The dinuclear complex [{Fe(CO)3}2(μ-L)] [L = 3,3-dimethyl-4-(propan-2-ylidene)thietane-2,2-bis(thiolate)] consists of two Fe(CO)3 moieties bridged by a dithiolate ligand. This is the first crystal structure reported in which the 3,3-dimethyl-4-(propan-2-ylidene)thietane-2,2-bis(thiolate) ligand bridges two metal atoms.
Keywords: crystal structure, iron(I), thietane, hexacarbonyl
Abstract
The title complex, [Fe2(C8H12S3)(CO)6] or [{Fe(CO)3}2(μ-L)] [L = 3,3-dimethyl-4-(propan-2-ylidene)thietane-2,2-bis(thiolato)], consists of two Fe(CO)3 moieties double-bridged by a dithiolate ligand. Each of the two FeI atoms has a distorted anti-prismatic coordination environment consisting of three carbonyl groups, two S atoms of the dithiolate ligand and the neighboring FeI atom [Fe—Fe = 2.4921 (4) Å]. Weak C—H⋯O intermolecular interactions result in the formation of dimers. This is the second crystal structure reported with the 3,3-dimethyl-4-(propan-2-ylidene)thietane-2,2-bis(thiolate) ligand and the first in which it bridges two metal atoms.
Chemical context
Iron–sulfur complexes have attracted considerable attention over the past decades (Ogino et al., 1998 ▸). This is mainly because such complexes possess the distinctive iron–sulfur cluster core, which is biologically related to the active site of [FeFe]-hydrogenases (Fontecilla-Camps et al., 2007 ▸). In particular, [FeFe]-hydrogenases are a class of natural enzymes that can reversibly catalyse the evolution and uptake of hydrogen in several microorganisms (Cammack, 1999 ▸; Stephenson & Stickland, 1931 ▸). In view of this, a large number of iron–sulfur cluster complexes have been designed and synthesized as the active site models of [FeFe]-hydrogenases (e.g. Capon et al., 2005 ▸; Darensbourg et al., 2000 ▸; Gloaguen & Rauchfuss, 2009 ▸; Rauchfuss, 2015 ▸; Tard & Pickett, 2009 ▸).
Most recently, we investigated the preparation of iron–sulfur complexes via the reaction of 1,3-cyclobutanedithiolate compounds with [Fe3(CO)12] and have obtained an unexpected iron–sulfur complex, [Fe2(CO)6(C8H12S3)] or [{Fe(CO)3}2(μ-L)] [L = 3,3-dimethyl-4-(propan-2-ylidene)thietane-2,2-bis(thiolate), C8H12S3], (I).
Fig. 1 ▸ shows a possible formation process for the 3,3-dimethyl-4-(propan-2-ylidene)thietane-2,2-bis(thiolate) ligand via rearrangement of the dithione starting material and its reaction to form compound (I). Similar rearrangements of dithiones have been reported previously (Elam & Davis, 1967 ▸). Herein, we report the synthesis conditions and crystal structure of the title complex (I).
Figure 1.
Schematic representation of a possible formation process for the 3,3-dimethyl-4-(propan-2-ylidene)thietane-2,2-bis(thiolato) ligand from the starting material.
Structural commentary
The molecular structure of (I) consists of two six-coordinate iron(I) atoms, each in a distorted trigonal anti-prismatic coordination environment (Fig. 2 ▸). The coordination sphere of Fe1 is filled by three carbonyl C atoms [Fe1—C1 = 1.8158 (19), Fe1—C2 = 1.7900 (18), Fe1—C3 = 1.8047 (18) Å), two S atoms of a bridging dithiolate ligand [Fe1—S1 = 2.2675 (5), Fe1—S2 = 2.2636 (5) Å], and the neighboring FeI atom [Fe1—Fe2 = 2.4921 (4) Å]. The coordination sphere of Fe2 is similarly filled by three carbonyl C atoms [Fe2—C4 = 1.7986 (19), Fe2—C5 = 1.8013 (19), Fe2—C6 = 1.8054 (19) Å], two S atoms [Fe2—S1 = 2.2624 (5), Fe2—S2 = 2.2601 (5) Å], and the neighboring FeI atom.
Figure 2.
The molecular structure of (I) with displacement ellipsoids drawn at the 35% probability level for non-H atoms and spheres of arbitrary size for H atoms.
The C7—S3—C9 bond angle of 77.86 (8)° is significantly smaller than the other angles making up the thietane ring [S3—C7—C8 = 92.82 (10)°; S3—C9—C8 = 96.26 (11)°; C7—C8—C9 = 93.06 (12)°]. The central ring of the anion is nearly planar with a S3—C7—C8—C9 torsion angle of −0.74 (11)°. The plane through S1—C7—S2 is rotated by 89.94 (11)° with respect to the thietane ring. Similarly, the dihedral angle between the thietane ring and the plane through C11—C8—C12 is 89.74 (16)°. The =C(CH3)2 group (C13—C10—C14) is only slightly out of the plane of the central ring, making a dihedral angle of 4.63 (18)°.
Supramolecular features
There are no significant supramolecular features to discuss with the extended structure of (I). There are weak C—H⋯O intermolecular interactions between one methyl group from the dithiolate ligand and one of the carbonyl oxygen atoms, Table 1 ▸. These interactions result in the formation of dimers of (I), Fig. 3 ▸.
Table 1. Hydrogen-bond geometry (, ).
| DHA | DH | HA | D A | DHA |
|---|---|---|---|---|
| C13H13BO2i | 0.98 | 2.56 | 3.334(2) | 136 |
Symmetry code: (i)
.
Figure 3.
A plot of (a) dimers of (I) with the C—H⋯O interactions highlighted as blue dashed lines; and (b) an expanded view along the c axis of the packing of (I) with an overlay of the unit cell. Orange = Fe, yellow = S, red = O, gray = C, green = H.
Database survey
Only one other crystal structure with 3,3-dimethyl-4-(propan-2-ylidene)thietane-2,2-bis(thiolate) is reported in the Cambridge Crystallographic Database (Groom & Allen, 2014 ▸). The compound is a mononuclear square-planar platinum(II) bis(triphenylphosphine) complex (Okuma et al., 2007 ▸).
A search of the Cambridge Crystallographic Database (Groom & Allen, 2014 ▸) returns eighteen hexacarbonyldi-iron(I) complexes in which there is a bridging S—C—S dithiolate moiety. The range of Fe—Fe distances for these compounds is 2.461 Å − 2.501 Å [average 2.482 Å] (Alvarez-Toledano et al., 1999 ▸; Shi et al., 2011 ▸). The Fe1—Fe2 distance in (I) of 2.4921 (4) Å falls within this range. The Fe—S distances for the database compounds range from 2.244 Å − 2.296 Å [average 2.271 Å] (Broadhurst et al., 1982 ▸; Nekhaev et al., 1991 ▸). All of the Fe—S distances in (I) [average 2.263 Å] fall within this range.
Synthesis and crystallization
A mixture of tetramethyl-1,3-cyclobutanedithione (130 mg, 0.76 mmol) and Fe3(CO)12 (383 mg, 0.76 mmol) was dissolved in 15 ml dry toluene. The reaction mixture was refluxed for 2 h, and the solution color change from a green to a red was observed. After removal of the solvent under vacuum, the resulting residue was chromatographed by silica gel column eluting with hexane–CH2Cl2 (10:1, v/v). The main red band was collected to get an orange–red solid (10 mg, 0.02 mmol, 3% yield). Crystals suitable for X-ray diffraction were grown by slow evaporation of hexane of the orange–red solid at room temperature.
Refinement
Crystal data, data collection and structure refinement details are summarized in Table 2 ▸. Methyl H atom positions were optimized by rotation about R—C bonds with idealized C—H, R⋯H and H⋯H distances and included as as riding idealized contributors [C—Hmethyl = 0.98 Å with U iso(H) = 1.5U eq(C)]. The 001 reflection was omitted from the final refinement because it was obscured by the shadow of the beam stop.
Table 2. Experimental details.
| Crystal data | |
| Chemical formula | [Fe2(C8H12S3)(CO)6] |
| M r | 484.12 |
| Crystal system, space group | Triclinic, P
|
| Temperature (K) | 100 |
| a, b, c () | 9.3619(10), 9.7681(11), 10.6249(12) |
| , , () | 88.092(6), 78.668(6), 76.559(6) |
| V (3) | 926.51(18) |
| Z | 2 |
| Radiation type | Mo K |
| (mm1) | 1.93 |
| Crystal size (mm) | 0.27 0.13 0.05 |
| Data collection | |
| Diffractometer | Bruker Kappa APEXII CCD |
| Absorption correction | Integration (SADABS; Bruker, 2014 ▸) |
| T min, T max | 0.752, 0.935 |
| No. of measured, independent and observed [I > 2(I)] reflections | 26313, 4095, 3603 |
| R int | 0.034 |
| (sin /)max (1) | 0.643 |
| Refinement | |
| R[F 2 > 2(F 2)], wR(F 2), S | 0.022, 0.055, 1.04 |
| No. of reflections | 4095 |
| No. of parameters | 230 |
| H-atom treatment | H-atom parameters constrained |
| max, min (e 3) | 0.46, 0.26 |
Supplementary Material
Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015018496/wm5218sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015018496/wm5218Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989015018496/wm5218Isup3.cdx
CCDC reference: 1429290
Additional supporting information: crystallographic information; 3D view; checkCIF report
Acknowledgments
This work was supported by the National Institutes of Health through GM061153.
supplementary crystallographic information
Crystal data
| [Fe2(C8H12S3)(CO)6] | Z = 2 |
| Mr = 484.12 | F(000) = 488 |
| Triclinic, P1 | Dx = 1.735 Mg m−3 |
| a = 9.3619 (10) Å | Mo Kα radiation, λ = 0.71073 Å |
| b = 9.7681 (11) Å | Cell parameters from 9920 reflections |
| c = 10.6249 (12) Å | θ = 2.3–27.1° |
| α = 88.092 (6)° | µ = 1.93 mm−1 |
| β = 78.668 (6)° | T = 100 K |
| γ = 76.559 (6)° | Plate, orange |
| V = 926.51 (18) Å3 | 0.27 × 0.13 × 0.05 mm |
Data collection
| Bruker Kappa APEXII CCD diffractometer | 4095 independent reflections |
| Radiation source: fine-focus sealed tube | 3603 reflections with I > 2σ(I) |
| Graphite monochromator | Rint = 0.034 |
| profile data from φ and ω scans | θmax = 27.2°, θmin = 2.7° |
| Absorption correction: integration (SADABS; Bruker, 2014) | h = −12→11 |
| Tmin = 0.752, Tmax = 0.935 | k = −12→12 |
| 26313 measured reflections | l = −13→13 |
Refinement
| Refinement on F2 | 0 restraints |
| Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
| R[F2 > 2σ(F2)] = 0.022 | H-atom parameters constrained |
| wR(F2) = 0.055 | w = 1/[σ2(Fo2) + (0.0274P)2 + 0.4094P] where P = (Fo2 + 2Fc2)/3 |
| S = 1.04 | (Δ/σ)max = 0.001 |
| 4095 reflections | Δρmax = 0.46 e Å−3 |
| 230 parameters | Δρmin = −0.26 e Å−3 |
Special details
| Experimental. One distinct cell was identified using APEX2 (Bruker, 2014). Twelve frame series were integrated and filtered for statistical outliers using SAINT (Bruker, 2014) then corrected for absorption by integration using SAINT/SADABS v2014/2 (Bruker, 2014) to sort, merge, and scale the combined data. No decay correction was applied. |
| Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
| Refinement. Structure was phased by direct methods (Sheldrick, 2015). Systematic conditions suggested the ambiguous space group. The space group choice was confirmed by successful convergence of the full-matrix least-squares refinement on F2. The final map had no significant features. A final analysis of variance between observed and calculated structure factors showed little dependence on amplitude and resolution. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| Fe1 | 0.76261 (3) | 0.69641 (2) | 0.81874 (2) | 0.01268 (7) | |
| Fe2 | 0.54756 (3) | 0.67026 (2) | 0.72314 (2) | 0.01297 (7) | |
| S1 | 0.78928 (4) | 0.57564 (4) | 0.63376 (4) | 0.01365 (9) | |
| S2 | 0.66378 (4) | 0.84946 (4) | 0.67671 (4) | 0.01170 (9) | |
| S3 | 0.98623 (4) | 0.77978 (5) | 0.51958 (4) | 0.01510 (9) | |
| O1 | 1.06505 (15) | 0.74224 (16) | 0.81135 (13) | 0.0298 (3) | |
| O2 | 0.79552 (19) | 0.44486 (15) | 0.97850 (14) | 0.0394 (4) | |
| O3 | 0.60206 (15) | 0.87309 (13) | 1.04475 (12) | 0.0228 (3) | |
| O4 | 0.49994 (16) | 0.40404 (14) | 0.84072 (15) | 0.0342 (4) | |
| O5 | 0.30956 (14) | 0.84235 (14) | 0.91503 (13) | 0.0236 (3) | |
| O6 | 0.37887 (15) | 0.67444 (16) | 0.51589 (13) | 0.0289 (3) | |
| C1 | 0.9483 (2) | 0.72664 (19) | 0.81121 (16) | 0.0194 (4) | |
| C2 | 0.7844 (2) | 0.54209 (19) | 0.91537 (17) | 0.0229 (4) | |
| C3 | 0.66473 (19) | 0.80602 (18) | 0.95676 (17) | 0.0158 (3) | |
| C4 | 0.5173 (2) | 0.50717 (19) | 0.79429 (18) | 0.0217 (4) | |
| C5 | 0.39957 (19) | 0.77459 (18) | 0.83967 (17) | 0.0176 (4) | |
| C6 | 0.4451 (2) | 0.67316 (19) | 0.59538 (17) | 0.0193 (4) | |
| C7 | 0.80188 (18) | 0.74138 (17) | 0.55009 (16) | 0.0126 (3) | |
| C8 | 0.78750 (18) | 0.75972 (17) | 0.40463 (15) | 0.0133 (3) | |
| C9 | 0.94031 (18) | 0.79590 (17) | 0.36484 (16) | 0.0145 (3) | |
| C10 | 1.01847 (19) | 0.83374 (17) | 0.25666 (16) | 0.0152 (3) | |
| C11 | 0.7806 (2) | 0.62209 (19) | 0.34363 (17) | 0.0189 (4) | |
| H11A | 0.6862 | 0.5968 | 0.3818 | 0.028* | |
| H11B | 0.8648 | 0.5469 | 0.3591 | 0.028* | |
| H11C | 0.7865 | 0.6344 | 0.2510 | 0.028* | |
| C12 | 0.65819 (19) | 0.8813 (2) | 0.38437 (17) | 0.0200 (4) | |
| H12A | 0.6693 | 0.9681 | 0.4210 | 0.030* | |
| H12B | 0.5630 | 0.8603 | 0.4269 | 0.030* | |
| H12C | 0.6594 | 0.8933 | 0.2923 | 0.030* | |
| C13 | 0.9618 (2) | 0.8528 (2) | 0.13289 (17) | 0.0205 (4) | |
| H13A | 0.8732 | 0.8135 | 0.1409 | 0.031* | |
| H13B | 1.0401 | 0.8039 | 0.0632 | 0.031* | |
| H13C | 0.9352 | 0.9533 | 0.1138 | 0.031* | |
| C14 | 1.1685 (2) | 0.8657 (2) | 0.25251 (18) | 0.0218 (4) | |
| H14A | 1.1921 | 0.8566 | 0.3387 | 0.033* | |
| H14B | 1.1662 | 0.9620 | 0.2225 | 0.033* | |
| H14C | 1.2452 | 0.7994 | 0.1937 | 0.033* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| Fe1 | 0.01333 (12) | 0.01381 (12) | 0.01084 (12) | −0.00155 (9) | −0.00425 (9) | 0.00130 (9) |
| Fe2 | 0.01163 (12) | 0.01325 (12) | 0.01452 (13) | −0.00397 (9) | −0.00246 (9) | 0.00064 (9) |
| S1 | 0.0144 (2) | 0.01203 (18) | 0.0139 (2) | −0.00127 (15) | −0.00330 (15) | 0.00014 (15) |
| S2 | 0.01227 (19) | 0.01146 (18) | 0.01142 (19) | −0.00226 (15) | −0.00305 (15) | 0.00056 (15) |
| S3 | 0.01174 (19) | 0.0236 (2) | 0.01148 (19) | −0.00601 (16) | −0.00357 (15) | 0.00040 (16) |
| O1 | 0.0193 (7) | 0.0544 (9) | 0.0193 (7) | −0.0119 (6) | −0.0086 (5) | 0.0002 (6) |
| O2 | 0.0551 (10) | 0.0243 (8) | 0.0281 (8) | 0.0052 (7) | −0.0018 (7) | 0.0122 (6) |
| O3 | 0.0259 (7) | 0.0243 (7) | 0.0171 (7) | −0.0016 (6) | −0.0059 (5) | −0.0038 (5) |
| O4 | 0.0307 (8) | 0.0213 (7) | 0.0478 (9) | −0.0091 (6) | 0.0012 (7) | 0.0108 (7) |
| O5 | 0.0179 (6) | 0.0262 (7) | 0.0248 (7) | −0.0057 (5) | 0.0016 (5) | −0.0053 (6) |
| O6 | 0.0243 (7) | 0.0419 (8) | 0.0265 (7) | −0.0134 (6) | −0.0117 (6) | −0.0014 (6) |
| C1 | 0.0213 (9) | 0.0254 (9) | 0.0107 (8) | −0.0020 (7) | −0.0054 (7) | 0.0003 (7) |
| C2 | 0.0263 (10) | 0.0218 (9) | 0.0162 (9) | 0.0022 (8) | −0.0030 (7) | −0.0004 (7) |
| C3 | 0.0159 (8) | 0.0174 (8) | 0.0166 (9) | −0.0047 (7) | −0.0087 (7) | 0.0058 (7) |
| C4 | 0.0173 (9) | 0.0211 (9) | 0.0255 (10) | −0.0043 (7) | −0.0009 (7) | −0.0017 (8) |
| C5 | 0.0172 (9) | 0.0181 (8) | 0.0211 (9) | −0.0092 (7) | −0.0062 (7) | 0.0034 (7) |
| C6 | 0.0165 (9) | 0.0205 (9) | 0.0208 (9) | −0.0067 (7) | 0.0000 (7) | −0.0013 (7) |
| C7 | 0.0120 (8) | 0.0135 (7) | 0.0124 (8) | −0.0026 (6) | −0.0030 (6) | 0.0009 (6) |
| C8 | 0.0127 (8) | 0.0173 (8) | 0.0096 (8) | −0.0018 (6) | −0.0030 (6) | −0.0007 (6) |
| C9 | 0.0146 (8) | 0.0168 (8) | 0.0129 (8) | −0.0029 (6) | −0.0047 (6) | −0.0008 (6) |
| C10 | 0.0154 (8) | 0.0142 (8) | 0.0149 (8) | −0.0013 (6) | −0.0026 (6) | −0.0016 (6) |
| C11 | 0.0202 (9) | 0.0245 (9) | 0.0145 (8) | −0.0093 (7) | −0.0043 (7) | −0.0025 (7) |
| C12 | 0.0166 (9) | 0.0281 (10) | 0.0135 (8) | 0.0000 (7) | −0.0053 (7) | 0.0044 (7) |
| C13 | 0.0194 (9) | 0.0275 (10) | 0.0134 (8) | −0.0036 (7) | −0.0028 (7) | 0.0033 (7) |
| C14 | 0.0185 (9) | 0.0269 (10) | 0.0213 (9) | −0.0091 (7) | −0.0021 (7) | 0.0010 (8) |
Geometric parameters (Å, º)
| Fe1—C2 | 1.7900 (18) | O6—C6 | 1.140 (2) |
| Fe1—C3 | 1.8047 (18) | C7—C8 | 1.578 (2) |
| Fe1—C1 | 1.8158 (19) | C8—C9 | 1.529 (2) |
| Fe1—S2 | 2.2636 (5) | C8—C12 | 1.529 (2) |
| Fe1—S1 | 2.2675 (5) | C8—C11 | 1.532 (2) |
| Fe1—Fe2 | 2.4921 (4) | C9—C10 | 1.327 (2) |
| Fe2—C4 | 1.7986 (19) | C10—C14 | 1.500 (2) |
| Fe2—C5 | 1.8013 (19) | C10—C13 | 1.502 (2) |
| Fe2—C6 | 1.8054 (19) | C11—H11A | 0.9800 |
| Fe2—S2 | 2.2601 (5) | C11—H11B | 0.9800 |
| Fe2—S1 | 2.2624 (5) | C11—H11C | 0.9800 |
| S1—C7 | 1.8376 (17) | C12—H12A | 0.9800 |
| S2—C7 | 1.8365 (17) | C12—H12B | 0.9800 |
| S3—C9 | 1.7725 (17) | C12—H12C | 0.9800 |
| S3—C7 | 1.8159 (17) | C13—H13A | 0.9800 |
| O1—C1 | 1.139 (2) | C13—H13B | 0.9800 |
| O2—C2 | 1.141 (2) | C13—H13C | 0.9800 |
| O3—C3 | 1.138 (2) | C14—H14A | 0.9800 |
| O4—C4 | 1.139 (2) | C14—H14B | 0.9800 |
| O5—C5 | 1.140 (2) | C14—H14C | 0.9800 |
| C2—Fe1—C3 | 91.53 (8) | C8—C7—S3 | 92.82 (10) |
| C2—Fe1—C1 | 97.19 (9) | C8—C7—S2 | 120.98 (11) |
| C3—Fe1—C1 | 98.73 (8) | S3—C7—S2 | 115.14 (9) |
| C2—Fe1—S2 | 156.52 (7) | C8—C7—S1 | 121.18 (11) |
| C3—Fe1—S2 | 94.05 (5) | S3—C7—S1 | 115.21 (8) |
| C1—Fe1—S2 | 104.45 (6) | S2—C7—S1 | 93.42 (8) |
| C2—Fe1—S1 | 94.27 (6) | C9—C8—C12 | 112.78 (14) |
| C3—Fe1—S1 | 156.84 (5) | C9—C8—C11 | 112.89 (14) |
| C1—Fe1—S1 | 102.74 (6) | C12—C8—C11 | 111.99 (14) |
| S2—Fe1—S1 | 72.347 (18) | C9—C8—C7 | 93.06 (12) |
| C2—Fe1—Fe2 | 100.05 (7) | C12—C8—C7 | 112.71 (13) |
| C3—Fe1—Fe2 | 100.38 (5) | C11—C8—C7 | 112.13 (13) |
| C1—Fe1—Fe2 | 153.78 (5) | C10—C9—C8 | 135.38 (15) |
| S2—Fe1—Fe2 | 56.505 (14) | C10—C9—S3 | 128.31 (14) |
| S1—Fe1—Fe2 | 56.527 (14) | C8—C9—S3 | 96.26 (11) |
| C4—Fe2—C5 | 92.90 (8) | C9—C10—C14 | 121.21 (16) |
| C4—Fe2—C6 | 97.79 (8) | C9—C10—C13 | 123.00 (16) |
| C5—Fe2—C6 | 98.27 (8) | C14—C10—C13 | 115.75 (15) |
| C4—Fe2—S2 | 156.52 (6) | C8—C11—H11A | 109.5 |
| C5—Fe2—S2 | 92.61 (6) | C8—C11—H11B | 109.5 |
| C6—Fe2—S2 | 103.96 (6) | H11A—C11—H11B | 109.5 |
| C4—Fe2—S1 | 93.49 (6) | C8—C11—H11C | 109.5 |
| C5—Fe2—S1 | 154.57 (6) | H11A—C11—H11C | 109.5 |
| C6—Fe2—S1 | 105.19 (6) | H11B—C11—H11C | 109.5 |
| S2—Fe2—S1 | 72.505 (18) | C8—C12—H12A | 109.5 |
| C4—Fe2—Fe1 | 99.98 (6) | C8—C12—H12B | 109.5 |
| C5—Fe2—Fe1 | 97.92 (6) | H12A—C12—H12B | 109.5 |
| C6—Fe2—Fe1 | 155.23 (6) | C8—C12—H12C | 109.5 |
| S2—Fe2—Fe1 | 56.639 (13) | H12A—C12—H12C | 109.5 |
| S1—Fe2—Fe1 | 56.720 (15) | H12B—C12—H12C | 109.5 |
| C7—S1—Fe2 | 90.00 (5) | C10—C13—H13A | 109.5 |
| C7—S1—Fe1 | 86.81 (5) | C10—C13—H13B | 109.5 |
| Fe2—S1—Fe1 | 66.753 (15) | H13A—C13—H13B | 109.5 |
| C7—S2—Fe2 | 90.10 (5) | C10—C13—H13C | 109.5 |
| C7—S2—Fe1 | 86.96 (5) | H13A—C13—H13C | 109.5 |
| Fe2—S2—Fe1 | 66.856 (15) | H13B—C13—H13C | 109.5 |
| C9—S3—C7 | 77.86 (8) | C10—C14—H14A | 109.5 |
| O1—C1—Fe1 | 176.96 (16) | C10—C14—H14B | 109.5 |
| O2—C2—Fe1 | 178.63 (18) | H14A—C14—H14B | 109.5 |
| O3—C3—Fe1 | 178.75 (16) | C10—C14—H14C | 109.5 |
| O4—C4—Fe2 | 178.76 (18) | H14A—C14—H14C | 109.5 |
| O5—C5—Fe2 | 177.61 (15) | H14B—C14—H14C | 109.5 |
| O6—C6—Fe2 | 179.05 (16) | ||
| C9—S3—C7—C8 | 0.66 (9) | S3—C7—C8—C12 | −117.02 (13) |
| C9—S3—C7—S2 | −125.68 (10) | S2—C7—C8—C12 | 4.7 (2) |
| C9—S3—C7—S1 | 127.24 (10) | S1—C7—C8—C12 | 121.10 (14) |
| Fe2—S2—C7—C8 | 99.53 (12) | S3—C7—C8—C11 | 115.51 (12) |
| Fe1—S2—C7—C8 | 166.35 (13) | S2—C7—C8—C11 | −122.78 (14) |
| Fe2—S2—C7—S3 | −150.28 (8) | S1—C7—C8—C11 | −6.38 (19) |
| Fe1—S2—C7—S3 | −83.46 (8) | C12—C8—C9—C10 | −60.3 (3) |
| Fe2—S2—C7—S1 | −30.32 (6) | C11—C8—C9—C10 | 67.9 (2) |
| Fe1—S2—C7—S1 | 36.49 (5) | C7—C8—C9—C10 | −176.5 (2) |
| Fe2—S1—C7—C8 | −99.43 (12) | C12—C8—C9—S3 | 116.98 (13) |
| Fe1—S1—C7—C8 | −166.14 (12) | C11—C8—C9—S3 | −114.84 (13) |
| Fe2—S1—C7—S3 | 150.19 (8) | C7—C8—C9—S3 | 0.77 (11) |
| Fe1—S1—C7—S3 | 83.47 (8) | C7—S3—C9—C10 | 176.85 (18) |
| Fe2—S1—C7—S2 | 30.29 (6) | C7—S3—C9—C8 | −0.68 (10) |
| Fe1—S1—C7—S2 | −36.43 (5) | C8—C9—C10—C14 | 178.40 (17) |
| S3—C7—C8—C9 | −0.74 (11) | S3—C9—C10—C14 | 1.9 (3) |
| S2—C7—C8—C9 | 120.97 (13) | C8—C9—C10—C13 | 0.8 (3) |
| S1—C7—C8—C9 | −122.63 (13) | S3—C9—C10—C13 | −175.74 (13) |
Hydrogen-bond geometry (Å, º)
| D—H···A | D—H | H···A | D···A | D—H···A |
| C13—H13B···O2i | 0.98 | 2.56 | 3.334 (2) | 136 |
Symmetry code: (i) −x+2, −y+1, −z+1.
References
- Alvarez-Toledano, C., Enriquez, J., Toscano, R. A., Martinez-Garcia, M., Cortes-Cortes, E., Osornio, Y. M., Garcia-Mellado, O. & Gutierrez-Perez, R. (1999). J. Organomet. Chem. 577, 38–43.
- Broadhurst, P. V., Johson, B. F. G., Lewis, J. & Raithby, P. R. (1982). J. Chem. Soc. Chem. Commun. pp. 140–141.
- Bruker (2014). APEX2, SADABS, SAINT and XCIF. Bruker AXS, Inc., Madison, Wisconsin, USA.
- Cammack, R. (1999). Nature, 397, 214–215. [DOI] [PubMed]
- Capon, J. F., Gloaguen, F., Schollhammer, P. & Talarmin, J. (2005). Coord. Chem. Rev. 249, 1664–1676.
- CrystalMaker (1994). CrystalMaker. CrystalMaker Software Ltd, Oxford, England (www.CrystalMaker.com).
- Darensbourg, M. Y., Lyon, E. J. & Smee, J. J. (2000). Coord. Chem. Rev. 206–207, 533–561.
- Elam, E. U. & Davis, H. E. (1967). J. Org. Chem. 32, 1562–1565.
- Fontecilla-Camps, J. C., Volbeda, A., Cavazza, C. & Nicolet, Y. (2007). Chem. Rev. 107, 4273–4303. [DOI] [PubMed]
- Gloaguen, F. & Rauchfuss, T. B. (2009). Chem. Soc. Rev. 38, 100–108. [DOI] [PMC free article] [PubMed]
- Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. [DOI] [PubMed]
- Nekhaev, A. I., Alekseeva, S. D., Kolobkov, B. I., Aleksandrov, G. G., Toshev, M. T., Dustov, H. B. & Parpiev, N. A. (1991). J. Organomet. Chem. 401, 65–73.
- Ogino, H., Inomata, S. & Tobita, H. (1998). Chem. Rev. 98, 2093–2122. [DOI] [PubMed]
- Okuma, K., Nojima, A., Shigetomi, T. & Yokomori, Y. (2007). Tetrahedron, 63, 11748–11753.
- Rauchfuss, T. B. (2015). Acc. Chem. Res. 48, 2107–2116. [DOI] [PMC free article] [PubMed]
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
- Shi, Y.-C., Cheng, H.-R., Yuan, L.-M. & Li, Q.-K. (2011). Acta Cryst. E67, m1534. [DOI] [PMC free article] [PubMed]
- Stephenson, M. & Stickland, L. H. (1931). Biochem. J. 25, 205–214. [DOI] [PMC free article] [PubMed]
- Tard, C. & Pickett, C. J. (2009). Chem. Rev. 109, 2245–2274. [DOI] [PubMed]
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015018496/wm5218sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015018496/wm5218Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989015018496/wm5218Isup3.cdx
CCDC reference: 1429290
Additional supporting information: crystallographic information; 3D view; checkCIF report




