Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Oct 10;71(Pt 11):1296–1299. doi: 10.1107/S2056989015018496

Crystal structure of [μ2-3,3-dimethyl-4-(propan-2-yl­idene)thietane-2,2-dithiol­ato-κ4 S:S′:S:S′]bis[tricarbonyl­iron(I)](FeFe)

Peihua Zhao a, Jeffery A Bertke a,*, Thomas B Rauchfuss a
PMCID: PMC4645041  PMID: 26594495

The dinuclear complex [{Fe(CO)3}2(μ-L)] [L = 3,3-dimethyl-4-(propan-2-yl­idene)thietane-2,2-bis­(thiol­ate)] consists of two Fe(CO)3 moieties bridged by a di­thiol­ate ligand. This is the first crystal structure reported in which the 3,3-dimethyl-4-(propan-2-yl­idene)thietane-2,2-bis­(thiol­ate) ligand bridges two metal atoms.

Keywords: crystal structure, iron(I), thietane, hexa­carbon­yl

Abstract

The title complex, [Fe2(C8H12S3)(CO)6] or [{Fe(CO)3}2(μ-L)] [L = 3,3-dimethyl-4-(propan-2-yl­idene)thietane-2,2-bis­(thiol­ato)], consists of two Fe(CO)3 moieties double-bridged by a di­thiol­ate ligand. Each of the two FeI atoms has a distorted anti-prismatic coordination environment consisting of three carbonyl groups, two S atoms of the di­thiol­ate ligand and the neighboring FeI atom [Fe—Fe = 2.4921 (4) Å]. Weak C—H⋯O inter­molecular inter­actions result in the formation of dimers. This is the second crystal structure reported with the 3,3-dimethyl-4-(propan-2-yl­idene)thietane-2,2-bis­(thiol­ate) ligand and the first in which it bridges two metal atoms.

Chemical context  

Iron–sulfur complexes have attracted considerable attention over the past decades (Ogino et al., 1998). This is mainly because such complexes possess the distinctive iron–sulfur cluster core, which is biologically related to the active site of [FeFe]-hydrogenases (Fontecilla-Camps et al., 2007). In particular, [FeFe]-hydrogenases are a class of natural enzymes that can reversibly catalyse the evolution and uptake of hydrogen in several microorganisms (Cammack, 1999; Stephenson & Stickland, 1931). In view of this, a large number of iron–sulfur cluster complexes have been designed and synthesized as the active site models of [FeFe]-hydrogenases (e.g. Capon et al., 2005; Darensbourg et al., 2000; Gloaguen & Rauchfuss, 2009; Rauchfuss, 2015; Tard & Pickett, 2009).

Most recently, we investigated the preparation of iron–sulfur complexes via the reaction of 1,3-cyclo­butane­dithiol­ate compounds with [Fe3(CO)12] and have obtained an unexpected iron–sulfur complex, [Fe2(CO)6(C8H12S3)] or [{Fe(CO)3}2(μ-L)] [L = 3,3-dimethyl-4-(propan-2-yl­idene)thietane-2,2-bis­(thiol­ate), C8H12S3], (I). graphic file with name e-71-01296-scheme1.jpg

Fig. 1 shows a possible formation process for the 3,3-dimethyl-4-(propan-2-yl­idene)thietane-2,2-bis­(thiol­ate) ligand via rearrangement of the di­thione starting material and its reaction to form compound (I). Similar rearrangements of di­thio­nes have been reported previously (Elam & Davis, 1967). Herein, we report the synthesis conditions and crystal structure of the title complex (I).

Figure 1.

Figure 1

Schematic representation of a possible formation process for the 3,3-dimethyl-4-(propan-2-yl­idene)thietane-2,2-bis­(thiol­ato) ligand from the starting material.

Structural commentary  

The mol­ecular structure of (I) consists of two six-coordinate iron(I) atoms, each in a distorted trigonal anti-prismatic coordination environment (Fig. 2). The coordination sphere of Fe1 is filled by three carbonyl C atoms [Fe1—C1 = 1.8158 (19), Fe1—C2 = 1.7900 (18), Fe1—C3 = 1.8047 (18) Å), two S atoms of a bridging di­thiol­ate ligand [Fe1—S1 = 2.2675 (5), Fe1—S2 = 2.2636 (5) Å], and the neighboring FeI atom [Fe1—Fe2 = 2.4921 (4) Å]. The coordination sphere of Fe2 is similarly filled by three carbonyl C atoms [Fe2—C4 = 1.7986 (19), Fe2—C5 = 1.8013 (19), Fe2—C6 = 1.8054 (19) Å], two S atoms [Fe2—S1 = 2.2624 (5), Fe2—S2 = 2.2601 (5) Å], and the neighboring FeI atom.

Figure 2.

Figure 2

The mol­ecular structure of (I) with displacement ellipsoids drawn at the 35% probability level for non-H atoms and spheres of arbitrary size for H atoms.

The C7—S3—C9 bond angle of 77.86 (8)° is significantly smaller than the other angles making up the thietane ring [S3—C7—C8 = 92.82 (10)°; S3—C9—C8 = 96.26 (11)°; C7—C8—C9 = 93.06 (12)°]. The central ring of the anion is nearly planar with a S3—C7—C8—C9 torsion angle of −0.74 (11)°. The plane through S1—C7—S2 is rotated by 89.94 (11)° with respect to the thietane ring. Similarly, the dihedral angle between the thietane ring and the plane through C11—C8—C12 is 89.74 (16)°. The =C(CH3)2 group (C13—C10—C14) is only slightly out of the plane of the central ring, making a dihedral angle of 4.63 (18)°.

Supra­molecular features  

There are no significant supra­molecular features to discuss with the extended structure of (I). There are weak C—H⋯O inter­molecular inter­actions between one methyl group from the di­thiol­ate ligand and one of the carbonyl oxygen atoms, Table 1. These inter­actions result in the formation of dimers of (I), Fig. 3.

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
C13H13BO2i 0.98 2.56 3.334(2) 136

Symmetry code: (i) Inline graphic.

Figure 3.

Figure 3

A plot of (a) dimers of (I) with the C—H⋯O inter­actions highlighted as blue dashed lines; and (b) an expanded view along the c axis of the packing of (I) with an overlay of the unit cell. Orange = Fe, yellow = S, red = O, gray = C, green = H.

Database survey  

Only one other crystal structure with 3,3-dimethyl-4-(propan-2-yl­idene)thietane-2,2-bis­(thiol­ate) is reported in the Cambridge Crystallographic Database (Groom & Allen, 2014). The compound is a mononuclear square-planar platinum(II) bis­(tri­phenyl­phosphine) complex (Okuma et al., 2007).

A search of the Cambridge Crystallographic Database (Groom & Allen, 2014) returns eighteen hexa­carbonyldi-iron(I) complexes in which there is a bridging S—C—S di­thiol­ate moiety. The range of Fe—Fe distances for these compounds is 2.461 Å − 2.501 Å [average 2.482 Å] (Alvarez-Toledano et al., 1999; Shi et al., 2011). The Fe1—Fe2 distance in (I) of 2.4921 (4) Å falls within this range. The Fe—S distances for the database compounds range from 2.244 Å − 2.296 Å [average 2.271 Å] (Broadhurst et al., 1982; Nekhaev et al., 1991). All of the Fe—S distances in (I) [average 2.263 Å] fall within this range.

Synthesis and crystallization  

A mixture of tetra­methyl-1,3-cyclo­butane­dithione (130 mg, 0.76 mmol) and Fe3(CO)12 (383 mg, 0.76 mmol) was dissolved in 15 ml dry toluene. The reaction mixture was refluxed for 2 h, and the solution color change from a green to a red was observed. After removal of the solvent under vacuum, the resulting residue was chromatographed by silica gel column eluting with hexa­ne–CH2Cl2 (10:1, v/v). The main red band was collected to get an orange–red solid (10 mg, 0.02 mmol, 3% yield). Crystals suitable for X-ray diffraction were grown by slow evaporation of hexane of the orange–red solid at room temperature.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. Methyl H atom positions were optimized by rotation about R—C bonds with idealized C—H, R⋯H and H⋯H distances and included as as riding idealized contributors [C—Hmeth­yl = 0.98 Å with U iso(H) = 1.5U eq(C)]. The 001 reflection was omitted from the final refinement because it was obscured by the shadow of the beam stop.

Table 2. Experimental details.

Crystal data
Chemical formula [Fe2(C8H12S3)(CO)6]
M r 484.12
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 100
a, b, c () 9.3619(10), 9.7681(11), 10.6249(12)
, , () 88.092(6), 78.668(6), 76.559(6)
V (3) 926.51(18)
Z 2
Radiation type Mo K
(mm1) 1.93
Crystal size (mm) 0.27 0.13 0.05
 
Data collection
Diffractometer Bruker Kappa APEXII CCD
Absorption correction Integration (SADABS; Bruker, 2014)
T min, T max 0.752, 0.935
No. of measured, independent and observed [I > 2(I)] reflections 26313, 4095, 3603
R int 0.034
(sin /)max (1) 0.643
 
Refinement
R[F 2 > 2(F 2)], wR(F 2), S 0.022, 0.055, 1.04
No. of reflections 4095
No. of parameters 230
H-atom treatment H-atom parameters constrained
max, min (e 3) 0.46, 0.26

Computer programs: APEX2, SAINT and XCIF (Bruker, 2014), SHELXTL (Sheldrick, 2008), SHELXT (Sheldrick, 2015a ), SHELXL2014 (Sheldrick, 2015b ), CrystalMaker (CrystalMaker, 1994) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015018496/wm5218sup1.cif

e-71-01296-sup1.cif (771.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015018496/wm5218Isup2.hkl

e-71-01296-Isup2.hkl (326.3KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015018496/wm5218Isup3.cdx

CCDC reference: 1429290

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the National Institutes of Health through GM061153.

supplementary crystallographic information

Crystal data

[Fe2(C8H12S3)(CO)6] Z = 2
Mr = 484.12 F(000) = 488
Triclinic, P1 Dx = 1.735 Mg m3
a = 9.3619 (10) Å Mo Kα radiation, λ = 0.71073 Å
b = 9.7681 (11) Å Cell parameters from 9920 reflections
c = 10.6249 (12) Å θ = 2.3–27.1°
α = 88.092 (6)° µ = 1.93 mm1
β = 78.668 (6)° T = 100 K
γ = 76.559 (6)° Plate, orange
V = 926.51 (18) Å3 0.27 × 0.13 × 0.05 mm

Data collection

Bruker Kappa APEXII CCD diffractometer 4095 independent reflections
Radiation source: fine-focus sealed tube 3603 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.034
profile data from φ and ω scans θmax = 27.2°, θmin = 2.7°
Absorption correction: integration (SADABS; Bruker, 2014) h = −12→11
Tmin = 0.752, Tmax = 0.935 k = −12→12
26313 measured reflections l = −13→13

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.022 H-atom parameters constrained
wR(F2) = 0.055 w = 1/[σ2(Fo2) + (0.0274P)2 + 0.4094P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max = 0.001
4095 reflections Δρmax = 0.46 e Å3
230 parameters Δρmin = −0.26 e Å3

Special details

Experimental. One distinct cell was identified using APEX2 (Bruker, 2014). Twelve frame series were integrated and filtered for statistical outliers using SAINT (Bruker, 2014) then corrected for absorption by integration using SAINT/SADABS v2014/2 (Bruker, 2014) to sort, merge, and scale the combined data. No decay correction was applied.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Structure was phased by direct methods (Sheldrick, 2015). Systematic conditions suggested the ambiguous space group. The space group choice was confirmed by successful convergence of the full-matrix least-squares refinement on F2. The final map had no significant features. A final analysis of variance between observed and calculated structure factors showed little dependence on amplitude and resolution.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Fe1 0.76261 (3) 0.69641 (2) 0.81874 (2) 0.01268 (7)
Fe2 0.54756 (3) 0.67026 (2) 0.72314 (2) 0.01297 (7)
S1 0.78928 (4) 0.57564 (4) 0.63376 (4) 0.01365 (9)
S2 0.66378 (4) 0.84946 (4) 0.67671 (4) 0.01170 (9)
S3 0.98623 (4) 0.77978 (5) 0.51958 (4) 0.01510 (9)
O1 1.06505 (15) 0.74224 (16) 0.81135 (13) 0.0298 (3)
O2 0.79552 (19) 0.44486 (15) 0.97850 (14) 0.0394 (4)
O3 0.60206 (15) 0.87309 (13) 1.04475 (12) 0.0228 (3)
O4 0.49994 (16) 0.40404 (14) 0.84072 (15) 0.0342 (4)
O5 0.30956 (14) 0.84235 (14) 0.91503 (13) 0.0236 (3)
O6 0.37887 (15) 0.67444 (16) 0.51589 (13) 0.0289 (3)
C1 0.9483 (2) 0.72664 (19) 0.81121 (16) 0.0194 (4)
C2 0.7844 (2) 0.54209 (19) 0.91537 (17) 0.0229 (4)
C3 0.66473 (19) 0.80602 (18) 0.95676 (17) 0.0158 (3)
C4 0.5173 (2) 0.50717 (19) 0.79429 (18) 0.0217 (4)
C5 0.39957 (19) 0.77459 (18) 0.83967 (17) 0.0176 (4)
C6 0.4451 (2) 0.67316 (19) 0.59538 (17) 0.0193 (4)
C7 0.80188 (18) 0.74138 (17) 0.55009 (16) 0.0126 (3)
C8 0.78750 (18) 0.75972 (17) 0.40463 (15) 0.0133 (3)
C9 0.94031 (18) 0.79590 (17) 0.36484 (16) 0.0145 (3)
C10 1.01847 (19) 0.83374 (17) 0.25666 (16) 0.0152 (3)
C11 0.7806 (2) 0.62209 (19) 0.34363 (17) 0.0189 (4)
H11A 0.6862 0.5968 0.3818 0.028*
H11B 0.8648 0.5469 0.3591 0.028*
H11C 0.7865 0.6344 0.2510 0.028*
C12 0.65819 (19) 0.8813 (2) 0.38437 (17) 0.0200 (4)
H12A 0.6693 0.9681 0.4210 0.030*
H12B 0.5630 0.8603 0.4269 0.030*
H12C 0.6594 0.8933 0.2923 0.030*
C13 0.9618 (2) 0.8528 (2) 0.13289 (17) 0.0205 (4)
H13A 0.8732 0.8135 0.1409 0.031*
H13B 1.0401 0.8039 0.0632 0.031*
H13C 0.9352 0.9533 0.1138 0.031*
C14 1.1685 (2) 0.8657 (2) 0.25251 (18) 0.0218 (4)
H14A 1.1921 0.8566 0.3387 0.033*
H14B 1.1662 0.9620 0.2225 0.033*
H14C 1.2452 0.7994 0.1937 0.033*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Fe1 0.01333 (12) 0.01381 (12) 0.01084 (12) −0.00155 (9) −0.00425 (9) 0.00130 (9)
Fe2 0.01163 (12) 0.01325 (12) 0.01452 (13) −0.00397 (9) −0.00246 (9) 0.00064 (9)
S1 0.0144 (2) 0.01203 (18) 0.0139 (2) −0.00127 (15) −0.00330 (15) 0.00014 (15)
S2 0.01227 (19) 0.01146 (18) 0.01142 (19) −0.00226 (15) −0.00305 (15) 0.00056 (15)
S3 0.01174 (19) 0.0236 (2) 0.01148 (19) −0.00601 (16) −0.00357 (15) 0.00040 (16)
O1 0.0193 (7) 0.0544 (9) 0.0193 (7) −0.0119 (6) −0.0086 (5) 0.0002 (6)
O2 0.0551 (10) 0.0243 (8) 0.0281 (8) 0.0052 (7) −0.0018 (7) 0.0122 (6)
O3 0.0259 (7) 0.0243 (7) 0.0171 (7) −0.0016 (6) −0.0059 (5) −0.0038 (5)
O4 0.0307 (8) 0.0213 (7) 0.0478 (9) −0.0091 (6) 0.0012 (7) 0.0108 (7)
O5 0.0179 (6) 0.0262 (7) 0.0248 (7) −0.0057 (5) 0.0016 (5) −0.0053 (6)
O6 0.0243 (7) 0.0419 (8) 0.0265 (7) −0.0134 (6) −0.0117 (6) −0.0014 (6)
C1 0.0213 (9) 0.0254 (9) 0.0107 (8) −0.0020 (7) −0.0054 (7) 0.0003 (7)
C2 0.0263 (10) 0.0218 (9) 0.0162 (9) 0.0022 (8) −0.0030 (7) −0.0004 (7)
C3 0.0159 (8) 0.0174 (8) 0.0166 (9) −0.0047 (7) −0.0087 (7) 0.0058 (7)
C4 0.0173 (9) 0.0211 (9) 0.0255 (10) −0.0043 (7) −0.0009 (7) −0.0017 (8)
C5 0.0172 (9) 0.0181 (8) 0.0211 (9) −0.0092 (7) −0.0062 (7) 0.0034 (7)
C6 0.0165 (9) 0.0205 (9) 0.0208 (9) −0.0067 (7) 0.0000 (7) −0.0013 (7)
C7 0.0120 (8) 0.0135 (7) 0.0124 (8) −0.0026 (6) −0.0030 (6) 0.0009 (6)
C8 0.0127 (8) 0.0173 (8) 0.0096 (8) −0.0018 (6) −0.0030 (6) −0.0007 (6)
C9 0.0146 (8) 0.0168 (8) 0.0129 (8) −0.0029 (6) −0.0047 (6) −0.0008 (6)
C10 0.0154 (8) 0.0142 (8) 0.0149 (8) −0.0013 (6) −0.0026 (6) −0.0016 (6)
C11 0.0202 (9) 0.0245 (9) 0.0145 (8) −0.0093 (7) −0.0043 (7) −0.0025 (7)
C12 0.0166 (9) 0.0281 (10) 0.0135 (8) 0.0000 (7) −0.0053 (7) 0.0044 (7)
C13 0.0194 (9) 0.0275 (10) 0.0134 (8) −0.0036 (7) −0.0028 (7) 0.0033 (7)
C14 0.0185 (9) 0.0269 (10) 0.0213 (9) −0.0091 (7) −0.0021 (7) 0.0010 (8)

Geometric parameters (Å, º)

Fe1—C2 1.7900 (18) O6—C6 1.140 (2)
Fe1—C3 1.8047 (18) C7—C8 1.578 (2)
Fe1—C1 1.8158 (19) C8—C9 1.529 (2)
Fe1—S2 2.2636 (5) C8—C12 1.529 (2)
Fe1—S1 2.2675 (5) C8—C11 1.532 (2)
Fe1—Fe2 2.4921 (4) C9—C10 1.327 (2)
Fe2—C4 1.7986 (19) C10—C14 1.500 (2)
Fe2—C5 1.8013 (19) C10—C13 1.502 (2)
Fe2—C6 1.8054 (19) C11—H11A 0.9800
Fe2—S2 2.2601 (5) C11—H11B 0.9800
Fe2—S1 2.2624 (5) C11—H11C 0.9800
S1—C7 1.8376 (17) C12—H12A 0.9800
S2—C7 1.8365 (17) C12—H12B 0.9800
S3—C9 1.7725 (17) C12—H12C 0.9800
S3—C7 1.8159 (17) C13—H13A 0.9800
O1—C1 1.139 (2) C13—H13B 0.9800
O2—C2 1.141 (2) C13—H13C 0.9800
O3—C3 1.138 (2) C14—H14A 0.9800
O4—C4 1.139 (2) C14—H14B 0.9800
O5—C5 1.140 (2) C14—H14C 0.9800
C2—Fe1—C3 91.53 (8) C8—C7—S3 92.82 (10)
C2—Fe1—C1 97.19 (9) C8—C7—S2 120.98 (11)
C3—Fe1—C1 98.73 (8) S3—C7—S2 115.14 (9)
C2—Fe1—S2 156.52 (7) C8—C7—S1 121.18 (11)
C3—Fe1—S2 94.05 (5) S3—C7—S1 115.21 (8)
C1—Fe1—S2 104.45 (6) S2—C7—S1 93.42 (8)
C2—Fe1—S1 94.27 (6) C9—C8—C12 112.78 (14)
C3—Fe1—S1 156.84 (5) C9—C8—C11 112.89 (14)
C1—Fe1—S1 102.74 (6) C12—C8—C11 111.99 (14)
S2—Fe1—S1 72.347 (18) C9—C8—C7 93.06 (12)
C2—Fe1—Fe2 100.05 (7) C12—C8—C7 112.71 (13)
C3—Fe1—Fe2 100.38 (5) C11—C8—C7 112.13 (13)
C1—Fe1—Fe2 153.78 (5) C10—C9—C8 135.38 (15)
S2—Fe1—Fe2 56.505 (14) C10—C9—S3 128.31 (14)
S1—Fe1—Fe2 56.527 (14) C8—C9—S3 96.26 (11)
C4—Fe2—C5 92.90 (8) C9—C10—C14 121.21 (16)
C4—Fe2—C6 97.79 (8) C9—C10—C13 123.00 (16)
C5—Fe2—C6 98.27 (8) C14—C10—C13 115.75 (15)
C4—Fe2—S2 156.52 (6) C8—C11—H11A 109.5
C5—Fe2—S2 92.61 (6) C8—C11—H11B 109.5
C6—Fe2—S2 103.96 (6) H11A—C11—H11B 109.5
C4—Fe2—S1 93.49 (6) C8—C11—H11C 109.5
C5—Fe2—S1 154.57 (6) H11A—C11—H11C 109.5
C6—Fe2—S1 105.19 (6) H11B—C11—H11C 109.5
S2—Fe2—S1 72.505 (18) C8—C12—H12A 109.5
C4—Fe2—Fe1 99.98 (6) C8—C12—H12B 109.5
C5—Fe2—Fe1 97.92 (6) H12A—C12—H12B 109.5
C6—Fe2—Fe1 155.23 (6) C8—C12—H12C 109.5
S2—Fe2—Fe1 56.639 (13) H12A—C12—H12C 109.5
S1—Fe2—Fe1 56.720 (15) H12B—C12—H12C 109.5
C7—S1—Fe2 90.00 (5) C10—C13—H13A 109.5
C7—S1—Fe1 86.81 (5) C10—C13—H13B 109.5
Fe2—S1—Fe1 66.753 (15) H13A—C13—H13B 109.5
C7—S2—Fe2 90.10 (5) C10—C13—H13C 109.5
C7—S2—Fe1 86.96 (5) H13A—C13—H13C 109.5
Fe2—S2—Fe1 66.856 (15) H13B—C13—H13C 109.5
C9—S3—C7 77.86 (8) C10—C14—H14A 109.5
O1—C1—Fe1 176.96 (16) C10—C14—H14B 109.5
O2—C2—Fe1 178.63 (18) H14A—C14—H14B 109.5
O3—C3—Fe1 178.75 (16) C10—C14—H14C 109.5
O4—C4—Fe2 178.76 (18) H14A—C14—H14C 109.5
O5—C5—Fe2 177.61 (15) H14B—C14—H14C 109.5
O6—C6—Fe2 179.05 (16)
C9—S3—C7—C8 0.66 (9) S3—C7—C8—C12 −117.02 (13)
C9—S3—C7—S2 −125.68 (10) S2—C7—C8—C12 4.7 (2)
C9—S3—C7—S1 127.24 (10) S1—C7—C8—C12 121.10 (14)
Fe2—S2—C7—C8 99.53 (12) S3—C7—C8—C11 115.51 (12)
Fe1—S2—C7—C8 166.35 (13) S2—C7—C8—C11 −122.78 (14)
Fe2—S2—C7—S3 −150.28 (8) S1—C7—C8—C11 −6.38 (19)
Fe1—S2—C7—S3 −83.46 (8) C12—C8—C9—C10 −60.3 (3)
Fe2—S2—C7—S1 −30.32 (6) C11—C8—C9—C10 67.9 (2)
Fe1—S2—C7—S1 36.49 (5) C7—C8—C9—C10 −176.5 (2)
Fe2—S1—C7—C8 −99.43 (12) C12—C8—C9—S3 116.98 (13)
Fe1—S1—C7—C8 −166.14 (12) C11—C8—C9—S3 −114.84 (13)
Fe2—S1—C7—S3 150.19 (8) C7—C8—C9—S3 0.77 (11)
Fe1—S1—C7—S3 83.47 (8) C7—S3—C9—C10 176.85 (18)
Fe2—S1—C7—S2 30.29 (6) C7—S3—C9—C8 −0.68 (10)
Fe1—S1—C7—S2 −36.43 (5) C8—C9—C10—C14 178.40 (17)
S3—C7—C8—C9 −0.74 (11) S3—C9—C10—C14 1.9 (3)
S2—C7—C8—C9 120.97 (13) C8—C9—C10—C13 0.8 (3)
S1—C7—C8—C9 −122.63 (13) S3—C9—C10—C13 −175.74 (13)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C13—H13B···O2i 0.98 2.56 3.334 (2) 136

Symmetry code: (i) −x+2, −y+1, −z+1.

References

  1. Alvarez-Toledano, C., Enriquez, J., Toscano, R. A., Martinez-Garcia, M., Cortes-Cortes, E., Osornio, Y. M., Garcia-Mellado, O. & Gutierrez-Perez, R. (1999). J. Organomet. Chem. 577, 38–43.
  2. Broadhurst, P. V., Johson, B. F. G., Lewis, J. & Raithby, P. R. (1982). J. Chem. Soc. Chem. Commun. pp. 140–141.
  3. Bruker (2014). APEX2, SADABS, SAINT and XCIF. Bruker AXS, Inc., Madison, Wisconsin, USA.
  4. Cammack, R. (1999). Nature, 397, 214–215. [DOI] [PubMed]
  5. Capon, J. F., Gloaguen, F., Schollhammer, P. & Talarmin, J. (2005). Coord. Chem. Rev. 249, 1664–1676.
  6. CrystalMaker (1994). CrystalMaker. CrystalMaker Software Ltd, Oxford, England (www.CrystalMaker.com).
  7. Darensbourg, M. Y., Lyon, E. J. & Smee, J. J. (2000). Coord. Chem. Rev. 206–207, 533–561.
  8. Elam, E. U. & Davis, H. E. (1967). J. Org. Chem. 32, 1562–1565.
  9. Fontecilla-Camps, J. C., Volbeda, A., Cavazza, C. & Nicolet, Y. (2007). Chem. Rev. 107, 4273–4303. [DOI] [PubMed]
  10. Gloaguen, F. & Rauchfuss, T. B. (2009). Chem. Soc. Rev. 38, 100–108. [DOI] [PMC free article] [PubMed]
  11. Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. [DOI] [PubMed]
  12. Nekhaev, A. I., Alekseeva, S. D., Kolobkov, B. I., Aleksandrov, G. G., Toshev, M. T., Dustov, H. B. & Parpiev, N. A. (1991). J. Organomet. Chem. 401, 65–73.
  13. Ogino, H., Inomata, S. & Tobita, H. (1998). Chem. Rev. 98, 2093–2122. [DOI] [PubMed]
  14. Okuma, K., Nojima, A., Shigetomi, T. & Yokomori, Y. (2007). Tetrahedron, 63, 11748–11753.
  15. Rauchfuss, T. B. (2015). Acc. Chem. Res. 48, 2107–2116. [DOI] [PMC free article] [PubMed]
  16. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  17. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  18. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  19. Shi, Y.-C., Cheng, H.-R., Yuan, L.-M. & Li, Q.-K. (2011). Acta Cryst. E67, m1534. [DOI] [PMC free article] [PubMed]
  20. Stephenson, M. & Stickland, L. H. (1931). Biochem. J. 25, 205–214. [DOI] [PMC free article] [PubMed]
  21. Tard, C. & Pickett, C. J. (2009). Chem. Rev. 109, 2245–2274. [DOI] [PubMed]
  22. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015018496/wm5218sup1.cif

e-71-01296-sup1.cif (771.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015018496/wm5218Isup2.hkl

e-71-01296-Isup2.hkl (326.3KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015018496/wm5218Isup3.cdx

CCDC reference: 1429290

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES