Skip to main content
Thorax logoLink to Thorax
. 1993 May;48(5):518–522. doi: 10.1136/thx.48.5.518

Evaluation of albumin as a reference marker of dilution in bronchoalveolar lavage fluid from asthmatic and control subjects.

C Ward 1, M Duddridge 1, J Fenwick 1, P V Gardiner 1, A Fleetwood 1, D J Hendrick 1, E H Walters 1
PMCID: PMC464506  PMID: 8322239

Abstract

BACKGROUND--Standardised expression of results of bronchoalveolar lavage (BAL) is problematical in the absence of a validated "denominator" of epithelial lining fluid dilution. The suitability of albumin in BAL fluid has been investigated in groups of clinically stable asthmatic and control subjects. METHODS--Absolute levels of albumin in BAL fluid were measured in a preliminary study of 21 asthmatic and 10 control subjects. In a more complex study designed to investigate the origin of albumin sampled at BAL in nine asthmatic and seven control subjects, radiolabelled albumin was injected intravenously five minutes before BAL. RESULTS--In the preliminary study levels of albumin in BAL fluid were very similar, with a geometric mean value of 44 (95% CI 35-54) micrograms/ml BAL supernatant for the asthmatic subjects and 41 (95% CI 33-52) micrograms/ml for the controls. The majority of control and asthmatic subjects in the radiolabel study exhibited minimal flux of albumin from the circulation into the BAL aspirate. This finding was not uniform, however, and in a third of the asthmatic subjects an albumin flux equivalent to > 20% of the measurable albumin was found in two or more aliquots of a 3 x 60 ml lavage. CONCLUSIONS--The results of this investigation into the source of albumin sampled at BAL suggest that, in general, albumin would be a reasonable reference solute for normalising the degree of dilution of BAL fluid in the groups studied. The origin of albumin was not always restricted to the bronchopulmonary segment under investigation, however, with significant leakage from the blood compartment in some individuals despite the consistency of absolute levels observed in the preliminary study.

Full text

PDF
518

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Balbi B., Moller D. R., Kirby M., Holroyd K. J., Crystal R. G. Increased numbers of T lymphocytes with gamma delta-positive antigen receptors in a subgroup of individuals with pulmonary sarcoidosis. J Clin Invest. 1990 May;85(5):1353–1361. doi: 10.1172/JCI114579. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baughman R. P., Bosken C. H., Loudon R. G., Hurtubise P., Wesseler T. Quantitation of bronchoalveolar lavage with methylene blue. Am Rev Respir Dis. 1983 Aug;128(2):266–270. doi: 10.1164/arrd.1983.128.2.266. [DOI] [PubMed] [Google Scholar]
  3. Bell D. Y., Haseman J. A., Spock A., McLennan G., Hook G. E. Plasma proteins of the bronchoalveolar surface of the lungs of smokers and nonsmokers. Am Rev Respir Dis. 1981 Jul;124(1):72–79. doi: 10.1164/arrd.1981.124.1.72. [DOI] [PubMed] [Google Scholar]
  4. Bridgeman M. M., Marsden M., MacNee W., Flenley D. C., Ryle A. P. Cysteine and glutathione concentrations in plasma and bronchoalveolar lavage fluid after treatment with N-acetylcysteine. Thorax. 1991 Jan;46(1):39–42. doi: 10.1136/thx.46.1.39. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Egan E. A. Fluid balance in the air filled alveolar space. Am Rev Respir Dis. 1983 May;127(5 Pt 2):S37–S39. [PubMed] [Google Scholar]
  6. Fick R. B., Jr, Metzger W. J., Richerson H. B., Zavala D. C., Moseley P. L., Schoderbek W. E., Hunninghake G. W. Increased bronchovascular permeability after allergen exposure in sensitive asthmatics. J Appl Physiol (1985) 1987 Sep;63(3):1147–1155. doi: 10.1152/jappl.1987.63.3.1147. [DOI] [PubMed] [Google Scholar]
  7. Jones K. P., Edwards J. H., Reynolds S. P., Peters T. J., Davies B. H. A comparison of albumin and urea as reference markers in bronchoalveolar lavage fluid from patients with interstitial lung disease. Eur Respir J. 1990 Feb;3(2):152–156. [PubMed] [Google Scholar]
  8. Kelly C. A., Fenwick J. D., Corris P. A., Fleetwood A., Hendrick D. J., Walters E. H. Fluid dynamics during bronchoalveolar lavage. Am Rev Respir Dis. 1988 Jul;138(1):81–84. doi: 10.1164/ajrccm/138.1.81. [DOI] [PubMed] [Google Scholar]
  9. Lam S., Leriche J. C., Kijek K., Phillips D. Effect of bronchial lavage volume on cellular and protein recovery. Chest. 1985 Dec;88(6):856–859. doi: 10.1378/chest.88.6.856. [DOI] [PubMed] [Google Scholar]
  10. Low R. B., Davis G. S., Giancola M. S. Biochemical analyses of bronchoalveolar lavage fluids of healthy human volunteer smokers and nonsmokers. Am Rev Respir Dis. 1978 Nov;118(5):863–875. doi: 10.1164/arrd.1978.118.5.863. [DOI] [PubMed] [Google Scholar]
  11. Marcy T. W., Merrill W. W., Rankin J. A., Reynolds H. Y. Limitations of using urea to quantify epithelial lining fluid recovered by bronchoalveolar lavage. Am Rev Respir Dis. 1987 Jun;135(6):1276–1280. doi: 10.1164/arrd.1987.135.6.1276. [DOI] [PubMed] [Google Scholar]
  12. Merrill W., O'Hearn E., Rankin J., Naegel G., Matthay R. A., Reynolds H. Y. Kinetic analysis of respiratory tract proteins recovered during a sequential lavage protocol. Am Rev Respir Dis. 1982 Oct;126(4):617–620. doi: 10.1164/arrd.1982.126.4.617. [DOI] [PubMed] [Google Scholar]
  13. Rennard S. I., Basset G., Lecossier D., O'Donnell K. M., Pinkston P., Martin P. G., Crystal R. G. Estimation of volume of epithelial lining fluid recovered by lavage using urea as marker of dilution. J Appl Physiol (1985) 1986 Feb;60(2):532–538. doi: 10.1152/jappl.1986.60.2.532. [DOI] [PubMed] [Google Scholar]
  14. Reynolds H. Y. Bronchoalveolar lavage. Am Rev Respir Dis. 1987 Jan;135(1):250–263. doi: 10.1164/arrd.1987.135.1.250. [DOI] [PubMed] [Google Scholar]

Articles from Thorax are provided here courtesy of BMJ Publishing Group

RESOURCES