Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Oct 10;71(Pt 11):o834–o835. doi: 10.1107/S2056989015018411

Crystal structure of 3-chloro-1-methyl-5-nitro-1H-indazole

Assoman Kouakou a,*, El Mostapha Rakib a, Mohamed Chigr a, Mohamed Saadi b, Lahcen El Ammari b
PMCID: PMC4645045  PMID: 26594552

Abstract

The mol­ecule of the title compound, C8H6ClN3O2, is built up from fused five- and six-membered rings connected to a chlorine atom and to nitro and methyl groups. The indazole system is essentially planar with the largest deviation from the mean plane being 0.007 (2) Å. No classical hydrogen bonds are observed in the structure. Two mol­ecules form a dimer organised by a symmetry centre via a close contact between a nitro-O atom and the chlorine atom [at 3.066 (2) Å this is shorter than the sum of their van der Waals radii].

Keywords: crystal structure, indazole derivative, Cl⋯O short contact

Related literature  

For biological activities such as as anti­microbial, anti­cancer, anti­inflammatory, anti­platelet and selective 5-HT6 antagonists of the title compound and derivatives, see: Schmidt et al. (2008); Shafakat Ali et al. (2012); Abbassi et al. (2014); Plescia et al. (2010); Lee et al. (2001); Liu et al. (2011).graphic file with name e-71-0o834-scheme1.jpg

Experimental  

Crystal data  

  • C8H6ClN3O2

  • M r = 211.61

  • Monoclinic, Inline graphic

  • a = 3.8273 (2) Å

  • b = 14.678 (6) Å

  • c = 15.549 (6) Å

  • β = 96.130 (9)°

  • V = 868.5 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.41 mm−1

  • T = 296 K

  • 0.31 × 0.27 × 0.21 mm

Data collection  

  • Bruker X8 APEX Diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.654, T max = 0.747

  • 19793 measured reflections

  • 2243 independent reflections

  • 1963 reflections with I > 2σ(I)

  • R int = 0.028

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.043

  • wR(F 2) = 0.115

  • S = 1.10

  • 2243 reflections

  • 127 parameters

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.27 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: ORTEP-3 (Burnett & Johnson, 1996; Farrugia, 2012); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015018411/zp2019sup1.cif

e-71-0o834-sup1.cif (891.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015018411/zp2019Isup2.hkl

e-71-0o834-Isup2.hkl (180KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015018411/zp2019Isup3.cml

. DOI: 10.1107/S2056989015018411/zp2019fig1.tif

Plot of the mol­ecule of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small circles.

CCDC reference: 1429148

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements and the University Sultan Moulay Slimane, Beni-Mellal, Morocco, for financial support.

supplementary crystallographic information

S1. Comment

Indazole derivatives are a versatile class of compounds that have found use in biology, catalysis, and medicinal chemistry. They exhibit a variety of biological activities such as anti-microbial, anti-cancer, anti-inflammatory, anti- platelet, and selective 5-HT6 antagonists (Schmidt et al., 2008, Shafakat Ali et al., 2012, Abbassi et al., 2014, Plescia et al., 2010, Lee et al., 2001, Liu et al., 2011).

The two fused five- and six-membered rings (N2N3 C1 to C7) part of the molecule are almost planar, with a maximum deviation of -0.007 (2) Å at C1 atom (Fig.1). The chlorine atom and the nitro group linked to the indazole ring are nearly coplanar with the largest deviation from the mean plane being -0.070 (2) Å at O1. No classic hydrogen bonds are observed in the structure.

S2. Experimental

To a solution of 3-chloro-5-nitroindazole (6.13 mmol) in acetone (15 ml) was added potassium hydroxide (6.8 mmol). After 15 mn at 298 K, methyl iodide (12.26 mmol) was added dropwise. Upon disappearance of the starting material as indicated by TLC, the resulting mixture was evaporated. The crude material was dissolved with EtOAc (50 ml), washed with water and brine, dried over MgSO4 and the solvent was evaporated in vacuo. The resulting residue was purified by column chromatography (EtOAc/hexane 2/8). The title compound was recrystallized from ethanol at room temperature giving colourless crystals (m.p. 471 K, yield: 70%).

S3. Refinement

H atoms were located in a difference map and treated as riding with C–H = 0.96 Å and C–H = 0.93 Å for methyl and aromatic, respectively. All hydrogen with Uiso(H) = 1.5 Ueq for methyl and Uiso(H) = 1.2 Ueq for aromatic.

Figures

Fig. 1.

Fig. 1.

Plot of the molecule of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small circles.

Crystal data

C8H6ClN3O2 Dx = 1.618 Mg m3
Mr = 211.61 Melting point: 471 K
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 3.8273 (2) Å Cell parameters from 2243 reflections
b = 14.678 (6) Å θ = 2.6–28.7°
c = 15.549 (6) Å µ = 0.41 mm1
β = 96.130 (9)° T = 296 K
V = 868.5 (6) Å3 Block, colourless
Z = 4 0.31 × 0.27 × 0.21 mm
F(000) = 432

Data collection

Bruker X8 APEX Diffractometer 2243 independent reflections
Radiation source: fine-focus sealed tube 1963 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.028
φ and ω scans θmax = 28.7°, θmin = 2.6°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −5→5
Tmin = 0.654, Tmax = 0.747 k = −19→19
19793 measured reflections l = −20→20

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043 H-atom parameters constrained
wR(F2) = 0.115 w = 1/[σ2(Fo2) + (0.0484P)2 + 0.5276P] where P = (Fo2 + 2Fc2)/3
S = 1.10 (Δ/σ)max < 0.001
2243 reflections Δρmax = 0.36 e Å3
127 parameters Δρmin = −0.27 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.39641 (14) 0.41233 (3) 0.10469 (3) 0.04683 (17)
N3 0.7340 (4) 0.56202 (10) 0.29223 (9) 0.0345 (3)
N2 0.6938 (4) 0.48003 (10) 0.25083 (10) 0.0358 (3)
N1 0.0460 (5) 0.79442 (11) 0.05310 (10) 0.0416 (4)
O2 −0.0907 (5) 0.75957 (11) −0.01323 (11) 0.0671 (5)
O1 0.0360 (6) 0.87596 (11) 0.06625 (11) 0.0669 (5)
C3 0.4260 (4) 0.59119 (11) 0.16618 (10) 0.0283 (3)
C4 0.5778 (4) 0.63052 (11) 0.24420 (10) 0.0299 (3)
C2 0.2473 (4) 0.64453 (11) 0.10193 (10) 0.0301 (3)
H2 0.1459 0.6196 0.0502 0.036*
C1 0.2289 (5) 0.73599 (12) 0.11912 (11) 0.0325 (3)
C7 0.5114 (4) 0.49799 (12) 0.17658 (11) 0.0320 (3)
C5 0.5521 (5) 0.72408 (12) 0.26022 (11) 0.0373 (4)
H5 0.6498 0.7497 0.3120 0.045*
C6 0.3773 (5) 0.77622 (12) 0.19662 (12) 0.0381 (4)
H6 0.3564 0.8387 0.2047 0.046*
C9 0.9194 (5) 0.56629 (15) 0.37845 (12) 0.0442 (5)
H9A 1.0018 0.5066 0.3957 0.066*
H9B 1.1160 0.6069 0.3785 0.066*
H9C 0.7634 0.5882 0.4182 0.066*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0591 (3) 0.0334 (2) 0.0457 (3) 0.00152 (19) −0.0049 (2) −0.01074 (18)
N3 0.0347 (8) 0.0374 (8) 0.0308 (7) −0.0012 (6) 0.0006 (6) −0.0012 (6)
N2 0.0367 (8) 0.0345 (7) 0.0360 (7) 0.0011 (6) 0.0033 (6) −0.0012 (6)
N1 0.0497 (9) 0.0357 (8) 0.0405 (8) 0.0048 (7) 0.0095 (7) 0.0062 (6)
O2 0.0955 (14) 0.0476 (9) 0.0513 (9) 0.0052 (9) −0.0246 (9) 0.0045 (7)
O1 0.1054 (15) 0.0352 (8) 0.0589 (10) 0.0147 (9) 0.0037 (9) 0.0054 (7)
C3 0.0266 (8) 0.0304 (8) 0.0285 (7) −0.0028 (6) 0.0056 (6) −0.0032 (6)
C4 0.0270 (8) 0.0348 (8) 0.0284 (7) −0.0043 (6) 0.0051 (6) −0.0020 (6)
C2 0.0310 (8) 0.0321 (8) 0.0276 (7) −0.0024 (6) 0.0048 (6) −0.0014 (6)
C1 0.0342 (9) 0.0315 (8) 0.0328 (8) −0.0001 (7) 0.0084 (7) 0.0029 (6)
C7 0.0317 (8) 0.0314 (8) 0.0331 (8) −0.0018 (6) 0.0047 (6) −0.0039 (6)
C5 0.0430 (10) 0.0359 (9) 0.0330 (8) −0.0069 (7) 0.0044 (7) −0.0093 (7)
C6 0.0463 (10) 0.0283 (8) 0.0407 (9) −0.0028 (7) 0.0100 (8) −0.0058 (7)
C9 0.0422 (10) 0.0559 (12) 0.0326 (9) −0.0021 (9) −0.0055 (8) −0.0008 (8)

Geometric parameters (Å, º)

Cl1—C7 1.7086 (18) C4—C5 1.401 (2)
N3—C4 1.353 (2) C2—C1 1.372 (2)
N3—N2 1.366 (2) C2—H2 0.9300
N3—C9 1.450 (2) C1—C6 1.406 (3)
N2—C7 1.311 (2) C5—C6 1.367 (3)
N1—O1 1.215 (2) C5—H5 0.9300
N1—O2 1.218 (2) C6—H6 0.9300
N1—C1 1.458 (2) C9—H9A 0.9600
C3—C2 1.390 (2) C9—H9B 0.9600
C3—C4 1.411 (2) C9—H9C 0.9600
C3—C7 1.412 (2)
C4—N3—N2 111.95 (14) C2—C1—N1 117.97 (16)
C4—N3—C9 128.47 (16) C6—C1—N1 118.43 (16)
N2—N3—C9 119.56 (16) N2—C7—C3 113.01 (15)
C7—N2—N3 105.10 (14) N2—C7—Cl1 120.27 (14)
O1—N1—O2 122.53 (18) C3—C7—Cl1 126.72 (13)
O1—N1—C1 118.81 (17) C6—C5—C4 117.27 (16)
O2—N1—C1 118.66 (16) C6—C5—H5 121.4
C2—C3—C4 120.87 (15) C4—C5—H5 121.4
C2—C3—C7 135.89 (15) C5—C6—C1 120.43 (16)
C4—C3—C7 103.23 (14) C5—C6—H6 119.8
N3—C4—C5 131.73 (16) C1—C6—H6 119.8
N3—C4—C3 106.71 (15) N3—C9—H9A 109.5
C5—C4—C3 121.56 (16) N3—C9—H9B 109.5
C1—C2—C3 116.26 (15) H9A—C9—H9B 109.5
C1—C2—H2 121.9 N3—C9—H9C 109.5
C3—C2—H2 121.9 H9A—C9—H9C 109.5
C2—C1—C6 123.60 (16) H9B—C9—H9C 109.5

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: ZP2019).

References

  1. Abbassi, N., Rakib, E. M., Chicha, H., Bouissane, L., Hannioui, A., Aiello, C., Gangemi, R., Castagnola, P., Rosano, C. & Viale, M. (2014). Arch. Pharm. Chem. Life Sci. 347, 423–431. [DOI] [PubMed]
  2. Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  4. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  5. Lee, F., Lien, J. C., Huang, L., Huang, T., Tsai, S. C., Teng, C. M., Wu, C. C., Cheng, F. C. & Kuo, S. C. (2001). J. Med. Chem. 44, 3746–3749. [DOI] [PubMed]
  6. Liu, K. G., Robichaud, A. J., Greenfield, A. A., Lo, J. R., Grosanu, C., Mattes, J. F., Cai, Y., Zhang, G. M., Zhang, J. Y., Kowal, D. M., Smith, D. L., Di, L., Kerns, E. H., Schechter, L. E. & Comery, T. A. (2011). Bioorg. Med. Chem. 19, 650–662. [DOI] [PubMed]
  7. Plescia, S., Raffa, D., Plescia, F., Casula, G., Maggio, B., Daidone, G., Raimondi, M. V., Cusimano, M. G., Bombieri, G. & Meneghetti, F. (2010). ARKIVOC, x, 163–177.
  8. Schmidt, A., Beutler, A. & Snovydovych, B. (2008). Eur. J. Org. Chem. pp. 4073–4095.
  9. Shafakat Ali, N. ali, Zakir, S., Patel, M. & Farooqui, M. (2012). Eur. J. Med. Chem 50, 39–43. [DOI] [PubMed]
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  12. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015018411/zp2019sup1.cif

e-71-0o834-sup1.cif (891.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015018411/zp2019Isup2.hkl

e-71-0o834-Isup2.hkl (180KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015018411/zp2019Isup3.cml

. DOI: 10.1107/S2056989015018411/zp2019fig1.tif

Plot of the mol­ecule of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small circles.

CCDC reference: 1429148

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES