Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Oct 31;71(Pt 11):o900–o901. doi: 10.1107/S2056989015020186

Crystal structure of 2-(4-methyl­piperazin-1-yl)quinoline-3-carbaldehyde

R Nivedita Desai a, S Sreenivasa a,*, S Naveen b, N K Lokanath c, P A Suchetan a, D B Aruna Kumar a
PMCID: PMC4645024  PMID: 26594588

Abstract

In the title compound, C15H17N3O, the aldehyde group is twisted relative to the quinoline group by17.6 (2)° due to the presence of a bulky piperazinyl group in the ortho position. The piperazine N atom attached to the aromatic ring is sp 3-hybridized and the dihedral angle between the mean planes through the the six piperazine ring atoms and through the quinoline ring system is 40.59 (7)°. Both piperazine substituents are in equatorial positions.

Keywords: crystal structure, quinolines, piperazines

Related literature  

For biological activity of quinoline derivatives, see: Nasveld et al. (2005); Eswaran et al. (2009); Leatham et al. (1983); Muruganantham et al. (2004); Maguire et al. (1994); Wilson et al. (1992); Strekowski et al. (1991). For photonic and electronic properties of poly-substituted quinolines, see: Gyoten et al. (2003).graphic file with name e-71-0o900-scheme1.jpg

Experimental  

Crystal data  

  • C15H17N3O

  • M r = 255.32

  • Monoclinic, Inline graphic

  • a = 12.3282 (4) Å

  • b = 5.8935 (2) Å

  • c = 18.9202 (7) Å

  • β = 103.591 (2)°

  • V = 1336.18 (8) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.65 mm−1

  • T = 296 K

  • 0.28 × 0.26 × 0.24 mm

Data collection  

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.838, T max = 0.859

  • 9762 measured reflections

  • 2181 independent reflections

  • 1859 reflections with I > 2σ(I)

  • R int = 0.048

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.054

  • wR(F 2) = 0.162

  • S = 1.06

  • 2181 reflections

  • 173 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.24 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: APEX2 and SAINT-Plus (Bruker, 2009); data reduction: SAINT-Plus and XPREP (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015020186/gk2647sup1.cif

e-71-0o900-sup1.cif (20.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015020186/gk2647Isup2.hkl

e-71-0o900-Isup2.hkl (105.1KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015020186/gk2647Isup3.cml

. DOI: 10.1107/S2056989015020186/gk2647fig1.tif

Mol­ecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.

CCDC reference: 1433198

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are thankful to the Institution of Excellence, Vijnana Bhavana, University of Mysore, Mysuru, for providing the single-crystal X-ray diffraction facility. RND, SS, PAS and DBAK are thankful to Tumkur University for providing laboratory facilities to carry out this work.

supplementary crystallographic information

S1. Introduction

Quinoline and its derivatives have been well known in pharmaceutical chemistry because of their wide spectrum of biological activities and their presence in naturally occurring compounds. They have been shown to possess anti­malarial (Nasveld et al., 2005), anti­biotic (Eswaran et al., 2009), anti­cancer (Denny et al., 1983), anti-inflammatory (Muruganantham et al., 2004), anti­hypertensive (Maguire et al., 1994), tyrokinase PDGF-RTK inhibition (Wilson et al., 1992) and anti-HIV properties (Strekowski et al., 1991). In addition, polysubstituted quinoline can achieve hierchical self-assembly into variety of meso and nano structures with enhanced photonic and electronic properties (Gyoten et al., 2003). In this view the title compound was synthesized to study its crystal structure.

S2. Experimental

S2.1. Synthesis and crystallization

2-Chloro­quinoline-3-carbaldehyde (0.42 g, 0.00351 mmol), N-methyl piperazine (0.14 g, 0.00351 mmol) and anhydrous K2CO3 (1.0 g, 0.002920 mmol) were refluxed for 24 hrs in DMF. The progress of the reaction was monitored by thin layer chromatography. After the completion of the reaction, the reaction mixture was poured into water and extracted to ethyl acetate. The organic layer was washed with water, dried and concentrated under vacuum using rotary evaporator. Single crystals of the title compound were obtained by slow evaporation of the ethyl acetate solution at room temperature (27oC).

S2.2. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. All H atoms were positioned with idealized geometry using a riding model with C—H = 0.93-0.97 Å. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent C atom).

S3. Results and discussion

The crystal packing of the compound does not feature any specific strong or weak inter­molecular inter­actions.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.

Crystal data

C15H17N3O Prism
Mr = 255.32 Dx = 1.269 Mg m3
Monoclinic, P21/n Melting point: 384 K
Hall symbol: -P 2yn Cu Kα radiation, λ = 1.54178 Å
a = 12.3282 (4) Å Cell parameters from 143 reflections
b = 5.8935 (2) Å θ = 3.9–64.5°
c = 18.9202 (7) Å µ = 0.65 mm1
β = 103.591 (2)° T = 296 K
V = 1336.18 (8) Å3 Prism, colourless
Z = 4 0.28 × 0.26 × 0.24 mm
F(000) = 544

Data collection

Bruker APEXII CCD diffractometer 2181 independent reflections
Radiation source: fine-focus sealed tube 1859 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.048
phi and φ scans θmax = 64.5°, θmin = 3.9°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −14→14
Tmin = 0.838, Tmax = 0.859 k = −6→6
9762 measured reflections l = −21→21

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.162 H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.1151P)2 + 0.0654P] where P = (Fo2 + 2Fc2)/3
2181 reflections (Δ/σ)max < 0.001
173 parameters Δρmax = 0.22 e Å3
0 restraints Δρmin = −0.24 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.44347 (10) 0.7887 (2) 0.60405 (6) 0.0446 (4)
N2 0.31637 (10) 0.4894 (2) 0.58318 (6) 0.0443 (4)
N3 0.15374 (11) 0.2821 (2) 0.46867 (7) 0.0492 (4)
O1 0.33529 (13) 0.4038 (3) 0.79890 (7) 0.0800 (5)
C1 0.38623 (12) 0.6362 (3) 0.63074 (7) 0.0415 (4)
C2 0.39605 (12) 0.6082 (3) 0.70773 (8) 0.0435 (4)
C3 0.46317 (13) 0.7537 (3) 0.75426 (8) 0.0456 (4)
H3 0.4690 0.7410 0.8040 0.055*
C4 0.52382 (12) 0.9229 (3) 0.72789 (8) 0.0429 (4)
C5 0.59503 (14) 1.0786 (3) 0.77313 (9) 0.0517 (5)
H5 0.6035 1.0718 0.8232 0.062*
C6 0.65119 (15) 1.2380 (3) 0.74416 (10) 0.0571 (5)
H6 0.6980 1.3397 0.7744 0.068*
C7 0.63874 (16) 1.2497 (3) 0.66853 (10) 0.0580 (5)
H7 0.6768 1.3606 0.6490 0.070*
C8 0.57153 (14) 1.1003 (3) 0.62334 (9) 0.0516 (5)
H8 0.5648 1.1094 0.5734 0.062*
C9 0.51232 (12) 0.9326 (3) 0.65156 (8) 0.0430 (4)
C10 0.19665 (13) 0.5037 (3) 0.58101 (8) 0.0477 (4)
H10A 0.1659 0.6413 0.5560 0.057*
H10B 0.1861 0.5100 0.6302 0.057*
C11 0.13648 (13) 0.3007 (3) 0.54226 (9) 0.0517 (5)
H11A 0.1635 0.1642 0.5694 0.062*
H11B 0.0573 0.3142 0.5399 0.062*
C12 0.27299 (14) 0.2697 (3) 0.47221 (9) 0.0522 (5)
H12A 0.2846 0.2582 0.4234 0.063*
H12B 0.3038 0.1347 0.4988 0.063*
C13 0.33266 (14) 0.4768 (3) 0.50926 (8) 0.0516 (5)
H13A 0.4117 0.4670 0.5106 0.062*
H13B 0.3031 0.6123 0.4824 0.062*
C14 0.09682 (18) 0.0831 (4) 0.43236 (9) 0.0660 (6)
H14A 0.1106 0.0708 0.3846 0.099*
H14B 0.0181 0.0973 0.4285 0.099*
H14C 0.1242 −0.0501 0.4600 0.099*
C15 0.34545 (14) 0.4132 (3) 0.73732 (9) 0.0561 (5)
H15 0.3201 0.2913 0.7067 0.067*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0470 (7) 0.0482 (8) 0.0386 (7) −0.0039 (6) 0.0102 (6) 0.0002 (5)
N2 0.0423 (7) 0.0538 (9) 0.0381 (7) −0.0054 (6) 0.0119 (5) −0.0038 (6)
N3 0.0541 (8) 0.0505 (9) 0.0400 (7) −0.0114 (6) 0.0047 (6) 0.0021 (6)
O1 0.0885 (10) 0.1024 (13) 0.0487 (8) −0.0299 (8) 0.0151 (7) 0.0178 (7)
C1 0.0400 (8) 0.0462 (9) 0.0389 (8) 0.0020 (6) 0.0102 (6) 0.0015 (6)
C2 0.0408 (8) 0.0503 (10) 0.0392 (8) 0.0025 (6) 0.0088 (6) 0.0038 (7)
C3 0.0456 (9) 0.0556 (10) 0.0348 (8) 0.0055 (7) 0.0076 (6) 0.0042 (7)
C4 0.0402 (8) 0.0467 (9) 0.0407 (8) 0.0049 (6) 0.0077 (6) 0.0001 (6)
C5 0.0529 (10) 0.0568 (11) 0.0431 (8) 0.0002 (8) 0.0064 (7) −0.0061 (7)
C6 0.0583 (10) 0.0557 (11) 0.0549 (10) −0.0102 (8) 0.0086 (8) −0.0100 (8)
C7 0.0640 (11) 0.0530 (11) 0.0576 (10) −0.0139 (8) 0.0155 (8) −0.0007 (8)
C8 0.0574 (10) 0.0544 (11) 0.0439 (8) −0.0055 (8) 0.0142 (7) 0.0014 (7)
C9 0.0427 (8) 0.0458 (10) 0.0402 (8) 0.0020 (6) 0.0090 (6) −0.0002 (6)
C10 0.0450 (9) 0.0568 (11) 0.0420 (8) −0.0011 (7) 0.0117 (6) 0.0002 (7)
C11 0.0481 (9) 0.0603 (11) 0.0465 (9) −0.0097 (7) 0.0108 (7) 0.0025 (7)
C12 0.0614 (10) 0.0561 (11) 0.0402 (8) −0.0041 (7) 0.0143 (7) −0.0042 (7)
C13 0.0513 (9) 0.0644 (11) 0.0424 (8) −0.0112 (8) 0.0180 (7) −0.0056 (7)
C14 0.0820 (13) 0.0605 (12) 0.0491 (10) −0.0239 (9) 0.0026 (9) 0.0008 (8)
C15 0.0567 (10) 0.0634 (12) 0.0449 (9) −0.0096 (8) 0.0050 (7) 0.0107 (8)

Geometric parameters (Å, º)

N1—C1 1.315 (2) C6—H6 0.9300
N1—C9 1.375 (2) C7—C8 1.364 (3)
N2—C1 1.391 (2) C7—H7 0.9300
N2—C13 1.4607 (18) C8—C9 1.406 (2)
N2—C10 1.4693 (19) C8—H8 0.9300
N3—C14 1.454 (2) C10—C11 1.505 (2)
N3—C12 1.458 (2) C10—H10A 0.9700
N3—C11 1.461 (2) C10—H10B 0.9700
O1—C15 1.202 (2) C11—H11A 0.9700
C1—C2 1.442 (2) C11—H11B 0.9700
C2—C3 1.361 (2) C12—C13 1.510 (2)
C2—C15 1.479 (2) C12—H12A 0.9700
C3—C4 1.406 (2) C12—H12B 0.9700
C3—H3 0.9300 C13—H13A 0.9700
C4—C5 1.411 (2) C13—H13B 0.9700
C4—C9 1.419 (2) C14—H14A 0.9600
C5—C6 1.357 (3) C14—H14B 0.9600
C5—H5 0.9300 C14—H14C 0.9600
C6—C7 1.404 (3) C15—H15 0.9300
C1—N1—C9 118.40 (12) N2—C10—C11 110.18 (13)
C1—N2—C13 116.58 (12) N2—C10—H10A 109.6
C1—N2—C10 116.60 (12) C11—C10—H10A 109.6
C13—N2—C10 109.84 (11) N2—C10—H10B 109.6
C14—N3—C12 110.53 (15) C11—C10—H10B 109.6
C14—N3—C11 110.40 (13) H10A—C10—H10B 108.1
C12—N3—C11 109.34 (12) N3—C11—C10 111.00 (13)
N1—C1—N2 118.89 (12) N3—C11—H11A 109.4
N1—C1—C2 122.74 (14) C10—C11—H11A 109.4
N2—C1—C2 118.32 (13) N3—C11—H11B 109.4
C3—C2—C1 118.36 (14) C10—C11—H11B 109.4
C3—C2—C15 119.41 (14) H11A—C11—H11B 108.0
C1—C2—C15 121.90 (15) N3—C12—C13 110.89 (14)
C2—C3—C4 120.69 (14) N3—C12—H12A 109.5
C2—C3—H3 119.7 C13—C12—H12A 109.5
C4—C3—H3 119.7 N3—C12—H12B 109.5
C3—C4—C5 123.55 (14) C13—C12—H12B 109.5
C3—C4—C9 117.08 (14) H12A—C12—H12B 108.0
C5—C4—C9 119.36 (15) N2—C13—C12 108.90 (13)
C6—C5—C4 120.59 (15) N2—C13—H13A 109.9
C6—C5—H5 119.7 C12—C13—H13A 109.9
C4—C5—H5 119.7 N2—C13—H13B 109.9
C5—C6—C7 120.09 (16) C12—C13—H13B 109.9
C5—C6—H6 120.0 H13A—C13—H13B 108.3
C7—C6—H6 120.0 N3—C14—H14A 109.5
C8—C7—C6 120.80 (16) N3—C14—H14B 109.5
C8—C7—H7 119.6 H14A—C14—H14B 109.5
C6—C7—H7 119.6 N3—C14—H14C 109.5
C7—C8—C9 120.59 (15) H14A—C14—H14C 109.5
C7—C8—H8 119.7 H14B—C14—H14C 109.5
C9—C8—H8 119.7 O1—C15—C2 123.51 (18)
N1—C9—C8 118.78 (13) O1—C15—H15 118.2
N1—C9—C4 122.64 (14) C2—C15—H15 118.2
C8—C9—C4 118.56 (15)

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: GK2647).

References

  1. Bruker (2009). APEX2, SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Eswaran, S., Adhikari, A. V. & Shetty, N. S. (2009). Eur. J. Med. Chem. 44, 4637–4647. [DOI] [PubMed]
  3. Gyoten, M., Nagaya, H., Fukuda, S., Ashida, Y. & Kawano, Y. (2003). Chem. Pharm. Bull. 51, 122–133. [DOI] [PubMed]
  4. Leatham, P. A., Bird, H. A., Wright, V., Seymour, D. & Gordon, A. (1983). Eur. J. Rheumatol. Inflamm. 6, 209–211. [PubMed]
  5. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  6. Maguire, M. P., Sheets, K. R., McVety, K., Spada, A. P. & Zilberstein, A. (1994). J. Med. Chem. 37, 2129–2137. [DOI] [PubMed]
  7. Muruganantham, N., Sivakumar, R., Anbalagan, N., Gunasekaran, V. & Leonard, J. T. (2004). Biol. Pharm. Bull. 27, 1683–1687. [DOI] [PubMed]
  8. Nasveld, P. & Kitchener, S. (2005). Trans. R. Soc. Trop. Med. Hyg. 99, 2–5. [DOI] [PubMed]
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Strekowski, L., Mokrosz, J. L., Honkan, V. A., Czarny, A., Cegla, M. T., Wydra, R. L., Patterson, S. E. & Schinazi, R. F. (1991). J. Med. Chem. 34, 1739–1746. [DOI] [PubMed]
  11. Wilson, W. D., Zhao, M., Patterson, S. E., Wydra, R. L., Janda, L. & Strekowski, L. (1992). J. Med. Chem. Res. 2, 102–110.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015020186/gk2647sup1.cif

e-71-0o900-sup1.cif (20.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015020186/gk2647Isup2.hkl

e-71-0o900-Isup2.hkl (105.1KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015020186/gk2647Isup3.cml

. DOI: 10.1107/S2056989015020186/gk2647fig1.tif

Mol­ecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.

CCDC reference: 1433198

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES