Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Oct 17;71(Pt 11):o860–o861. doi: 10.1107/S2056989015019325

Crystal structure of 8-eth­oxy-3-(4-nitro­phen­yl)-2H-chromen-2-one

Shashikanth Walki a, S Naveen b, S Kenchanna a, K M Mahadevan a, M N Kumara c, N K Lokanath d,*
PMCID: PMC4645040  PMID: 26594565

Abstract

In the title compound, C17H13NO5, the coumarin ring system is essentially planar (r.m.s. deviation = 0.008 Å). The nitro­phenyl ring makes a dihedral angle of 25.27 (9)° with the coumarin ring plane. The nitro group is almost coplanar with the phenyl ring to which it is attached, making a dihedral angle of 4.3 (3)°. The eth­oxy group is inclined to the coumarin ring plane by 4.1 (2)°. Electron delocalization was found at the short bridging C—C bond with a bond length of 1.354 (2) Å. In the crystal, mol­ecules are linked via C—H⋯O hydrogen bonds, forming sheets in the bc plane. The sheets are linked via π–π stacking [centroid–centroid distances = 3.5688 (13) and 3.7514 (13) Å], forming a three-dimensional structure.

Keywords: crystal structure, coumarin, chromen, C—H⋯O hydrogen bonds, π–π stacking

Related literature  

For coumarin derivatives as fluorescent brighteners, see: Tian et al. (2000). For details of natural or synthetic coumarins which inhibit lipid peroxidation and scavenge hydroxyl radicals and superoxide anions, see: Naveen et al. (2007). For further details of our research on coumarins, see: Naveen et al. (2006a ,b ).graphic file with name e-71-0o860-scheme1.jpg

Experimental  

Crystal data  

  • C17H13NO5

  • M r = 311.28

  • Orthorhombic, Inline graphic

  • a = 6.8118 (9) Å

  • b = 13.6726 (18) Å

  • c = 15.909 (2) Å

  • V = 1481.7 (3) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.87 mm−1

  • T = 296 K

  • 0.29 × 0.26 × 0.21 mm

Data collection  

  • Bruker X8 Proteum diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2013) T min = 0.786, T max = 0.838

  • 6729 measured reflections

  • 2371 independent reflections

  • 2225 reflections with I > 2σ(I)

  • R int = 0.040

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.045

  • wR(F 2) = 0.131

  • S = 1.03

  • 2371 reflections

  • 210 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.21 e Å−3

  • Absolute structure: 957 Friedel pairs; Flack (1983)

  • Absolute structure parameter: 0.1 (2)

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989015019325/su5224sup1.cif

e-71-0o860-sup1.cif (25.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015019325/su5224Isup2.hkl

e-71-0o860-Isup2.hkl (116.5KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015019325/su5224Isup3.cml

. DOI: 10.1107/S2056989015019325/su5224fig1.tif

A view of the mol­ecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

b . DOI: 10.1107/S2056989015019325/su5224fig2.tif

A viewed along the b axis of the crystal packing of the title compound.

CCDC reference: 1430858

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
C4H4O22i 0.93 2.53 3.453(2) 171
C8H8O14ii 0.93 2.31 3.226(2) 166
C20H20O22i 0.93 2.52 3.275(3) 138

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors are thankful to IOE, Vijnana Bhavana, University of Mysore, for providing the single-crystal X-ray diffraction facility. The authors acknowledge the financial support received from DST, New Delhi, under SERB reference No: SB/EMEQ-351/2013 (dated 29-10-2013).

supplementary crystallographic information

S1. Comment

Coumarin derivatives are found to be one of the major groups of compounds used as fluorescent brighteners (Tian et al., 2000) or fluorescent dyes and they have exhibited good bleed fastness and durability for coating plastics or in acrylic lacquers. Several natural or synthetic coumarins with various hydroxyl and other substituents were found to inhibit lipid peroxidation and to scavenge hydroxyl radicals and superoxide anions (Naveen et al., 2007). As a part of our ongoing research on coumarins (Naveen et al., 2006a,b), we report herein on the synthesis, characterization and crystal structure of the title compound. The compound is being assessed for biological activity.

The molecular structure of the title compound is shown in Fig. 1. The coumarin ring is essentially planar with the two axially fused rings forming a dihedral angle of 0.45 (10) °, while the 4-nitro­phenyl ring makes a dihedral angle of 25.27 (9) Å with the coumarin mean plane. The nitro group is almost planar to the phenyl ring to which it is attached with a dihedral angle of 4.3 (3) °. The eth­oxy group is inclined to the coumarin ring plane by 4.1 (2) °.

Electron delocalization was found at the short C3—C4 bond with a bond length of 1.354 (2) Å. Here as well as in other coumarin compounds reported earlier an important asymmetry in the O—C—O bond angle was detected [O1—C2—O14 = 116.10 (14)° and O14—C2—C3 = 126.14 (15)°]. The bond angles, O1—C10—C9 and C4—C5—C6, at the junction of the two rings in the coumarin moiety are 117.97 (15)° and 123.44 (16)° respectively.

In the crystal, molecules are linked via C–H···O hydrogen bonds forming sheets in the bc plane. The sheets are linked via π-π inter­actions [Cg1···Cg3i = 3.5688 (13) Å; Cg1···Cg3ii = 3.75114 (13) Å; Cg1 and Cg3 are the centroids of rings O1/C2—C5/C10 and C15—C20; symmetry codes: (i) x-1/2, -y+3/2, -z+1; (ii) x+1/2, -y+3/2, -z+1] forming a three-dimensional structure (Table 1 and Fig. 2)

S2. Synthesis and crystallization

A mixture of 0.512 g m (3.083 mmol) of 3-eth­oxy­salicyl­aldehyde and 0.50 g m (3.083 mmol) of 4-nitro phenyl­aceto­nitrile were dissolved in ethanol (25 ml), followed by the addition of 0.525 g m (6.16 mmol) of piperidine and then the reaction mixture was stirred at room temperature for 3 h. The completion of the reaction was monitored by thin layer chromatography [petroleum ether and ethyl acetate (8:2 v/v)]. After completion the reaction mixture was filtered and washed with di­ethyl­ether giving a yellow precipitation. This product was refluxed with 10% acetic acid for 2 s and then the crude product was filtered and washed with water. It was further purified by recrystallization using acetone as solvent to give yellow crystals of the title compound in good yield (m.p.: 475-477 K; yield: 91%). 1H NMR(400 MHz, DMSO-d6): δ = 8.47 (s, 1H, Ar—H), 8.34 (dd, J= 2.08 Hz, 6.94 Hz, 2H, Ar—H), 8.05 (dd, J=2.0 Hz, 6.96 Hz, 2H, Ar—H), 7.34–7.36(m, 3H, Ar—H), 4.22(q, J= 6.92 Hz, 2H, CH2), 1.43(t, J=6.96 Hz,3H, CH3). 13C NMR (400 MHz, DMSO-d6): δ = 45.554, 142.927, 145.554, 142.927, 129.804, 124.807, 123.375, 120.205, 119.868, 115.603, 64.470, 14.63. IR (KBr) (vmax/cm-1): 2925 (C—H), 1700 (C=O), 1346 (N—O), 1097 (C—O—C). Mass spectra gave a molecular ion peak at m/z = 311.4[M+].

S3. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The hydrogen atom were fixed geometrically (C—H= 0.93–0.96 Å) and allowed to ride on their parent atoms with Uiso(H) =1.5Ueq(C-methyl) and = 1.2Ueq(C) for other H atoms.

Figures

Fig. 1.

Fig. 1.

A view of the molecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

A viewed along the b axis of the crystal packing of the title compound.

Crystal data

C17H13NO5 F(000) = 648
Mr = 311.28 Dx = 1.395 Mg m3
Orthorhombic, P212121 Cu Kα radiation, λ = 1.54178 Å
Hall symbol: P 2ac 2ab Cell parameters from 2371 reflections
a = 6.8118 (9) Å θ = 5.6–64.1°
b = 13.6726 (18) Å µ = 0.87 mm1
c = 15.909 (2) Å T = 296 K
V = 1481.7 (3) Å3 Prism, yellow
Z = 4 0.29 × 0.26 × 0.21 mm

Data collection

Bruker X8 Proteum diffractometer 2371 independent reflections
Radiation source: Bruker MicroStar microfocus rotating anode 2225 reflections with I > 2σ(I)
Helios multilayer optics monochromator Rint = 0.040
Detector resolution: 18.4 pixels mm-1 θmax = 64.1°, θmin = 5.6°
φ and ω scans h = −7→6
Absorption correction: multi-scan (SADABS; Bruker, 2013) k = −15→15
Tmin = 0.786, Tmax = 0.838 l = −18→18
6729 measured reflections

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.045 w = 1/[σ2(Fo2) + (0.103P)2] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.131 (Δ/σ)max = 0.003
S = 1.03 Δρmax = 0.25 e Å3
2371 reflections Δρmin = −0.21 e Å3
210 parameters Extinction correction: SHELXL, FC*=KFC[1+0.001XFC2Λ3/SIN(2Θ)]-1/4
0 restraints Extinction coefficient: 0.0100 (19)
Primary atom site location: structure-invariant direct methods Absolute structure: 957 Friedel pairs; Flack (1983)
Secondary atom site location: difference Fourier map Absolute structure parameter: 0.1 (2)

Special details

Experimental. Commercially available chemicals were used directly as received. 1H NMR was recorded at 400 MHz in Dimethylsulfoxide (DMSO-d6). 13C NMR was recorded at 400 MHz in DMSO-d6. Mass spectra was recorded on a Jeol SX 102=DA-6000 (10 kV) fast atom bombardment (FAB) mass spectrometer and IR spectra was recorded on a Nicolet 5700 F T—IR instrument as KBr discs.
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.5699 (2) 0.71184 (8) 0.34374 (7) 0.0409 (4)
O11 0.5487 (2) 0.63066 (10) 0.19274 (7) 0.0541 (5)
O14 0.6120 (2) 0.84884 (8) 0.41311 (7) 0.0515 (5)
O22 0.5085 (3) 0.97085 (14) 0.82793 (11) 0.0869 (7)
O23 0.5615 (4) 0.83031 (16) 0.88337 (9) 0.0860 (7)
N21 0.5394 (3) 0.88318 (16) 0.82255 (11) 0.0613 (7)
C2 0.5811 (3) 0.76190 (12) 0.41836 (10) 0.0384 (5)
C3 0.5552 (3) 0.70612 (11) 0.49641 (10) 0.0371 (5)
C4 0.5162 (3) 0.60920 (12) 0.49082 (10) 0.0404 (5)
C5 0.5066 (3) 0.55829 (13) 0.41241 (11) 0.0418 (5)
C6 0.4682 (4) 0.45725 (14) 0.40574 (12) 0.0552 (7)
C7 0.4586 (4) 0.41549 (14) 0.32849 (12) 0.0600 (7)
C8 0.4848 (4) 0.47095 (14) 0.25537 (12) 0.0555 (7)
C9 0.5232 (3) 0.56989 (14) 0.25975 (11) 0.0440 (6)
C10 0.5335 (3) 0.61330 (13) 0.33952 (11) 0.0385 (5)
C12 0.5377 (4) 0.58696 (15) 0.10978 (10) 0.0560 (7)
C13 0.5582 (5) 0.66749 (19) 0.04725 (12) 0.0751 (9)
C15 0.5625 (3) 0.75681 (13) 0.57930 (11) 0.0378 (5)
C16 0.5182 (3) 0.85604 (13) 0.59012 (11) 0.0431 (5)
C17 0.5132 (3) 0.89769 (14) 0.66921 (12) 0.0489 (6)
C18 0.5499 (3) 0.83947 (15) 0.73796 (11) 0.0484 (6)
C19 0.5985 (4) 0.74317 (15) 0.73029 (11) 0.0528 (7)
C20 0.6066 (3) 0.70218 (14) 0.65155 (10) 0.0486 (6)
H4 0.49480 0.57420 0.54010 0.0480*
H6 0.44980 0.41960 0.45380 0.0660*
H7 0.43410 0.34880 0.32400 0.0720*
H8 0.47620 0.44070 0.20310 0.0670*
H12A 0.41270 0.55400 0.10250 0.0670*
H12B 0.64210 0.53950 0.10250 0.0670*
H13A 0.45240 0.71320 0.05420 0.1120*
H13B 0.55450 0.64080 −0.00850 0.1120*
H13C 0.68110 0.70040 0.05580 0.1120*
H16 0.49170 0.89450 0.54330 0.0520*
H17 0.48550 0.96380 0.67580 0.0590*
H19 0.62580 0.70580 0.77770 0.0630*
H20 0.64200 0.63680 0.64600 0.0580*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0562 (8) 0.0396 (7) 0.0269 (6) 0.0029 (6) −0.0021 (6) 0.0005 (5)
O11 0.0836 (11) 0.0500 (8) 0.0286 (6) 0.0015 (7) −0.0015 (6) −0.0034 (5)
O14 0.0842 (11) 0.0360 (6) 0.0344 (6) −0.0016 (6) −0.0087 (7) 0.0027 (5)
O22 0.1200 (16) 0.0747 (11) 0.0659 (10) −0.0020 (11) 0.0099 (11) −0.0370 (9)
O23 0.1136 (16) 0.1095 (13) 0.0350 (8) 0.0045 (13) −0.0005 (9) −0.0103 (9)
N21 0.0599 (11) 0.0818 (14) 0.0423 (10) −0.0075 (10) 0.0042 (9) −0.0213 (9)
C2 0.0450 (10) 0.0401 (9) 0.0301 (8) 0.0039 (7) −0.0032 (8) −0.0012 (7)
C3 0.0418 (10) 0.0411 (9) 0.0285 (8) 0.0045 (8) −0.0017 (8) −0.0005 (7)
C4 0.0491 (10) 0.0430 (9) 0.0291 (8) 0.0027 (9) 0.0004 (7) 0.0012 (7)
C5 0.0506 (10) 0.0424 (9) 0.0325 (8) 0.0024 (8) −0.0013 (8) −0.0007 (7)
C6 0.0810 (15) 0.0430 (9) 0.0417 (10) −0.0023 (10) 0.0016 (11) 0.0015 (8)
C7 0.0931 (17) 0.0382 (10) 0.0487 (10) −0.0053 (10) −0.0022 (12) −0.0052 (8)
C8 0.0799 (15) 0.0470 (10) 0.0397 (9) 0.0034 (10) −0.0059 (10) −0.0128 (8)
C9 0.0552 (12) 0.0485 (10) 0.0282 (8) 0.0061 (9) −0.0020 (8) −0.0017 (7)
C10 0.0433 (9) 0.0383 (9) 0.0339 (8) 0.0044 (8) −0.0014 (8) −0.0014 (7)
C12 0.0765 (15) 0.0636 (12) 0.0279 (9) 0.0073 (11) −0.0024 (9) −0.0081 (8)
C13 0.107 (2) 0.0833 (15) 0.0351 (11) −0.0015 (16) 0.0019 (13) −0.0004 (10)
C15 0.0382 (9) 0.0433 (9) 0.0318 (8) 0.0011 (7) −0.0010 (7) −0.0026 (7)
C16 0.0500 (10) 0.0432 (9) 0.0360 (9) −0.0011 (8) −0.0014 (8) −0.0033 (7)
C17 0.0528 (11) 0.0435 (10) 0.0504 (11) −0.0023 (9) 0.0037 (10) −0.0108 (8)
C18 0.0473 (11) 0.0645 (12) 0.0334 (9) −0.0062 (10) 0.0010 (8) −0.0138 (8)
C19 0.0649 (13) 0.0621 (12) 0.0314 (9) 0.0026 (10) −0.0051 (9) −0.0008 (8)
C20 0.0651 (13) 0.0475 (10) 0.0333 (9) 0.0055 (10) −0.0048 (9) −0.0014 (8)

Geometric parameters (Å, º)

O1—C2 1.372 (2) C15—C16 1.401 (3)
O1—C10 1.372 (2) C15—C20 1.403 (2)
O11—C9 1.363 (2) C16—C17 1.382 (3)
O11—C12 1.451 (2) C17—C18 1.376 (3)
O14—C2 1.210 (2) C18—C19 1.363 (3)
O22—N21 1.220 (3) C19—C20 1.373 (2)
O23—N21 1.217 (3) C4—H4 0.9300
N21—C18 1.474 (3) C6—H6 0.9300
C2—C3 1.468 (2) C7—H7 0.9300
C3—C4 1.354 (2) C8—H8 0.9300
C3—C15 1.491 (2) C12—H12A 0.9700
C4—C5 1.430 (2) C12—H12B 0.9700
C5—C6 1.410 (3) C13—H13A 0.9600
C5—C10 1.394 (3) C13—H13B 0.9600
C6—C7 1.357 (3) C13—H13C 0.9600
C7—C8 1.400 (3) C16—H16 0.9300
C8—C9 1.380 (3) C17—H17 0.9300
C9—C10 1.403 (3) C19—H19 0.9300
C12—C13 1.490 (3) C20—H20 0.9300
C2—O1—C10 122.84 (13) N21—C18—C19 119.02 (17)
C9—O11—C12 117.00 (15) C17—C18—C19 122.13 (17)
O22—N21—O23 123.3 (2) C18—C19—C20 119.05 (17)
O22—N21—C18 118.08 (18) C15—C20—C19 121.42 (18)
O23—N21—C18 118.6 (2) C3—C4—H4 119.00
O1—C2—O14 116.10 (14) C5—C4—H4 119.00
O1—C2—C3 117.77 (14) C5—C6—H6 120.00
O14—C2—C3 126.14 (15) C7—C6—H6 120.00
C2—C3—C4 118.45 (14) C6—C7—H7 119.00
C2—C3—C15 120.19 (14) C8—C7—H7 119.00
C4—C3—C15 121.30 (15) C7—C8—H8 120.00
C3—C4—C5 122.85 (15) C9—C8—H8 120.00
C4—C5—C6 123.44 (16) O11—C12—H12A 110.00
C4—C5—C10 117.19 (16) O11—C12—H12B 110.00
C6—C5—C10 119.36 (16) C13—C12—H12A 110.00
C5—C6—C7 119.30 (18) C13—C12—H12B 110.00
C6—C7—C8 121.24 (18) H12A—C12—H12B 109.00
C7—C8—C9 120.88 (17) C12—C13—H13A 109.00
O11—C9—C8 125.63 (16) C12—C13—H13B 109.00
O11—C9—C10 116.32 (16) C12—C13—H13C 109.00
C8—C9—C10 118.04 (17) H13A—C13—H13B 110.00
O1—C10—C5 120.86 (15) H13A—C13—H13C 109.00
O1—C10—C9 117.97 (15) H13B—C13—H13C 109.00
C5—C10—C9 121.17 (17) C15—C16—H16 119.00
O11—C12—C13 107.35 (16) C17—C16—H16 119.00
C3—C15—C16 123.50 (16) C16—C17—H17 121.00
C3—C15—C20 118.97 (15) C18—C17—H17 121.00
C16—C15—C20 117.46 (16) C18—C19—H19 120.00
C15—C16—C17 121.10 (17) C20—C19—H19 121.00
C16—C17—C18 118.76 (18) C15—C20—H20 119.00
N21—C18—C17 118.84 (18) C19—C20—H20 119.00
C10—O1—C2—O14 −179.25 (17) C6—C5—C10—C9 −0.1 (3)
C10—O1—C2—C3 0.8 (3) C4—C5—C10—C9 −178.89 (19)
C2—O1—C10—C5 −0.3 (3) C4—C5—C6—C7 178.9 (2)
C2—O1—C10—C9 179.35 (18) C10—C5—C6—C7 0.1 (4)
C12—O11—C9—C8 −1.1 (3) C4—C5—C10—O1 0.8 (3)
C12—O11—C9—C10 −179.77 (19) C5—C6—C7—C8 −0.4 (4)
C9—O11—C12—C13 176.8 (2) C6—C7—C8—C9 0.6 (4)
O23—N21—C18—C17 176.1 (2) C7—C8—C9—C10 −0.5 (4)
O22—N21—C18—C19 175.2 (2) C7—C8—C9—O11 −179.2 (2)
O22—N21—C18—C17 −3.8 (3) O11—C9—C10—C5 179.02 (18)
O23—N21—C18—C19 −4.9 (3) C8—C9—C10—O1 −179.4 (2)
O1—C2—C3—C4 −1.9 (3) C8—C9—C10—C5 0.3 (3)
O1—C2—C3—C15 −178.98 (17) O11—C9—C10—O1 −0.7 (3)
O14—C2—C3—C15 1.1 (3) C3—C15—C16—C17 175.17 (19)
O14—C2—C3—C4 178.2 (2) C20—C15—C16—C17 −1.7 (3)
C2—C3—C15—C20 −157.80 (19) C3—C15—C20—C19 −174.2 (2)
C2—C3—C15—C16 25.4 (3) C16—C15—C20—C19 2.8 (3)
C2—C3—C4—C5 2.5 (3) C15—C16—C17—C18 −0.9 (3)
C4—C3—C15—C16 −151.6 (2) C16—C17—C18—N21 −178.37 (19)
C4—C3—C15—C20 25.2 (3) C16—C17—C18—C19 2.6 (3)
C15—C3—C4—C5 179.53 (19) N21—C18—C19—C20 179.4 (2)
C3—C4—C5—C6 179.3 (2) C17—C18—C19—C20 −1.6 (4)
C3—C4—C5—C10 −1.9 (3) C18—C19—C20—C15 −1.2 (4)
C6—C5—C10—O1 179.6 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C4—H4···O22i 0.93 2.53 3.453 (2) 171
C8—H8···O14ii 0.93 2.31 3.226 (2) 166
C20—H20···O22i 0.93 2.52 3.275 (3) 138

Symmetry codes: (i) −x+1, y−1/2, −z+3/2; (ii) −x+1, y−1/2, −z+1/2.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: SU5224).

References

  1. Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  3. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  4. Naveen, S., Lakshmi, S., Manvar, D., Parecha, A., Shah, A., Sridhar, M. A. & Shashidhara Prasad, J. (2007). J. Chem. Crystallogr. 37, 733–738.
  5. Naveen, S., Priti, A., Kuldip, U., Shah, A., Sridhar, M. A. & Shashidhara Prasad, J. (2006b). J. Anal. Sci. 22, x103–x104.
  6. Naveen, S., Dinesh, M., Alpesh, P., Shah, A., Sridhar, M. A. & Shashidhara Prasad, J. (2006a). J. Anal. Sci. 22, x101–x102.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  9. Tian, Y., Akiyama, E., Nagase, Y., Kanazawa, A., Tsutsumi, O. & Ikeda, T. (2000). Macromol. Chem. Phys. 201, 1640–1652.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989015019325/su5224sup1.cif

e-71-0o860-sup1.cif (25.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015019325/su5224Isup2.hkl

e-71-0o860-Isup2.hkl (116.5KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015019325/su5224Isup3.cml

. DOI: 10.1107/S2056989015019325/su5224fig1.tif

A view of the mol­ecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

b . DOI: 10.1107/S2056989015019325/su5224fig2.tif

A viewed along the b axis of the crystal packing of the title compound.

CCDC reference: 1430858

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES