Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Oct 24;71(Pt 11):o878–o879. doi: 10.1107/S2056989015019386

Crystal structure of di­cyclo­hexyl­ammonium nitrate(V)

Tomasz Rojek a, Ewa Matczak-Jon a,*
PMCID: PMC4645052  PMID: 26594576

Abstract

In the title mol­ecular salt, C12H24N+·NO3 , the cyclohexyl rings adopt chair conformations with the exocyclic C—N bonds in equatorial orientations. In the crystal, a bifurcated N—H⋯(O,O) hydrogen bond links the cation to the anion; the ion pairs are linked via C—H⋯O hydrogen bonds, forming layers in the ac plane.

Keywords: crystal structure, di­cyclo­hexyl­ammonium salts, nitrate(V) salts, hydrogen bonding

Related literature  

For the crystal structure of di­cyclo­hexyl­ammonium nitrate(III), see: Golobič et al. (1999). For other crystal structures of di­cyclo­hexyl­ammonium salts, see: Ng (1995); Bi et al. (2002); Lo & Ng (2008); Khawar Rauf et al. (2008); Selvakumaran et al. (2011); Ndoye et al. (2014). For crystal structures of carboxyl­ate salts with the di­cyclo­hexyl­ammonium cation belonging to the low mol­ecular weight gelators (LMWGs) class of compounds and exhibiting gelling properties, see: Trivedi et al. (2004, 2005); Sahoo & Dastidar (2012); Rojek et al. (2015).graphic file with name e-71-0o878-scheme1.jpg

Experimental  

Crystal data  

  • C12H24N+·NO3

  • M r = 244.33

  • Orthorhombic, Inline graphic

  • a = 8.436 (2) Å

  • b = 18.682 (5) Å

  • c = 8.427 (3) Å

  • V = 1328.1 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.45 × 0.41 × 0.36 mm

Data collection  

  • Kuma KM-4 difractometer with a CCD camera diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2010) T min = 0.962, T max = 0.969

  • 9001 measured reflections

  • 1759 independent reflections

  • 1699 reflections with I > 2σ(I)

  • R int = 0.035

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.035

  • wR(F 2) = 0.089

  • S = 1.09

  • 1759 reflections

  • 162 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S2056989015019386/su5222sup1.cif

e-71-0o878-sup1.cif (18.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015019386/su5222Isup2.hkl

e-71-0o878-Isup2.hkl (86.7KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015019386/su5222Isup3.txt

e-71-0o878-Isup3.txt (337.1KB, txt)

Supporting information file. DOI: 10.1107/S2056989015019386/su5222Isup4.cml

. DOI: 10.1107/S2056989015019386/su5222fig1.tif

The asymmetric unit of the title mol­ecular salt, showing the atom-numbering scheme and the symmetry-independent hydrogen bonds (orange and light-blue dashed lines; see Table 1). Displacement ellipsoids are drawn at the 50% probability level.

b ac . DOI: 10.1107/S2056989015019386/su5222fig2.tif

A view along the b axis of the crystal packing of the title mol­ecular salt, showing the hydrogen-bonded chains assembled into a layer in the ac plane. Hydrogen bonds are drawn as yellow and light-blue dashed lines (see Table 1). H atoms on C atoms of the cyclo­hexane rings not involved in hydrogen bonds have been omitted for clarity.

CCDC reference: 1431025

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
N1H1NO2 0.91(2) 2.56(2) 3.292(2) 138.2(17)
N1H1NO3 0.91(2) 2.01(2) 2.8988(19) 166.7(19)
N1H2NO2i 0.86(2) 1.98(2) 2.799(2) 157.6(19)
C11H11O1ii 1.00 2.45 3.347(2) 149
C12H12O3iii 1.00 2.52 3.456(3) 156
C22H22BO2 0.99 2.53 3.309(2) 136
C62H62AO1ii 0.99 2.59 3.506(2) 153

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

Financial support by a statutory activity subsidy from the Polish Ministry of Science and Higher Education for the Department of Chemistry of Wrocław University of Technology is gratefully acknowledged.

supplementary crystallographic information

S1. Comment

The di­cyclo­hexyl­ammonium cation has been widely used in the preparation of crystalline salts like chloride (Ng, 1995), nitrate(III) (Golobič et al., 1999), tungstate (Bi et al., 2002), bromide (Lo & Ng, 2008), thio­cyanate (Khawar Rauf et al., 2008; Selvakumaran et al., 2011) or sulfate­(VI) (Ndoye et al., 2014) salts. In recent years, there has been increased inter­est in di­cyclo­hexyl­ammonium carboxyl­ate salts due to their potential applications as materials capable of immobilizing organic solvents to form gels, known as low molecular weight gelators - LMWGs (Trivedi et al., 2004, 2005; Sahoo & Dastidar, 2012; Rojek et al., 2015).

The title molecular salt, Fig. 1, consists of an ion pair comprising a di­cyclo­hexyl­ammonium cation connected to a nitrate(V) anion by N1—H1N···O3 and N1—H1N···O2 hydrogen bonds (Table 1). Additionally, the ion pair is stabilized by a C22—H22B···O2 inter­action (Fig. 1 and Table 1). The N2—O2 and N2—O3 bond lengths of the nitrate(V) anion are almost equal [1.258 (2) and 1.255 (2) Å, respectively] and longer than the N2—O1 bond length [1.2353 (18) Å]. The C11—N1—C12 angle in the di­cyclo­hexyl­ammonium cation [117.34 (12)°] is larger than expected for a tetra­hedral N atom. This is attributed to the steric hindrance imposed by the cyclo­hexane rings, each of which adopt a chair conformation. The N1—C11 and N1—C12 bond lengths [1.5077 (19) and 1.510 (2) Å, respectively] are similar to those observed for other di­cyclo­hexyl­ammonium salts (Golobič et al., 1999).

In the crystal, the N1—H2N···O2i hydrogen bonds combine ion pairs into infinite chains parallel to the c axis. The chains are additionally stabilized by C12—H12···O3iii contacts and further packed in a parallel fashion by means of C62—H62A···O1ii and C11—H11···O1ii (symmetry codes as in Table 1) inter­actions giving rise to layers in the ac plane (Fig. 2).

S2. Synthesis and crystallization

Di­cyclo­hexyl­amine (1 mmol, 201 ml) was added to methanol (4 ml) under vigorous stirring. The clear solution was combined with nitric(V) acid (1 M, 1 ml) and stirred for 20 min. The resulting solution was left to crystallize at room temperature. After one week, large block-shaped colourless single crystals of the title salt suitable for X-ray diffraction analysis were obtained.

S3. Refinement

The N-bound H atoms were located in a difference Fourier map and freely refined. The C-bound H atoms were positioned geometrically and refined using a riding model; C—H = 0.99 Å with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of the title molecular salt, showing the atom-numbering scheme and the symmetry-independent hydrogen bonds (orange and light-blue dashed lines; see Table 1). Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

A view along the b axis of the crystal packing of the title molecular salt, showing the hydrogen-bonded chains assembled into a layer in the ac plane. Hydrogen bonds are drawn as yellow and light-blue dashed lines (see Table 1). H atoms on C atoms of the cyclohexane rings not involved in hydrogen bonds have been omitted for clarity.

Crystal data

C12H24N+·NO3 F(000) = 536
Mr = 244.33 Dx = 1.222 Mg m3
Orthorhombic, Pna21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2n Cell parameters from 6847 reflections
a = 8.436 (2) Å θ = 3–29°
b = 18.682 (5) Å µ = 0.09 mm1
c = 8.427 (3) Å T = 100 K
V = 1328.1 (7) Å3 Block, colorless
Z = 4 0.45 × 0.41 × 0.36 mm

Data collection

Kuma KM-4 difractometer with a CCD camera diffractometer 1699 reflections with I > 2σ(I)
Radiation source: normal focus sealed tube Rint = 0.035
ω scans θmax = 28.7°, θmin = 3.3°
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2010) h = −9→11
Tmin = 0.962, Tmax = 0.969 k = −24→22
9001 measured reflections l = −11→11
1759 independent reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089 H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.051P)2 + 0.1971P] where P = (Fo2 + 2Fc2)/3
1759 reflections (Δ/σ)max < 0.001
162 parameters Δρmax = 0.21 e Å3
1 restraint Δρmin = −0.19 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.67955 (15) 0.52358 (7) 0.34329 (17) 0.0172 (3)
H1N 0.575 (3) 0.5334 (10) 0.348 (3) 0.022 (5)*
H2N 0.703 (2) 0.5150 (11) 0.245 (3) 0.020 (5)*
C11 0.76844 (18) 0.58933 (8) 0.39662 (19) 0.0174 (3)
H11 0.8844 0.5812 0.3802 0.021*
C21 0.7391 (2) 0.60372 (9) 0.5718 (2) 0.0209 (3)
H21A 0.7773 0.5626 0.6354 0.025*
H21B 0.6239 0.6091 0.5909 0.025*
C31 0.8252 (2) 0.67195 (8) 0.6241 (2) 0.0236 (3)
H31A 0.7994 0.6822 0.7365 0.028*
H31B 0.9411 0.6644 0.6163 0.028*
C41 0.7782 (2) 0.73593 (8) 0.5221 (2) 0.0249 (3)
H41A 0.8415 0.7782 0.5537 0.030*
H41B 0.6649 0.7472 0.5400 0.030*
C51 0.8053 (2) 0.72023 (9) 0.3456 (2) 0.0256 (3)
H51A 0.7681 0.7613 0.2815 0.031*
H51B 0.9202 0.7140 0.3256 0.031*
C61 0.71676 (19) 0.65265 (8) 0.2950 (2) 0.0213 (3)
H61A 0.6012 0.6602 0.3068 0.026*
H61B 0.7390 0.6424 0.1820 0.026*
C12 0.71252 (17) 0.45456 (8) 0.4304 (2) 0.0173 (3)
H12 0.6777 0.4601 0.5432 0.021*
C22 0.61395 (18) 0.39582 (8) 0.3534 (2) 0.0202 (3)
H22A 0.6447 0.3906 0.2406 0.024*
H22B 0.5003 0.4089 0.3575 0.024*
C32 0.64019 (18) 0.32501 (8) 0.4401 (2) 0.0224 (3)
H32A 0.6010 0.3291 0.5504 0.027*
H32B 0.5791 0.2867 0.3866 0.027*
C42 0.81560 (18) 0.30512 (8) 0.4419 (2) 0.0225 (3)
H42A 0.8304 0.2606 0.5040 0.027*
H42B 0.8517 0.2958 0.3320 0.027*
C52 0.91573 (19) 0.36473 (8) 0.5142 (2) 0.0231 (3)
H52A 1.0292 0.3516 0.5073 0.028*
H52B 0.8882 0.3701 0.6278 0.028*
C62 0.88884 (18) 0.43628 (8) 0.4286 (2) 0.0206 (3)
H62A 0.9496 0.4746 0.4822 0.025*
H62B 0.9266 0.4327 0.3176 0.025*
N2 0.27878 (15) 0.55034 (7) 0.44418 (19) 0.0209 (3)
O1 0.15367 (14) 0.57836 (7) 0.48831 (17) 0.0325 (3)
O2 0.33397 (19) 0.49638 (8) 0.51433 (18) 0.0398 (4)
O3 0.35579 (15) 0.57519 (7) 0.32934 (17) 0.0318 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0173 (6) 0.0172 (6) 0.0172 (7) 0.0010 (5) −0.0018 (5) −0.0027 (5)
C11 0.0183 (7) 0.0165 (7) 0.0176 (7) 0.0002 (5) −0.0001 (6) −0.0019 (5)
C21 0.0260 (7) 0.0202 (7) 0.0165 (7) −0.0022 (6) −0.0009 (6) −0.0014 (6)
C31 0.0288 (8) 0.0199 (7) 0.0220 (8) 0.0000 (6) −0.0035 (6) −0.0047 (6)
C41 0.0274 (8) 0.0179 (7) 0.0293 (8) 0.0012 (6) −0.0015 (7) −0.0026 (7)
C51 0.0314 (8) 0.0209 (7) 0.0245 (8) −0.0029 (6) 0.0017 (7) 0.0025 (7)
C61 0.0256 (8) 0.0199 (7) 0.0184 (7) 0.0001 (6) −0.0003 (6) 0.0021 (6)
C12 0.0170 (6) 0.0162 (6) 0.0187 (7) 0.0009 (5) −0.0004 (6) −0.0003 (6)
C22 0.0173 (7) 0.0189 (7) 0.0242 (8) −0.0007 (5) −0.0013 (6) −0.0025 (6)
C32 0.0225 (7) 0.0187 (7) 0.0261 (8) −0.0011 (5) 0.0034 (7) −0.0007 (6)
C42 0.0236 (7) 0.0188 (7) 0.0252 (8) 0.0017 (6) 0.0029 (7) −0.0004 (7)
C52 0.0212 (7) 0.0227 (7) 0.0253 (7) 0.0033 (6) −0.0045 (6) 0.0005 (7)
C62 0.0178 (7) 0.0196 (7) 0.0243 (8) 0.0002 (5) −0.0031 (6) −0.0009 (6)
N2 0.0202 (6) 0.0229 (6) 0.0197 (6) −0.0009 (5) −0.0012 (5) −0.0013 (5)
O1 0.0197 (6) 0.0370 (7) 0.0409 (8) 0.0041 (5) 0.0034 (5) −0.0079 (6)
O2 0.0594 (9) 0.0360 (7) 0.0239 (6) 0.0236 (6) 0.0088 (7) 0.0071 (6)
O3 0.0296 (6) 0.0394 (7) 0.0263 (7) 0.0000 (5) 0.0050 (5) 0.0082 (6)

Geometric parameters (Å, º)

N1—C11 1.5077 (19) C12—C22 1.522 (2)
N1—C12 1.510 (2) C12—C62 1.526 (2)
N1—H1N 0.91 (2) C12—H12 1.0000
N1—H2N 0.86 (2) C22—C32 1.527 (2)
C11—C21 1.521 (2) C22—H22A 0.9900
C11—C61 1.524 (2) C22—H22B 0.9900
C11—H11 1.0000 C32—C42 1.526 (2)
C21—C31 1.532 (2) C32—H32A 0.9900
C21—H21A 0.9900 C32—H32B 0.9900
C21—H21B 0.9900 C42—C52 1.525 (2)
C31—C41 1.525 (2) C42—H42A 0.9900
C31—H31A 0.9900 C42—H42B 0.9900
C31—H31B 0.9900 C52—C62 1.536 (2)
C41—C51 1.533 (3) C52—H52A 0.9900
C41—H41A 0.9900 C52—H52B 0.9900
C41—H41B 0.9900 C62—H62A 0.9900
C51—C61 1.528 (2) C62—H62B 0.9900
C51—H51A 0.9900 N2—O1 1.2353 (18)
C51—H51B 0.9900 N2—O3 1.255 (2)
C61—H61A 0.9900 N2—O2 1.258 (2)
C61—H61B 0.9900
C11—N1—C12 117.34 (12) H61A—C61—H61B 108.1
C11—N1—H1N 107.9 (13) N1—C12—C22 107.92 (12)
C12—N1—H1N 109.3 (13) N1—C12—C62 111.45 (12)
C11—N1—H2N 109.0 (14) C22—C12—C62 111.51 (12)
C12—N1—H2N 105.4 (14) N1—C12—H12 108.6
H1N—N1—H2N 108 (2) C22—C12—H12 108.6
N1—C11—C21 110.62 (13) C62—C12—H12 108.6
N1—C11—C61 108.83 (13) C12—C22—C32 109.96 (13)
C21—C11—C61 111.20 (13) C12—C22—H22A 109.7
N1—C11—H11 108.7 C32—C22—H22A 109.7
C21—C11—H11 108.7 C12—C22—H22B 109.7
C61—C11—H11 108.7 C32—C22—H22B 109.7
C11—C21—C31 110.42 (14) H22A—C22—H22B 108.2
C11—C21—H21A 109.6 C42—C32—C22 110.87 (13)
C31—C21—H21A 109.6 C42—C32—H32A 109.5
C11—C21—H21B 109.6 C22—C32—H32A 109.5
C31—C21—H21B 109.6 C42—C32—H32B 109.5
H21A—C21—H21B 108.1 C22—C32—H32B 109.5
C41—C31—C21 111.49 (14) H32A—C32—H32B 108.1
C41—C31—H31A 109.3 C52—C42—C32 111.30 (13)
C21—C31—H31A 109.3 C52—C42—H42A 109.4
C41—C31—H31B 109.3 C32—C42—H42A 109.4
C21—C31—H31B 109.3 C52—C42—H42B 109.4
H31A—C31—H31B 108.0 C32—C42—H42B 109.4
C31—C41—C51 110.99 (13) H42A—C42—H42B 108.0
C31—C41—H41A 109.4 C42—C52—C62 111.46 (14)
C51—C41—H41A 109.4 C42—C52—H52A 109.3
C31—C41—H41B 109.4 C62—C52—H52A 109.3
C51—C41—H41B 109.4 C42—C52—H52B 109.3
H41A—C41—H41B 108.0 C62—C52—H52B 109.3
C61—C51—C41 110.81 (14) H52A—C52—H52B 108.0
C61—C51—H51A 109.5 C12—C62—C52 109.50 (13)
C41—C51—H51A 109.5 C12—C62—H62A 109.8
C61—C51—H51B 109.5 C52—C62—H62A 109.8
C41—C51—H51B 109.5 C12—C62—H62B 109.8
H51A—C51—H51B 108.1 C52—C62—H62B 109.8
C11—C61—C51 110.18 (13) H62A—C62—H62B 108.2
C11—C61—H61A 109.6 O1—N2—O3 121.19 (15)
C51—C61—H61A 109.6 O1—N2—O2 120.95 (16)
C11—C61—H61B 109.6 O3—N2—O2 117.86 (14)
C51—C61—H61B 109.6
C12—N1—C11—C21 −56.99 (17) C11—N1—C12—C22 −178.34 (13)
C12—N1—C11—C61 −179.43 (13) C11—N1—C12—C62 −55.58 (18)
N1—C11—C21—C31 −178.14 (13) N1—C12—C22—C32 −178.66 (12)
C61—C11—C21—C31 −57.10 (18) C62—C12—C22—C32 58.62 (18)
C11—C21—C31—C41 55.47 (18) C12—C22—C32—C42 −56.86 (18)
C21—C31—C41—C51 −55.0 (2) C22—C32—C42—C52 55.7 (2)
C31—C41—C51—C61 55.81 (19) C32—C42—C52—C62 −55.4 (2)
N1—C11—C61—C51 −179.74 (13) N1—C12—C62—C52 −178.37 (13)
C21—C11—C61—C51 58.16 (18) C22—C12—C62—C52 −57.70 (18)
C41—C51—C61—C11 −57.12 (18) C42—C52—C62—C12 55.69 (19)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1N···O2 0.91 (2) 2.56 (2) 3.292 (2) 138.2 (17)
N1—H1N···O3 0.91 (2) 2.01 (2) 2.8988 (19) 166.7 (19)
N1—H2N···O2i 0.86 (2) 1.98 (2) 2.799 (2) 157.6 (19)
C11—H11···O1ii 1.00 2.45 3.347 (2) 149
C12—H12···O3iii 1.00 2.52 3.456 (3) 156
C22—H22B···O2 0.99 2.53 3.309 (2) 136
C62—H62A···O1ii 0.99 2.59 3.506 (2) 153

Symmetry codes: (i) −x+1, −y+1, z−1/2; (ii) x+1, y, z; (iii) −x+1, −y+1, z+1/2.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: SU5222).

References

  1. Agilent (2011). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.
  2. Bi, W., Sun, D., Cao, R., Chen, J.-T. & Hong, M. (2002). Acta Cryst. E58, m611–m612.
  3. Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  4. Golobič, A., Štefane, B. & Polanc, S. (1999). Polyhedron, 18, 3661–3668.
  5. Khawar Rauf, M., Ebihara, M., Imtiaz-ud-Din & Badshah, A. (2008). Acta Cryst. E64, o366. [DOI] [PMC free article] [PubMed]
  6. Lo, K. M. & Ng, S. W. (2008). Acta Cryst. E64, o1624. [DOI] [PMC free article] [PubMed]
  7. Ndoye, D., Sow, M. M. & Diop, L. (2014). Acta Cryst. E70, o237. [DOI] [PMC free article] [PubMed]
  8. Ng, S. W. (1995). Acta Cryst. C51, 2149–2150.
  9. Oxford Diffraction (2010). CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.
  10. Rojek, T., Lis, T. & Matczak-Jon, E. (2015). Acta Cryst. C71, 593–597. [DOI] [PubMed]
  11. Sahoo, P. & Dastidar, P. (2012). Cryst. Growth Des. 12, 5917–5924.
  12. Selvakumaran, N., Karvembu, R., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o2843. [DOI] [PMC free article] [PubMed]
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  14. Trivedi, D. R., Ballabh, A. & Dastidar, P. (2005). J. Mater. Chem. 15, 2606–2614.
  15. Trivedi, D. R., Ballabh, A., Dastidar, P. & Ganguly, B. (2004). Chem. Eur. J. 10, 5311–5322. [DOI] [PubMed]
  16. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S2056989015019386/su5222sup1.cif

e-71-0o878-sup1.cif (18.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015019386/su5222Isup2.hkl

e-71-0o878-Isup2.hkl (86.7KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015019386/su5222Isup3.txt

e-71-0o878-Isup3.txt (337.1KB, txt)

Supporting information file. DOI: 10.1107/S2056989015019386/su5222Isup4.cml

. DOI: 10.1107/S2056989015019386/su5222fig1.tif

The asymmetric unit of the title mol­ecular salt, showing the atom-numbering scheme and the symmetry-independent hydrogen bonds (orange and light-blue dashed lines; see Table 1). Displacement ellipsoids are drawn at the 50% probability level.

b ac . DOI: 10.1107/S2056989015019386/su5222fig2.tif

A view along the b axis of the crystal packing of the title mol­ecular salt, showing the hydrogen-bonded chains assembled into a layer in the ac plane. Hydrogen bonds are drawn as yellow and light-blue dashed lines (see Table 1). H atoms on C atoms of the cyclo­hexane rings not involved in hydrogen bonds have been omitted for clarity.

CCDC reference: 1431025

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES