydroxypropyl]decahydroisoquinoline-3-carboxamide . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O4—H4B···O5i 0.87 (4) 1.94 (4) 2.791 (2) 169 (3)
N2—H2···O5 0.83 (3) 2.11 (3) 2.928 (3) 169 (3)
N4—H4···O3ii 0.84 (3) 2.15 (3) 2.964 (2) 161 (3)

Symmetry codes: (i) x, y, z+1; (ii) x+1/2, −y+3/2, −z+2.

(II) (3S,4aS,8aS)-N-tert-Butyl-2-{(S)-2-[(S)-1-(2-chloro-4-nitrobenzoyl)pyrrolidin-2-yl]-2-hydroxyethyl}decahydroisoquinoline-3-carboxamide . Crystal data

C27H39ClN4O5 F(000) = 572
Mr = 535.07 Dx = 1.279 Mg m3
Monoclinic, P21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2yb Cell parameters from 7806 reflections
a = 6.4341 (7) Å θ = 2.8–26.3°
b = 20.280 (2) Å µ = 0.18 mm1
c = 11.0377 (12) Å T = 168 K
β = 105.248 (1)° Plates, colourless
V = 1389.5 (3) Å3 0.86 × 0.65 × 0.15 mm
Z = 2

(II) (3S,4aS,8aS)-N-tert-Butyl-2-{(S)-2-[(S)-1-(2-chloro-4-nitrobenzoyl)pyrrolidin-2-yl]-2-hydroxyethyl}decahydroisoquinoline-3-carboxamide . Data collection

Siemens Platform/APEXII CCD diffractometer 5627 independent reflections
Radiation source: normal-focus sealed tube 5222 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.024
profile data from φ and ω scans θmax = 26.4°, θmin = 1.9°
Absorption correction: integration (SHELXTL/XPREP; Bruker, 2014) h = −8→8
Tmin = 0.892, Tmax = 0.980 k = −25→25
16374 measured reflections l = −13→13

(II) (3S,4aS,8aS)-N-tert-Butyl-2-{(S)-2-[(S)-1-(2-chloro-4-nitrobenzoyl)pyrrolidin-2-yl]-2-hydroxyethyl}decahydroisoquinoline-3-carboxamide . Refinement

Refinement on F2 Hydrogen site location: mixed
Least-squares matrix: full H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.032 w = 1/[σ2(Fo2) + (0.0447P)2 + 0.1276P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.082 (Δ/σ)max < 0.001
S = 1.04 Δρmax = 0.24 e Å3
5627 reflections Δρmin = −0.21 e Å3
377 parameters Absolute structure: Flack (1983); Hooft et al. (2008); 2720 Friedels
14 restraints Absolute structure parameter: 0.036 (19)

(II) (3S,4aS,8aS)-N-tert-Butyl-2-{(S)-2-[(S)-1-(2-chloro-4-nitrobenzoyl)pyrrolidin-2-yl]-2-hydroxyethyl}decahydroisoquinoline-3-carboxamide . Special details

Experimental. One distinct cell was identified using APEX2 (Bruker, 2014). Four frame series were integrated and filtered for statistical outliers using SAINT (Bruker, 2014) then corrected for absorption by integration using SHELXTL/XPREP V2005/2 (Bruker, 2014) before using SAINT/SADABS (Bruker, 2014) to sort, merge, and scale the combined data. No decay correction was applied.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Structure was phased by direct (Sheldrick, 2015) methods. Systematic conditions suggested the ambiguous space group. The space group choice was confirmed by successful convergence of the full-matrix least-squares refinement on F2. The final map had no significant features. A final analysis of variance between observed and calculated structure factors showed little dependence on amplitude and resolution.

(II) (3S,4aS,8aS)-N-tert-Butyl-2-{(S)-2-[(S)-1-(2-chloro-4-nitrobenzoyl)pyrrolidin-2-yl]-2-hydroxyethyl}decahydroisoquinoline-3-carboxamide . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Cl1 0.18218 (12) 0.27617 (3) 0.58986 (6) 0.05313 (19)
O1 0.7185 (5) 0.41190 (18) 0.9393 (3) 0.0657 (8) 0.967 (8)
O2 0.5309 (5) 0.48339 (16) 1.0083 (3) 0.0796 (11) 0.967 (8)
O1B 0.658 (13) 0.391 (2) 0.970 (8) 0.0657 (8) 0.033 (8)
O2B 0.605 (14) 0.4966 (13) 0.961 (9) 0.0796 (11) 0.033 (8)
N1 0.5493 (4) 0.43973 (13) 0.9347 (2) 0.0521 (6)
O3 −0.3816 (17) 0.3687 (9) 0.5659 (16) 0.064 (2) 0.58 (2)
C7 −0.1974 (15) 0.3696 (13) 0.5438 (6) 0.044 (3) 0.58 (2)
O3B −0.341 (3) 0.3487 (9) 0.584 (2) 0.064 (2) 0.42 (2)
C7B −0.209 (2) 0.3832 (18) 0.5437 (8) 0.044 (3) 0.42 (2)
O4 −0.0271 (3) 0.50975 (9) 0.45504 (16) 0.0466 (4)
H4B −0.124 (4) 0.5375 (14) 0.441 (3) 0.070*
O5 0.6776 (3) 0.60681 (10) 0.43924 (17) 0.0497 (5)
N2 −0.1962 (3) 0.38062 (11) 0.4242 (2) 0.0434 (5)
N3 0.1541 (3) 0.56188 (9) 0.25105 (17) 0.0349 (4)
N4 0.3515 (3) 0.61688 (10) 0.48165 (17) 0.0354 (4)
H4C 0.211 (5) 0.6126 (16) 0.452 (3) 0.053*
C1 0.1816 (4) 0.34965 (12) 0.6715 (2) 0.0407 (6)
C2 0.3653 (5) 0.36560 (13) 0.7648 (2) 0.0419 (5)
H2A 0.4918 0.3393 0.7794 0.050*
C3 0.3571 (4) 0.42136 (13) 0.8359 (2) 0.0425 (6)
C4 0.1757 (5) 0.46054 (15) 0.8176 (3) 0.0515 (7)
H4A 0.1728 0.4977 0.8697 0.062*
C5 −0.0004 (5) 0.44390 (15) 0.7217 (3) 0.0505 (6)
H5A −0.1264 0.4703 0.7071 0.061*
C6 0.0008 (4) 0.38941 (13) 0.6450 (2) 0.0417 (6)
C8 −0.0147 (4) 0.40027 (12) 0.3737 (2) 0.0355 (5)
H8A 0.1254 0.3883 0.4342 0.043*
C9 −0.0526 (4) 0.35761 (14) 0.2539 (3) 0.0481 (6)
H9A −0.0348 0.3849 0.1829 0.058*
H9B 0.0544 0.3214 0.2674 0.058*
C10 −0.2747 (10) 0.3296 (4) 0.2237 (6) 0.0504 (15) 0.669 (16)
H10A −0.2719 0.2816 0.2401 0.060* 0.669 (16)
H10B −0.3527 0.3379 0.1350 0.060* 0.669 (16)
C11 −0.3755 (11) 0.3670 (4) 0.3125 (7) 0.0423 (15) 0.669 (16)
H11A −0.4415 0.4086 0.2737 0.051* 0.669 (16)
H11B −0.4878 0.3400 0.3353 0.051* 0.669 (16)
C10B −0.2980 (17) 0.3525 (8) 0.2257 (15) 0.0504 (15) 0.331 (16)
H10C −0.3618 0.3898 0.1705 0.060* 0.331 (16)
H10D −0.3439 0.3114 0.1777 0.060* 0.331 (16)
C11B −0.392 (2) 0.3527 (9) 0.3383 (12) 0.0423 (15) 0.331 (16)
H11C −0.5191 0.3818 0.3268 0.051* 0.331 (16)
H11D −0.4263 0.3079 0.3630 0.051* 0.331 (16)
C12 −0.0208 (4) 0.47423 (12) 0.3446 (2) 0.0370 (5)
H12A −0.1522 0.4846 0.2757 0.044*
C13 0.1800 (4) 0.49527 (12) 0.3056 (2) 0.0380 (5)
H13A 0.3061 0.4945 0.3799 0.046*
H13B 0.2073 0.4636 0.2433 0.046*
C14 0.3607 (3) 0.59631 (12) 0.2673 (2) 0.0357 (5)
H14A 0.4542 0.5706 0.2250 0.043*
C15 0.3232 (4) 0.66580 (12) 0.2091 (2) 0.0369 (5)
H15A 0.2424 0.6925 0.2564 0.044*
H15B 0.4642 0.6874 0.2172 0.044*
C16 0.1982 (4) 0.66434 (13) 0.0704 (2) 0.0380 (5)
H16A 0.2901 0.6415 0.0230 0.046*
C17 0.1487 (4) 0.73367 (15) 0.0150 (2) 0.0462 (6)
H17A 0.2833 0.7598 0.0349 0.055*
H17B 0.0968 0.7302 −0.0776 0.055*
C18 −0.0196 (4) 0.76982 (15) 0.0644 (2) 0.0470 (6)
H18A 0.0388 0.7786 0.1552 0.056*
H18B −0.0528 0.8127 0.0209 0.056*
C19 −0.2244 (4) 0.72936 (14) 0.0435 (2) 0.0451 (6)
H19A −0.2910 0.7249 −0.0478 0.054*
H19B −0.3279 0.7527 0.0807 0.054*
C20 −0.1805 (4) 0.66089 (12) 0.1020 (2) 0.0381 (5)
H20A −0.3159 0.6351 0.0816 0.046*
H20B −0.1306 0.6652 0.1945 0.046*
C21 −0.0090 (4) 0.62377 (13) 0.0539 (2) 0.0374 (5)
H21A −0.0699 0.6159 −0.0380 0.045*
C22 0.0428 (4) 0.55715 (13) 0.1167 (2) 0.0396 (5)
H22A −0.0929 0.5322 0.1070 0.048*
H22B 0.1344 0.5321 0.0736 0.048*
C23 0.4782 (3) 0.60558 (11) 0.4055 (2) 0.0359 (5)
C24 0.4216 (4) 0.62935 (12) 0.6177 (2) 0.0390 (5)
C25 0.2182 (7) 0.6384 (4) 0.6614 (5) 0.0498 (13) 0.811 (17)
H25A 0.1300 0.5984 0.6430 0.075* 0.811 (17)
H25B 0.1361 0.6760 0.6173 0.075* 0.811 (17)
H25C 0.2573 0.6467 0.7521 0.075* 0.811 (17)
C26 0.5534 (13) 0.5704 (3) 0.6839 (4) 0.0572 (14) 0.811 (17)
H26A 0.4678 0.5300 0.6631 0.086* 0.811 (17)
H26B 0.5913 0.5773 0.7750 0.086* 0.811 (17)
H26C 0.6853 0.5662 0.6559 0.086* 0.811 (17)
C27 0.5599 (11) 0.6921 (3) 0.6388 (7) 0.0569 (15) 0.811 (17)
H27A 0.4787 0.7283 0.5894 0.085* 0.811 (17)
H27B 0.6918 0.6842 0.6124 0.085* 0.811 (17)
H27C 0.5977 0.7037 0.7281 0.085* 0.811 (17)
C25B 0.227 (4) 0.6608 (14) 0.651 (3) 0.0498 (13) 0.189 (17)
H25D 0.0945 0.6390 0.6040 0.075* 0.189 (17)
H25E 0.2201 0.7078 0.6299 0.075* 0.189 (17)
H25F 0.2418 0.6558 0.7415 0.075* 0.189 (17)
C26B 0.461 (5) 0.5602 (8) 0.678 (2) 0.0572 (14) 0.189 (17)
H26D 0.3258 0.5351 0.6569 0.086* 0.189 (17)
H26E 0.5122 0.5647 0.7697 0.086* 0.189 (17)
H26F 0.5692 0.5369 0.6465 0.086* 0.189 (17)
C27B 0.612 (4) 0.6761 (14) 0.659 (3) 0.0569 (15) 0.189 (17)
H27D 0.7446 0.6534 0.6543 0.085* 0.189 (17)
H27E 0.6262 0.6903 0.7457 0.085* 0.189 (17)
H27F 0.5895 0.7148 0.6037 0.085* 0.189 (17)

(II) (3S,4aS,8aS)-N-tert-Butyl-2-{(S)-2-[(S)-1-(2-chloro-4-nitrobenzoyl)pyrrolidin-2-yl]-2-hydroxyethyl}decahydroisoquinoline-3-carboxamide . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0715 (4) 0.0369 (3) 0.0546 (4) −0.0005 (3) 0.0230 (3) −0.0055 (3)
O1 0.0580 (14) 0.0857 (18) 0.0498 (14) 0.0073 (14) 0.0076 (10) −0.0005 (13)
O2 0.0664 (16) 0.097 (2) 0.0719 (18) −0.0101 (14) 0.0123 (14) −0.0422 (16)
O1B 0.0580 (14) 0.0857 (18) 0.0498 (14) 0.0073 (14) 0.0076 (10) −0.0005 (13)
O2B 0.0664 (16) 0.097 (2) 0.0719 (18) −0.0101 (14) 0.0123 (14) −0.0422 (16)
N1 0.0564 (14) 0.0602 (15) 0.0405 (12) −0.0036 (12) 0.0143 (10) 0.0005 (11)
O3 0.041 (4) 0.092 (8) 0.068 (4) −0.008 (3) 0.029 (4) −0.011 (4)
C7 0.0435 (16) 0.040 (10) 0.0557 (16) −0.004 (3) 0.0269 (13) −0.0166 (16)
O3B 0.041 (4) 0.092 (8) 0.068 (4) −0.008 (3) 0.029 (4) −0.011 (4)
C7B 0.0435 (16) 0.040 (10) 0.0557 (16) −0.004 (3) 0.0269 (13) −0.0166 (16)
O4 0.0528 (11) 0.0454 (10) 0.0399 (10) 0.0172 (8) 0.0090 (8) −0.0097 (8)
O5 0.0298 (8) 0.0613 (12) 0.0524 (11) 0.0106 (8) 0.0011 (7) −0.0171 (9)
N2 0.0344 (11) 0.0495 (13) 0.0480 (12) −0.0039 (9) 0.0136 (9) −0.0135 (10)
N3 0.0322 (10) 0.0374 (11) 0.0333 (10) 0.0008 (8) 0.0054 (8) −0.0082 (8)
N4 0.0306 (9) 0.0423 (11) 0.0300 (10) 0.0024 (8) 0.0022 (7) −0.0053 (8)
C1 0.0582 (15) 0.0342 (12) 0.0379 (13) −0.0028 (11) 0.0273 (12) −0.0015 (10)
C2 0.0528 (14) 0.0417 (13) 0.0363 (12) 0.0041 (11) 0.0208 (11) 0.0064 (10)
C3 0.0525 (14) 0.0448 (14) 0.0336 (12) −0.0042 (11) 0.0174 (10) 0.0019 (10)
C4 0.0611 (17) 0.0552 (16) 0.0424 (15) 0.0031 (13) 0.0213 (13) −0.0126 (12)
C5 0.0487 (15) 0.0599 (17) 0.0469 (15) 0.0071 (13) 0.0196 (12) −0.0097 (13)
C6 0.0450 (14) 0.0477 (14) 0.0394 (13) −0.0040 (11) 0.0233 (11) −0.0054 (11)
C8 0.0330 (11) 0.0394 (12) 0.0350 (12) 0.0029 (9) 0.0104 (9) −0.0048 (10)
C9 0.0539 (15) 0.0443 (14) 0.0461 (15) 0.0056 (12) 0.0131 (12) −0.0130 (12)
C10 0.073 (2) 0.037 (4) 0.0420 (16) −0.021 (3) 0.0166 (17) −0.018 (3)
C11 0.0325 (16) 0.035 (3) 0.058 (3) −0.0071 (18) 0.0089 (19) −0.004 (2)
C10B 0.073 (2) 0.037 (4) 0.0420 (16) −0.021 (3) 0.0166 (17) −0.018 (3)
C11B 0.0325 (16) 0.035 (3) 0.058 (3) −0.0071 (18) 0.0089 (19) −0.004 (2)
C12 0.0375 (12) 0.0394 (12) 0.0330 (11) 0.0083 (10) 0.0072 (9) −0.0068 (9)
C13 0.0360 (12) 0.0345 (12) 0.0410 (12) 0.0050 (9) 0.0059 (9) −0.0089 (10)
C14 0.0265 (10) 0.0438 (13) 0.0364 (12) 0.0029 (9) 0.0077 (9) −0.0106 (9)
C15 0.0291 (11) 0.0472 (14) 0.0357 (12) −0.0043 (10) 0.0111 (9) −0.0062 (10)
C16 0.0304 (11) 0.0535 (15) 0.0325 (12) −0.0009 (10) 0.0128 (9) −0.0049 (10)
C17 0.0409 (13) 0.0614 (16) 0.0383 (13) −0.0066 (12) 0.0139 (10) 0.0040 (12)
C18 0.0487 (14) 0.0487 (14) 0.0450 (14) −0.0002 (12) 0.0148 (11) 0.0057 (12)
C19 0.0378 (13) 0.0583 (16) 0.0398 (13) 0.0056 (12) 0.0111 (10) 0.0010 (12)
C20 0.0272 (10) 0.0520 (14) 0.0355 (12) −0.0009 (10) 0.0089 (9) −0.0009 (10)
C21 0.0322 (11) 0.0523 (14) 0.0267 (11) −0.0045 (10) 0.0061 (8) −0.0095 (10)
C22 0.0365 (12) 0.0462 (14) 0.0346 (12) −0.0017 (10) 0.0066 (9) −0.0137 (10)
C23 0.0315 (11) 0.0353 (12) 0.0387 (12) 0.0057 (9) 0.0052 (9) −0.0079 (10)
C24 0.0422 (13) 0.0420 (13) 0.0295 (11) 0.0017 (10) 0.0037 (9) −0.0019 (9)
C25 0.0545 (17) 0.062 (4) 0.0341 (18) −0.001 (2) 0.0141 (12) −0.008 (3)
C26 0.054 (3) 0.066 (2) 0.0469 (18) 0.007 (2) 0.005 (2) 0.0227 (17)
C27 0.072 (3) 0.058 (3) 0.039 (3) −0.015 (3) 0.012 (2) −0.015 (2)
C25B 0.0545 (17) 0.062 (4) 0.0341 (18) −0.001 (2) 0.0141 (12) −0.008 (3)
C26B 0.054 (3) 0.066 (2) 0.0469 (18) 0.007 (2) 0.005 (2) 0.0227 (17)
C27B 0.072 (3) 0.058 (3) 0.039 (3) −0.015 (3) 0.012 (2) −0.015 (2)

(II) (3S,4aS,8aS)-N-tert-Butyl-2-{(S)-2-[(S)-1-(2-chloro-4-nitrobenzoyl)pyrrolidin-2-yl]-2-hydroxyethyl}decahydroisoquinoline-3-carboxamide . Geometric parameters (Å, º)

Cl1—C1 1.742 (2) C12—H12A 1.0000
O1—N1 1.215 (3) C13—H13A 0.9900
O2—N1 1.228 (3) C13—H13B 0.9900
O1B—N1 1.210 (15) C14—C23 1.525 (3)
O2B—N1 1.219 (15) C14—C15 1.541 (3)
N1—C3 1.466 (3) C14—H14A 1.0000
O3—C7B 1.236 (18) C15—C16 1.531 (3)
O3—C7 1.271 (11) C15—H15A 0.9900
C7—O3B 1.20 (2) C15—H15B 0.9900
C7—N2 1.341 (7) C16—C17 1.533 (4)
C7—C6 1.512 (7) C16—C21 1.536 (3)
O3B—C7B 1.271 (14) C16—H16A 1.0000
C7B—N2 1.343 (10) C17—C18 1.522 (4)
C7B—C6 1.513 (10) C17—H17A 0.9900
O4—C12 1.425 (3) C17—H17B 0.9900
O4—H4B 0.824 (14) C18—C19 1.518 (4)
O5—C23 1.239 (3) C18—H18A 0.9900
N2—C8 1.475 (3) C18—H18B 0.9900
N2—C11 1.476 (5) C19—C20 1.526 (4)
N2—C11B 1.477 (10) C19—H19A 0.9900
N3—C22 1.470 (3) C19—H19B 0.9900
N3—C14 1.470 (3) C20—C21 1.541 (3)
N3—C13 1.471 (3) C20—H20A 0.9900
N4—C23 1.336 (3) C20—H20B 0.9900
N4—C24 1.472 (3) C21—C22 1.515 (4)
N4—H4C 0.88 (3) C21—H21A 1.0000
C1—C6 1.382 (4) C22—H22A 0.9900
C1—C2 1.387 (4) C22—H22B 0.9900
C2—C3 1.385 (4) C24—C25 1.520 (4)
C2—H2A 0.9500 C24—C27B 1.524 (13)
C3—C4 1.382 (4) C24—C27 1.535 (5)
C4—C5 1.374 (4) C24—C26 1.535 (4)
C4—H4A 0.9500 C24—C25B 1.536 (13)
C5—C6 1.393 (4) C24—C26B 1.545 (12)
C5—H5A 0.9500 C25—H25A 0.9800
C8—C12 1.532 (3) C25—H25B 0.9800
C8—C9 1.545 (3) C25—H25C 0.9800
C8—H8A 1.0000 C26—H26A 0.9800
C9—C10 1.492 (6) C26—H26B 0.9800
C9—C10B 1.531 (11) C26—H26C 0.9800
C9—H9A 0.9900 C27—H27A 0.9800
C9—H9B 0.9900 C27—H27B 0.9800
C10—C11 1.514 (7) C27—H27C 0.9800
C10—H10A 0.9900 C25B—H25D 0.9800
C10—H10B 0.9900 C25B—H25E 0.9800
C11—H11A 0.9900 C25B—H25F 0.9800
C11—H11B 0.9900 C26B—H26D 0.9800
C10B—C11B 1.519 (11) C26B—H26E 0.9800
C10B—H10C 0.9900 C26B—H26F 0.9800
C10B—H10D 0.9900 C27B—H27D 0.9800
C11B—H11C 0.9900 C27B—H27E 0.9800
C11B—H11D 0.9900 C27B—H27F 0.9800
C12—C13 1.526 (3)
O1B—N1—O2B 126 (3) N3—C14—C23 112.03 (19)
O1—N1—O2 123.3 (3) N3—C14—C15 110.24 (17)
O1B—N1—C3 110 (3) C23—C14—C15 106.64 (18)
O1—N1—C3 119.0 (2) N3—C14—H14A 109.3
O2B—N1—C3 124 (3) C23—C14—H14A 109.3
O2—N1—C3 117.8 (3) C15—C14—H14A 109.3
C7B—O3—C7 13 (3) C16—C15—C14 112.51 (19)
O3B—C7—O3 22.9 (9) C16—C15—H15A 109.1
O3B—C7—N2 128.8 (12) C14—C15—H15A 109.1
O3—C7—N2 116.0 (12) C16—C15—H15B 109.1
O3B—C7—C6 113.6 (12) C14—C15—H15B 109.1
O3—C7—C6 120.7 (10) H15A—C15—H15B 107.8
N2—C7—C6 117.5 (7) C15—C16—C17 112.4 (2)
C7—O3B—C7B 13 (3) C15—C16—C21 109.89 (19)
O3—C7B—O3B 22.8 (9) C17—C16—C21 111.2 (2)
O3—C7B—N2 118.4 (11) C15—C16—H16A 107.7
O3B—C7B—N2 122.9 (19) C17—C16—H16A 107.7
O3—C7B—C6 123.1 (11) C21—C16—H16A 107.7
O3B—C7B—C6 109.5 (15) C18—C17—C16 113.0 (2)
N2—C7B—C6 117.2 (9) C18—C17—H17A 109.0
C12—O4—H4B 112 (2) C16—C17—H17A 109.0
C7—N2—C7B 12 (3) C18—C17—H17B 109.0
C7—N2—C8 128.8 (4) C16—C17—H17B 109.0
C7B—N2—C8 128.2 (5) H17A—C17—H17B 107.8
C7—N2—C11 125.8 (5) C19—C18—C17 110.9 (2)
C8—N2—C11 105.0 (4) C19—C18—H18A 109.5
C7—N2—C11B 110.1 (7) C17—C18—H18A 109.5
C7B—N2—C11B 112.6 (8) C19—C18—H18B 109.5
C8—N2—C11B 119.2 (6) C17—C18—H18B 109.5
C22—N3—C14 109.84 (18) H18A—C18—H18B 108.1
C22—N3—C13 109.01 (18) C18—C19—C20 111.8 (2)
C14—N3—C13 112.62 (18) C18—C19—H19A 109.3
C23—N4—C24 126.7 (2) C20—C19—H19A 109.3
C23—N4—H4C 118.8 (19) C18—C19—H19B 109.3
C24—N4—H4C 114.2 (19) C20—C19—H19B 109.3
C6—C1—C2 121.8 (2) H19A—C19—H19B 107.9
C6—C1—Cl1 120.4 (2) C19—C20—C21 111.6 (2)
C2—C1—Cl1 117.8 (2) C19—C20—H20A 109.3
C3—C2—C1 117.3 (2) C21—C20—H20A 109.3
C3—C2—H2A 121.3 C19—C20—H20B 109.3
C1—C2—H2A 121.3 C21—C20—H20B 109.3
C4—C3—C2 122.9 (2) H20A—C20—H20B 108.0
C4—C3—N1 118.5 (2) C22—C21—C16 110.13 (19)
C2—C3—N1 118.6 (2) C22—C21—C20 111.7 (2)
C5—C4—C3 117.7 (2) C16—C21—C20 112.0 (2)
C5—C4—H4A 121.2 C22—C21—H21A 107.6
C3—C4—H4A 121.2 C16—C21—H21A 107.6
C4—C5—C6 121.9 (3) C20—C21—H21A 107.6
C4—C5—H5A 119.1 N3—C22—C21 113.16 (18)
C6—C5—H5A 119.1 N3—C22—H22A 108.9
C1—C6—C5 118.2 (2) C21—C22—H22A 108.9
C1—C6—C7 120.0 (10) N3—C22—H22B 108.9
C5—C6—C7 121.4 (9) C21—C22—H22B 108.9
C1—C6—C7B 130.1 (13) H22A—C22—H22B 107.8
C5—C6—C7B 111.7 (13) O5—C23—N4 124.3 (2)
C7—C6—C7B 11 (2) O5—C23—C14 120.3 (2)
N2—C8—C12 111.36 (19) N4—C23—C14 115.23 (18)
N2—C8—C9 102.10 (19) N4—C24—C25 106.6 (3)
C12—C8—C9 112.3 (2) N4—C24—C27B 114.8 (14)
N2—C8—H8A 110.3 N4—C24—C27 107.9 (3)
C12—C8—H8A 110.3 C25—C24—C27 111.4 (4)
C9—C8—H8A 110.3 N4—C24—C26 109.6 (3)
C10—C9—C8 109.3 (3) C25—C24—C26 110.9 (3)
C10B—C9—C8 97.7 (6) C27—C24—C26 110.3 (3)
C10—C9—H9A 109.8 N4—C24—C25B 105.5 (12)
C8—C9—H9A 109.8 C27B—C24—C25B 108.3 (18)
C10—C9—H9B 109.8 N4—C24—C26B 104.9 (9)
C8—C9—H9B 109.8 C27B—C24—C26B 114.1 (13)
H9A—C9—H9B 108.3 C25B—C24—C26B 108.9 (13)
C9—C10—C11 102.3 (6) C24—C25—H25A 109.5
C9—C10—H10A 111.3 C24—C25—H25B 109.5
C11—C10—H10A 111.3 H25A—C25—H25B 109.5
C9—C10—H10B 111.3 C24—C25—H25C 109.5
C11—C10—H10B 111.3 H25A—C25—H25C 109.5
H10A—C10—H10B 109.2 H25B—C25—H25C 109.5
N2—C11—C10 105.1 (5) C24—C26—H26A 109.5
N2—C11—H11A 110.7 C24—C26—H26B 109.5
C10—C11—H11A 110.7 H26A—C26—H26B 109.5
N2—C11—H11B 110.7 C24—C26—H26C 109.5
C10—C11—H11B 110.7 H26A—C26—H26C 109.5
H11A—C11—H11B 108.8 H26B—C26—H26C 109.5
C11B—C10B—C9 116.4 (11) C24—C27—H27A 109.5
C11B—C10B—H10C 108.2 C24—C27—H27B 109.5
C9—C10B—H10C 108.2 H27A—C27—H27B 109.5
C11B—C10B—H10D 108.2 C24—C27—H27C 109.5
C9—C10B—H10D 108.2 H27A—C27—H27C 109.5
H10C—C10B—H10D 107.3 H27B—C27—H27C 109.5
N2—C11B—C10B 94.0 (9) C24—C25B—H25D 109.5
N2—C11B—H11C 112.9 C24—C25B—H25E 109.5
C10B—C11B—H11C 112.9 H25D—C25B—H25E 109.5
N2—C11B—H11D 112.9 C24—C25B—H25F 109.5
C10B—C11B—H11D 112.9 H25D—C25B—H25F 109.5
H11C—C11B—H11D 110.3 H25E—C25B—H25F 109.5
O4—C12—C13 108.45 (19) C24—C26B—H26D 109.5
O4—C12—C8 108.7 (2) C24—C26B—H26E 109.5
C13—C12—C8 110.82 (18) H26D—C26B—H26E 109.5
O4—C12—H12A 109.6 C24—C26B—H26F 109.5
C13—C12—H12A 109.6 H26D—C26B—H26F 109.5
C8—C12—H12A 109.6 H26E—C26B—H26F 109.5
N3—C13—C12 111.04 (18) C24—C27B—H27D 109.5
N3—C13—H13A 109.4 C24—C27B—H27E 109.5
C12—C13—H13A 109.4 H27D—C27B—H27E 109.5
N3—C13—H13B 109.4 C24—C27B—H27F 109.5
C12—C13—H13B 109.4 H27D—C27B—H27F 109.5
H13A—C13—H13B 108.0 H27E—C27B—H27F 109.5
C7B—O3—C7—O3B 154 (6) O3B—C7B—C6—C5 −89 (3)
C7B—O3—C7—N2 −77 (3) N2—C7B—C6—C5 125 (2)
C7B—O3—C7—C6 76 (3) O3—C7B—C6—C7 87 (5)
O3—C7—O3B—C7B −26 (5) O3B—C7B—C6—C7 67 (4)
N2—C7—O3B—C7B −88 (4) N2—C7B—C6—C7 −80 (4)
C6—C7—O3B—C7B 88 (3) C7—N2—C8—C12 −100.6 (15)
C7—O3—C7B—O3B −25 (5) C7B—N2—C8—C12 −85 (2)
C7—O3—C7B—N2 83 (4) C11—N2—C8—C12 86.4 (4)
C7—O3—C7B—C6 −84 (4) C11B—N2—C8—C12 96.6 (9)
C7—O3B—C7B—O3 153 (6) C7—N2—C8—C9 139.3 (15)
C7—O3B—C7B—N2 68 (4) C7B—N2—C8—C9 155 (2)
C7—O3B—C7B—C6 −76 (3) C11—N2—C8—C9 −33.6 (4)
O3B—C7—N2—C7B 95 (4) C11B—N2—C8—C9 −23.5 (9)
O3—C7—N2—C7B 72 (4) N2—C8—C9—C10 14.1 (5)
C6—C7—N2—C7B −81 (4) C12—C8—C9—C10 −105.3 (4)
O3B—C7—N2—C8 −174 (2) N2—C8—C9—C10B 29.1 (7)
O3—C7—N2—C8 163.8 (14) C12—C8—C9—C10B −90.3 (7)
C6—C7—N2—C8 11 (3) C8—C9—C10—C11 10.2 (8)
O3—C7—N2—C11 −25 (3) C7—N2—C11—C10 −131.3 (15)
C6—C7—N2—C11 −177.9 (10) C8—N2—C11—C10 42.0 (7)
O3B—C7—N2—C11B −10 (4) C9—C10—C11—N2 −31.3 (9)
O3—C7—N2—C11B −32 (3) C8—C9—C10B—C11B −31.8 (15)
C6—C7—N2—C11B 174.6 (15) C7—N2—C11B—C10B −161.4 (15)
O3—C7B—N2—C7 −87 (5) C7B—N2—C11B—C10B −174 (2)
O3B—C7B—N2—C7 −61 (4) C8—N2—C11B—C10B 4.3 (16)
C6—C7B—N2—C7 80 (4) C9—C10B—C11B—N2 18.3 (18)
O3—C7B—N2—C8 174.9 (19) N2—C8—C12—O4 55.0 (2)
O3B—C7B—N2—C8 −159.1 (18) C9—C8—C12—O4 168.76 (19)
C6—C7B—N2—C8 −18 (4) N2—C8—C12—C13 174.05 (19)
O3—C7B—N2—C11B −7 (4) C9—C8—C12—C13 −72.1 (2)
O3B—C7B—N2—C11B 19 (4) C22—N3—C13—C12 −85.1 (2)
C6—C7B—N2—C11B 161 (2) C14—N3—C13—C12 152.70 (18)
C6—C1—C2—C3 3.5 (3) O4—C12—C13—N3 −73.4 (2)
Cl1—C1—C2—C3 −174.92 (18) C8—C12—C13—N3 167.38 (18)
C1—C2—C3—C4 0.3 (4) C22—N3—C14—C23 177.20 (18)
C1—C2—C3—N1 −179.6 (2) C13—N3—C14—C23 −61.1 (2)
O1B—N1—C3—C4 155 (6) C22—N3—C14—C15 58.6 (2)
O1—N1—C3—C4 −168.9 (3) C13—N3—C14—C15 −179.68 (18)
O2B—N1—C3—C4 −36 (7) N3—C14—C15—C16 −56.0 (2)
O2—N1—C3—C4 10.2 (4) C23—C14—C15—C16 −177.86 (18)
O1B—N1—C3—C2 −26 (6) C14—C15—C16—C17 176.37 (19)
O1—N1—C3—C2 10.9 (4) C14—C15—C16—C21 52.0 (2)
O2B—N1—C3—C2 144 (7) C15—C16—C17—C18 −70.8 (3)
O2—N1—C3—C2 −169.9 (3) C21—C16—C17—C18 52.9 (3)
C2—C3—C4—C5 −2.2 (4) C16—C17—C18—C19 −55.0 (3)
N1—C3—C4—C5 177.7 (2) C17—C18—C19—C20 55.7 (3)
C3—C4—C5—C6 0.4 (4) C18—C19—C20—C21 −55.3 (3)
C2—C1—C6—C5 −5.2 (4) C15—C16—C21—C22 −51.3 (2)
Cl1—C1—C6—C5 173.2 (2) C17—C16—C21—C22 −176.4 (2)
C2—C1—C6—C7 −179.1 (6) C15—C16—C21—C20 73.6 (2)
Cl1—C1—C6—C7 −0.7 (6) C17—C16—C21—C20 −51.5 (3)
C2—C1—C6—C7B 176.1 (9) C19—C20—C21—C22 177.21 (19)
Cl1—C1—C6—C7B −5.5 (10) C19—C20—C21—C16 53.1 (3)
C4—C5—C6—C1 3.2 (4) C14—N3—C22—C21 −61.1 (2)
C4—C5—C6—C7 177.0 (7) C13—N3—C22—C21 175.09 (19)
C4—C5—C6—C7B −177.9 (8) C16—C21—C22—N3 57.2 (2)
O3B—C7—C6—C1 105 (2) C20—C21—C22—N3 −67.9 (2)
O3—C7—C6—C1 129 (2) C24—N4—C23—O5 −3.2 (4)
N2—C7—C6—C1 −79 (2) C24—N4—C23—C14 −178.2 (2)
O3B—C7—C6—C5 −69 (3) N3—C14—C23—O5 149.4 (2)
O3—C7—C6—C5 −44 (3) C15—C14—C23—O5 −89.9 (2)
N2—C7—C6—C5 107.5 (16) N3—C14—C23—N4 −35.4 (3)
O3B—C7—C6—C7B −95 (4) C15—C14—C23—N4 85.3 (2)
O3—C7—C6—C7B −71 (4) C23—N4—C24—C25 −179.4 (4)
N2—C7—C6—C7B 81 (4) C23—N4—C24—C27B 43.0 (15)
O3—C7B—C6—C1 110 (3) C23—N4—C24—C27 60.9 (4)
O3B—C7B—C6—C1 90 (2) C23—N4—C24—C26 −59.3 (5)
N2—C7B—C6—C1 −57 (3) C23—N4—C24—C25B 162.1 (12)
O3—C7B—C6—C5 −69 (3) C23—N4—C24—C26B −83.0 (13)

(II) (3S,4aS,8aS)-N-tert-Butyl-2-{(S)-2-[(S)-1-(2-chloro-4-nitrobenzoyl)pyrrolidin-2-yl]-2-hydroxyethyl}decahydroisoquinoline-3-carboxamide . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N4—H4C···O4 0.88 (3) 2.60 (3) 3.219 (3) 129 (3)
O4—H4B···O5i 0.82 (1) 1.89 (2) 2.709 (2) 170 (4)

Symmetry code: (i) x−1, y, z.

References

  1. Bruker (2014). APEX2, SAINT, SHELXTL, XCIF, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  2. CrystalMaker (1994). CrystalMaker. CrystalMaker Software Ltd, Bicester, Oxfordshire, England. www.crystalmaker.com.
  3. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  4. Flack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143–1148.
  5. Gantt, S., Casper, C. & Ambinder, R. F. (2013). Curr. Opin. Oncol. 25, 495–502. [DOI] [PMC free article] [PubMed]
  6. Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. [DOI] [PubMed]
  7. Hamilton, W. C. & Ibers, J. A. (1968). In Hydrogen Bonding in Solids. New York: W. A. Benjamin Inc.
  8. Hooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst. 41, 96–103. [DOI] [PMC free article] [PubMed]
  9. Inaba, T., Birchler, A. G., Yamada, Y., Sagawa, S., Yokota, K., Ando, K. & Uchida, I. (1998). J. Org. Chem. 63, 7582–7583.
  10. Inaba, T., Yamada, Y., Abe, H., Sagawa, S. & Cho, H. (2000). J. Org. Chem. 65, 1623–1628. [DOI] [PubMed]
  11. Kaldor, S. W., Kalish, V. J., Davies, J. F., 2nd Shetty, B. V., Fritz, J. E., Appelt, K., Burgess, J. A., Campanale, K. M., Chirgadze, N. Y., Clawson, D. K., Dressman, B. A., Hatch, S. D., Khalil, D. A., Kosa, M. B., Lubbehusen, P. P., Muesing, M. A., Patick, A. K., Reich, S. H., Su, K. S. & Tatlock, J. H. (1997). J. Med. Chem. 40, 3979–3985. [DOI] [PubMed]
  12. Kalu, N. N., Desai, P. J., Shirley, C. M., Gibson, W., Dennis, P. A. & Ambinder, R. F. (2014). J. Virol. 88, 5455–5461. [DOI] [PMC free article] [PubMed]
  13. Koltai, T. (2015). F1000Res. 4, 1–19.
  14. Maxson, T., Deane, C. D., Molloy, E. M., Cox, C. L., Markley, A. L., Lee, S. W. & Mitchell, D. A. (2015). ACS Chem. Biol. 10, 1217–1226. [DOI] [PMC free article] [PubMed]
  15. Panel on Antiretroviral Guidelines (2015). Guidelines for the use of antiretroviral agents in HIV-1-infected adults and adolescents. Department of Health and Human Services. Available at http://www.aidsinfo.nih.gov/ContentFiles/AdultandAdolescentGL.pdf.
  16. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  17. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  18. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  19. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  20. Yamamoto, N., Yang, R., Yoshinaka, Y., Amari, S., Nakano, T., Cinatl, J., Rabenau, H., Doerr, H. W., Hunsmann, G., Otaka, A., Tamamura, H., Fujii, N. & Yamamoto, N. (2004). Biochem. Biophys. Res. Commun. 318, 719–725. [DOI] [PMC free article] [PubMed]
  21. Zhao, X. Y., Li, R. M., Ma, C. J. & Zhang, G. Y. (2006). J. East China Univ. Sci. Technol. 32, 1449–1453.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, II. DOI: 10.1107/S2056989015020046/pk2566sup1.cif

e-71-01401-sup1.cif (1.4MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015020046/pk2566Isup2.hkl

e-71-01401-Isup2.hkl (417.3KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015020046/pk2566Isup4.cdx

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989015020046/pk2566IIsup3.hkl

e-71-01401-IIsup3.hkl (447.5KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015020046/pk2566IIsup5.cdx

CCDC references: 1432733, 1432732

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES