Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Oct 17;71(Pt 11):o856–o857. doi: 10.1107/S2056989015017879

Crystal structure of 2-(4-chloro­benzamido)­benzoic acid

Rodolfo Moreno-Fuquen a,*, Vanessa Melo a, Javier Ellena b
PMCID: PMC4645063  PMID: 26594563

Abstract

In the title mol­ecule, C14H10ClNO3, the amide C=O bond is anti to the o-carb­oxy substituent in the adjacent benzene ring, a conformation that facilitates the formation of an intra­molecular amide-N—H⋯O(carbon­yl) hydrogen bond that closes an S(6) loop. The central amide segment is twisted away from the carb­oxy- and chloro-substituted benzene rings by 13.93 (17) and 15.26 (15)°, respectively. The most prominent supra­molecular inter­actions in the crystal packing are carb­oxy­lic acid-H⋯O(carbox­yl) hydrogen bonds that lead to centrosymmetric dimeric aggregates connected by eight-membered {⋯HOC=O}2 synthons.

Keywords: crystal structure, carb­oxy­lic acid, amide, hydrogen bonding

Related literature  

For our studies on the effects of substituents on the structures of N-(ar­yl)-amides, see: Moreno-Fuquen et al. (2014, 2015). For benzanilide properties, see: Nuta et al. (2013); Leander (1992); Ahles et al. (2004). For related structures, see: Saeed et al. (2008, 2010); Rodrigues et al. (2011). For hydrogen bonding, see: Desiraju & Steiner (1999), Nardelli (1995).graphic file with name e-71-0o856-scheme1.jpg

Experimental  

Crystal data  

  • C14H10ClNO3

  • M r = 275.69

  • Monoclinic Inline graphic

  • a = 26.8843 (10) Å

  • b = 5.0367 (2) Å

  • c = 20.9264 (12) Å

  • β = 117.489 (2)°

  • V = 2513.7 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 295 K

  • 0.40 × 0.08 × 0.06 mm

Data collection  

  • Nonius KappaCCD diffractometer

  • 4248 measured reflections

  • 2295 independent reflections

  • 1049 reflections with I > 2σ(I)

  • R int = 0.057

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.043

  • wR(F 2) = 0.132

  • S = 0.92

  • 2295 reflections

  • 176 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: COLLECT (Nonius, 2000); cell refinement: HKL SCALEPACK (Otwinowski & Minor, 1997); data reduction: HKL DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL2014/7.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989015017879/tk5391sup1.cif

e-71-0o856-sup1.cif (173KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015017879/tk5391Isup2.hkl

e-71-0o856-Isup2.hkl (184.4KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015017879/tk5391Isup3.cml

. DOI: 10.1107/S2056989015017879/tk5391fig1.tif

The mol­ecular structure of (I) with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radius.

CCDC reference: 1427117

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
N1NH1O2 0.93(3) 1.96(3) 2.678(3) 133(3)
O3OH3O2i 0.82 1.83 2.645(3) 175

Symmetry code: (i) Inline graphic.

Acknowledgments

RMF is grateful to the Universidad del Valle, Colombia, for partial financial support.

supplementary crystallographic information

S1. Comment

The crystal structure determination of 2-(4-chlorobenzamido)benzoic acid, (I), was investigated in a continuation of our studies on substituted N-phenyl benzamides which have been synthesized from picryl esters. This study was also performed to study the effect of substituents on the structures of benzanilides (Moreno-Fuquen et al., 2014, 2015). Benzanilide systems are used as antimicrobial drugs (Nuta et al., 2013), as anticonvulsants (Leander, 1992) or as treatment for patients with prostate carcinoma (Ahles et al., 2004). Structures of similar molecules were compared with (I), i.e. 4-chloro-N-(2-methoxyphenyl)benzamide (Saeed et al., 2010), 4-chloro-N-phenylbenzamide (Rodrigues et al., 2011) and 4-chloro-N-(o-tolyl)benzamide (Saeed et al., 2008). The molecular structure of (I) is shown in Fig. 1. The C═O bond is anti to the o-carboxy substituent in the benzoyl ring. The N—H and C=O bonds in the central amide group are also anti to each other. Comparing (I) with the three aforementioned structures reveals that significant differences in bond lengths and bond angles are not observed. The central amide segment (C1-C7(O1)-N1-C8) is twisted away from the carboxy- and chloro-substituted benzene rings by 13.93 (17) and 15.26 (15)°, respectively. Molecules of (I) are held together by intermolecular O—H···O hydrogen bonds of moderate strength (Desiraju & Steiner, 1999). The O3 atom is linked to O2i atom (i = -x+3/2, -y+3/2, -z+1) with O···O distances of 2.645 (2), (see Table 1, Nardelli, 1995). Except for the presence of hydrogen bonding in the formation of dimer, no other significant intermolecular interactions are observed in the structure.

S2. Experimental

2,4,6-Trinitrophenyl 4-chlorobenzoate (0.060 g, 0.163 mmol) and 2-carboxyaniline (0.045 g, 0.328 mmol) were dissolved in toluene (15 ml) and stirred for 6 h under reflux. On completion of the reaction part of the solvent was evaporated and a crystalline yellow solid was obtained; m.p. 470 (1) K.

S3. Refinement

All H-atoms were located in difference Fourier maps and were positioned geometrically [C—H = 0.93 Å] and were refined using a riding-model approximation with Uiso(H) constrained to 1.2Ueq(C). The O-bound H atoms was similarly fixed with O—H = 0.82 Å, and with Uiso(H) constrained to 1.5Ueq(O). The N-bound H atom was found from the Fourier maps and was refined freely.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radius.

Crystal data

C14H10ClNO3 Dx = 1.457 Mg m3
Mr = 275.69 Melting point: 470(1) K
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
a = 26.8843 (10) Å Cell parameters from 2553 reflections
b = 5.0367 (2) Å θ = 3.1–25.4°
c = 20.9264 (12) Å µ = 0.31 mm1
β = 117.489 (2)° T = 295 K
V = 2513.7 (2) Å3 Needle, yellow
Z = 8 0.40 × 0.08 × 0.06 mm
F(000) = 1136

Data collection

Nonius KappaCCD diffractometer 1049 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.057
Graphite monochromator θmax = 25.4°, θmin = 3.1°
CCD rotation images, thick slices scans h = −31→32
4248 measured reflections k = −6→6
2295 independent reflections l = −25→24

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.132 H atoms treated by a mixture of independent and constrained refinement
S = 0.92 w = 1/[σ2(Fo2) + (0.0632P)2] where P = (Fo2 + 2Fc2)/3
2295 reflections (Δ/σ)max < 0.001
176 parameters Δρmax = 0.20 e Å3
0 restraints Δρmin = −0.19 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.74640 (9) −0.2731 (4) 0.30942 (12) 0.0824 (7)
C5 0.90834 (14) −0.0840 (7) 0.34839 (18) 0.0786 (9)
H5 0.9265 −0.1847 0.3282 0.094*
C10 0.58970 (13) −0.0955 (6) 0.29315 (17) 0.0739 (9)
H10 0.5647 −0.2205 0.2623 0.089*
C9 0.64347 (12) −0.0846 (5) 0.30083 (15) 0.0623 (8)
H9 0.6543 −0.2008 0.2750 0.075*
C2 0.85453 (13) 0.2133 (6) 0.40771 (18) 0.0766 (9)
H2 0.8366 0.3155 0.4280 0.092*
C11 0.57224 (13) 0.0750 (6) 0.33029 (18) 0.0754 (9)
H11 0.5357 0.0667 0.3242 0.090*
C6 0.85319 (14) −0.1349 (6) 0.33124 (17) 0.0730 (9)
H6 0.8344 −0.2716 0.2993 0.088*
C3 0.90974 (14) 0.2649 (6) 0.42543 (18) 0.0801 (10)
H3 0.9289 0.4004 0.4577 0.096*
C4 0.93606 (13) 0.1173 (7) 0.39566 (17) 0.0701 (9)
NH1 0.7536 (13) 0.280 (6) 0.3758 (17) 0.102 (11)*
Cl1 1.00534 (4) 0.1835 (2) 0.41722 (6) 0.1062 (4)
N1 0.73632 (10) 0.1205 (5) 0.35559 (12) 0.0592 (7)
O3 0.67865 (8) 0.6206 (3) 0.46790 (10) 0.0688 (6)
OH3 0.7015 0.7286 0.4949 0.103*
O2 0.75129 (8) 0.5079 (3) 0.45041 (10) 0.0641 (6)
C14 0.70192 (12) 0.4755 (5) 0.43671 (14) 0.0548 (7)
C8 0.68169 (11) 0.1015 (5) 0.34751 (14) 0.0529 (7)
C7 0.76554 (12) −0.0609 (6) 0.33845 (15) 0.0599 (7)
C13 0.66432 (11) 0.2748 (5) 0.38605 (14) 0.0535 (7)
C1 0.82537 (12) 0.0120 (5) 0.36030 (15) 0.0568 (7)
C12 0.60946 (12) 0.2573 (6) 0.37640 (15) 0.0664 (8)
H12 0.5979 0.3718 0.4018 0.080*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0839 (16) 0.0631 (13) 0.1073 (17) −0.0111 (11) 0.0502 (14) −0.0225 (12)
C5 0.075 (2) 0.090 (2) 0.083 (2) 0.0100 (19) 0.047 (2) −0.004 (2)
C10 0.063 (2) 0.071 (2) 0.072 (2) −0.0093 (16) 0.0174 (18) 0.0023 (17)
C9 0.063 (2) 0.0595 (17) 0.0591 (19) −0.0054 (15) 0.0242 (16) −0.0031 (15)
C2 0.066 (2) 0.081 (2) 0.090 (2) −0.0010 (17) 0.0417 (18) −0.0156 (19)
C11 0.056 (2) 0.083 (2) 0.083 (2) −0.0118 (18) 0.0279 (18) −0.0009 (19)
C6 0.080 (2) 0.072 (2) 0.074 (2) 0.0010 (17) 0.0420 (19) −0.0089 (16)
C3 0.066 (2) 0.085 (2) 0.089 (2) −0.0102 (17) 0.035 (2) −0.0121 (19)
C4 0.0581 (19) 0.083 (2) 0.073 (2) 0.0059 (17) 0.0343 (17) 0.0122 (18)
Cl1 0.0657 (6) 0.1390 (9) 0.1189 (8) 0.0021 (5) 0.0469 (6) 0.0093 (6)
N1 0.0576 (16) 0.0555 (15) 0.0681 (16) −0.0068 (13) 0.0322 (13) −0.0118 (13)
O3 0.0622 (13) 0.0726 (12) 0.0763 (13) −0.0053 (10) 0.0360 (11) −0.0183 (11)
O2 0.0560 (13) 0.0685 (12) 0.0694 (13) −0.0070 (10) 0.0304 (11) −0.0138 (10)
C14 0.0581 (19) 0.0553 (17) 0.0522 (18) 0.0026 (15) 0.0264 (16) 0.0028 (14)
C8 0.0513 (17) 0.0527 (15) 0.0506 (16) −0.0041 (13) 0.0202 (14) 0.0055 (14)
C7 0.068 (2) 0.0570 (18) 0.0555 (18) 0.0000 (16) 0.0298 (16) 0.0024 (15)
C13 0.0515 (17) 0.0564 (16) 0.0514 (17) −0.0007 (14) 0.0228 (14) 0.0040 (14)
C1 0.0608 (19) 0.0581 (17) 0.0554 (18) 0.0033 (15) 0.0302 (16) 0.0025 (14)
C12 0.0564 (19) 0.074 (2) 0.071 (2) −0.0005 (16) 0.0314 (16) 0.0024 (16)

Geometric parameters (Å, º)

O1—C7 1.219 (3) C6—H6 0.9300
C5—C4 1.371 (4) C3—C4 1.360 (4)
C5—C6 1.379 (4) C3—H3 0.9300
C5—H5 0.9300 C4—Cl1 1.734 (3)
C10—C11 1.378 (4) N1—C7 1.357 (3)
C10—C9 1.380 (4) N1—C8 1.402 (3)
C10—H10 0.9300 N1—NH1 0.93 (3)
C9—C8 1.401 (4) O3—C14 1.315 (3)
C9—H9 0.9300 O3—OH3 0.8200
C2—C3 1.378 (4) O2—C14 1.233 (3)
C2—C1 1.382 (4) C14—C13 1.476 (4)
C2—H2 0.9300 C8—C13 1.406 (4)
C11—C12 1.373 (4) C7—C1 1.501 (4)
C11—H11 0.9300 C13—C12 1.396 (4)
C6—C1 1.377 (4) C12—H12 0.9300
C4—C5—C6 119.1 (3) C5—C4—Cl1 119.4 (3)
C4—C5—H5 120.5 C7—N1—C8 128.6 (3)
C6—C5—H5 120.5 C7—N1—NH1 118 (2)
C11—C10—C9 121.4 (3) C8—N1—NH1 113 (2)
C11—C10—H10 119.3 C14—O3—OH3 109.5
C9—C10—H10 119.3 O2—C14—O3 121.3 (3)
C10—C9—C8 120.0 (3) O2—C14—C13 124.4 (3)
C10—C9—H9 120.0 O3—C14—C13 114.3 (3)
C8—C9—H9 120.0 C9—C8—N1 121.3 (3)
C3—C2—C1 121.0 (3) C9—C8—C13 119.0 (3)
C3—C2—H2 119.5 N1—C8—C13 119.7 (2)
C1—C2—H2 119.5 O1—C7—N1 124.0 (3)
C12—C11—C10 119.1 (3) O1—C7—C1 120.8 (3)
C12—C11—H11 120.5 N1—C7—C1 115.1 (3)
C10—C11—H11 120.5 C12—C13—C8 119.1 (3)
C1—C6—C5 121.5 (3) C12—C13—C14 118.3 (3)
C1—C6—H6 119.2 C8—C13—C14 122.6 (3)
C5—C6—H6 119.2 C6—C1—C2 117.9 (3)
C4—C3—C2 119.8 (3) C6—C1—C7 117.3 (3)
C4—C3—H3 120.1 C2—C1—C7 124.9 (3)
C2—C3—H3 120.1 C11—C12—C13 121.5 (3)
C3—C4—C5 120.7 (3) C11—C12—H12 119.2
C3—C4—Cl1 119.9 (3) C13—C12—H12 119.2
C11—C10—C9—C8 0.4 (4) N1—C8—C13—C14 −1.4 (4)
C9—C10—C11—C12 −0.7 (5) O2—C14—C13—C12 179.1 (3)
C4—C5—C6—C1 0.2 (5) O3—C14—C13—C12 −0.2 (3)
C1—C2—C3—C4 0.4 (5) O2—C14—C13—C8 −0.8 (4)
C2—C3—C4—C5 −0.4 (5) O3—C14—C13—C8 179.9 (2)
C2—C3—C4—Cl1 179.4 (2) C5—C6—C1—C2 −0.2 (4)
C6—C5—C4—C3 0.1 (5) C5—C6—C1—C7 −179.6 (3)
C6—C5—C4—Cl1 −179.7 (2) C3—C2—C1—C6 −0.1 (4)
C10—C9—C8—N1 −178.9 (2) C3—C2—C1—C7 179.3 (3)
C10—C9—C8—C13 0.1 (4) O1—C7—C1—C6 15.5 (4)
C7—N1—C8—C9 −18.7 (4) N1—C7—C1—C6 −166.6 (2)
C7—N1—C8—C13 162.3 (3) O1—C7—C1—C2 −163.9 (3)
C8—N1—C7—O1 3.2 (5) N1—C7—C1—C2 14.0 (4)
C8—N1—C7—C1 −174.6 (2) C10—C11—C12—C13 0.4 (4)
C9—C8—C13—C12 −0.3 (4) C8—C13—C12—C11 0.1 (4)
N1—C8—C13—C12 178.7 (2) C14—C13—C12—C11 −179.8 (2)
C9—C8—C13—C14 179.6 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—NH1···O2 0.93 (3) 1.96 (3) 2.678 (3) 133 (3)
O3—OH3···O2i 0.82 1.83 2.645 (3) 175

Symmetry code: (i) −x+3/2, −y+3/2, −z+1.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: TK5391).

References

  1. Ahles, T. A., Herndon, J. E., Small, E. J., Vogelzang, N. J., Kornblith, A. B., Ratain, M. J., Stadler, W. S., Palchak, D., Marshall, E., Wilding, G., Petrylak, D. & Holland, C. (2004). Cancer, 101, 2202–2208. [DOI] [PubMed]
  2. Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond. Oxford University Press, pp. 86-89.
  3. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  4. Leander, J. D. (1992). Epilepsia, 33, 705-711. [DOI] [PubMed]
  5. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  6. Moreno-Fuquen, R., Azcárate, A. & Kennedy, A. R. (2014). Acta Cryst. E70, o344. [DOI] [PMC free article] [PubMed]
  7. Moreno-Fuquen, R., Azcárate, A. & Kennedy, A. R. (2015). Acta Cryst. E71, o389–o390. [DOI] [PMC free article] [PubMed]
  8. Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
  9. Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.
  10. Nuta, D. C., Chifiriuc, A. C., Draghici, C., Limban, C., Missir, A. V. & Morusciag, L. (2013). Farmacia (Bucarest), 61, 966–974.
  11. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  12. Rodrigues, V. Z., Kucková, L., Gowda, B. T. & Kožíšek, J. (2011). Acta Cryst. E67, o3171. [DOI] [PMC free article] [PubMed]
  13. Saeed, A., Khera, R. A., Abbas, N., Gotoh, K. & Ishida, H. (2008). Acta Cryst. E64, o2043. [DOI] [PMC free article] [PubMed]
  14. Saeed, A., Khera, R. A. & Simpson, J. (2010). Acta Cryst. E66, o214. [DOI] [PMC free article] [PubMed]
  15. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  16. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989015017879/tk5391sup1.cif

e-71-0o856-sup1.cif (173KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015017879/tk5391Isup2.hkl

e-71-0o856-Isup2.hkl (184.4KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015017879/tk5391Isup3.cml

. DOI: 10.1107/S2056989015017879/tk5391fig1.tif

The mol­ecular structure of (I) with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radius.

CCDC reference: 1427117

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES