Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Oct 24;71(Pt 11):o877. doi: 10.1107/S2056989015019118

Crystal structure of 2-(3-nitro­phen­yl)-1,3-thia­zolo[4,5-b]pyridine

Gamal A El-Hiti a,*, Keith Smith b, Amany S Hegazy b, Mansour D Ajarim c, Benson M Kariuki b,*
PMCID: PMC4645065  PMID: 26594575

Abstract

In the title compound, C12H7N3O2S, the dihedral angle between the planes of the thia­zolo­pyridine ring system (r.m.s. deviation = 0.005 Å) and the benzene ring is 3.94 (6)°. The nitro group is rotated by 7.6 (2)° from its attached ring. In the crystal, extensive aromatic π–π stacking [shortest centroid–centroid separation = 3.5295 (9) Å] links the mol­ecules into (001) sheets.

Keywords: crystal structure; nitro­phen­yl; thia­zolo­pyridine derivatives; thia­zolo[4,5-b]pyridine

Related literature  

For a related structure and background references, see: El-Hiti et al. (2015). For further synthetic details, see: Smith et al. (1995); El-Hiti (2003).graphic file with name e-71-0o877-scheme1.jpg

Experimental  

Crystal data  

  • C12H7N3O2S

  • M r = 257.27

  • Monoclinic, Inline graphic

  • a = 9.5596 (2) Å

  • b = 9.8733 (2) Å

  • c = 11.5606 (3) Å

  • β = 98.122 (2)°

  • V = 1080.20 (4) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 2.66 mm−1

  • T = 296 K

  • 0.36 × 0.24 × 0.03 mm

Data collection  

  • Agilent SuperNova Dual Source diffractometer with an Atlas detector

  • Absorption correction: Gaussian (CrysAlis PRO; Agilent, 2014) T min = 0.883, T max = 0.986

  • 4063 measured reflections

  • 2104 independent reflections

  • 1930 reflections with I > 2σ(I)

  • R int = 0.016

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.031

  • wR(F 2) = 0.086

  • S = 1.06

  • 2104 reflections

  • 163 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.27 e Å−3

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and CHEMDRAW Ultra (Cambridge Soft, 2001).

Supplementary Material

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S2056989015019118/hb7519sup1.cif

e-71-0o877-sup1.cif (155.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015019118/hb7519Isup2.hkl

e-71-0o877-Isup2.hkl (169KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015019118/hb7519Isup3.cml

12 7 3 2 . DOI: 10.1107/S2056989015019118/hb7519fig1.tif

The asymmetric unit of C12H7N3O2S with 50% probability displacement ellipsoids for nonhydrogen atoms.

. DOI: 10.1107/S2056989015019118/hb7519fig2.tif

A segment of the crystal structure showing with H atoms omitted for clarity.

CCDC reference: 1430578

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors extend their appreciation to the Criminal Evidence Department, Ministry of Inter­ior, Riyadh, Saudi Arabia, for funding this research and to Cardiff University for continued support.

supplementary crystallographic information

S1. Introduction

As part of our ongoing studies of thia­zolo­pyridines (El-Hiti et al., 2015), the title compound was prepared by two different processes (El-Hiti, 2003; Smith et al., 1995) and its structure was determined.

S2. Experimental

S2.1. Synthesis and crystallization

2-(3-Nitro­phenyl)-1,3-thia­zolo[4,5-b]pyridine was obtained in 90% yield from acid hydrolysis (HCl, 5 M) of 3-(diiso-propyl­amino­thio­carbonyl­thio)-2-(3-nitro­phenyl­carbonyl­amino)­pyridine under reflux for 5 h (Smith et al., 1995) or in 58% yield from reaction of 3-(diiso­propyl­amino­thio­carbonyl­thio)-2-amino­pyridine with 3-nitro­benzoic acid in the presence of phospho­rus oxychloride under reflux for 4 h (El-Hiti, 2003). Crystallization of the crude product from chloro­form gave the title compound as colourless crystals. The structure of the title compound was elucidated by various spectroscopic and analytical data, which were consistent with those reported (Smith et al., 1995).

S2.2. Refinement

H atoms were positioned geometrically and refined using a riding model with Uĩso(H) constrained to be 1.2 times Ueq for the atom it is bonded to.

S3. Results and discussion

The asymmetric unit comprises one molecule of C12H7N3O2S (Fig. 1). The phenyl­thia­zolo­pyridine ring system is flat with a maximum deviation of 0.072 (1)Å from the least squares plane. The nitro group is twisted from this plane by only 7.6 (2)°. In the crystal, extensive π - π overlap occurs between pairs of inversion related molecules with a phenyl to thia­zolo­pyridine centroid distance of 3.47 (2)Å (Fig. 2).

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of C12H7N3O2S with 50% probability displacement ellipsoids for nonhydrogen atoms.

Fig. 2.

Fig. 2.

A segment of the crystal structure with H atoms omitted for clarity.

Crystal data

C12H7N3O2S F(000) = 528
Mr = 257.27 Dx = 1.582 Mg m3
Monoclinic, P21/c Cu Kα radiation, λ = 1.54184 Å
a = 9.5596 (2) Å Cell parameters from 2610 reflections
b = 9.8733 (2) Å θ = 5.9–73.8°
c = 11.5606 (3) Å µ = 2.66 mm1
β = 98.122 (2)° T = 296 K
V = 1080.20 (4) Å3 Plate, colourless
Z = 4 0.36 × 0.24 × 0.03 mm

Data collection

Agilent SuperNova Dual Source diffractometer with an Atlas detector 1930 reflections with I > 2σ(I)
ω scans Rint = 0.016
Absorption correction: gaussian (CrysAlis PRO; Agilent, 2014) θmax = 73.8°, θmin = 5.9°
Tmin = 0.883, Tmax = 0.986 h = −6→11
4063 measured reflections k = −12→10
2104 independent reflections l = −13→14

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031 H-atom parameters constrained
wR(F2) = 0.086 w = 1/[σ2(Fo2) + (0.048P)2 + 0.2004P] where P = (Fo2 + 2Fc2)/3
S = 1.06 (Δ/σ)max = 0.001
2104 reflections Δρmax = 0.20 e Å3
163 parameters Δρmin = −0.27 e Å3

Special details

Experimental. Absorption correction: CrysAlisPro, Agilent Technologies, Version 1.171.37.33 (release 27-03-2014 CrysAlis171 .NET) (compiled Mar 27 2014,17:12:48) Numerical absorption correction based on gaussian integration over a multifaceted crystal model Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 1.03467 (14) 0.31902 (15) 0.40820 (12) 0.0359 (3)
C2 1.05966 (14) 0.29483 (14) 0.52938 (12) 0.0346 (3)
C3 1.23544 (16) 0.44974 (17) 0.55180 (15) 0.0466 (4)
H3 1.3056 0.4963 0.5999 0.056*
C4 1.21719 (17) 0.48032 (17) 0.43313 (15) 0.0476 (4)
H4 1.2737 0.5453 0.4044 0.057*
C5 1.11469 (16) 0.41357 (17) 0.35833 (14) 0.0446 (3)
H5 1.1001 0.4312 0.2785 0.054*
C6 0.88486 (14) 0.15122 (14) 0.48354 (11) 0.0327 (3)
C7 0.78177 (13) 0.04398 (14) 0.49734 (11) 0.0323 (3)
C8 0.69113 (14) −0.00588 (14) 0.40184 (12) 0.0338 (3)
H8 0.6911 0.0309 0.3278 0.041*
C9 0.60130 (13) −0.11128 (14) 0.41963 (12) 0.0342 (3)
C10 0.59533 (15) −0.16807 (15) 0.52740 (13) 0.0392 (3)
H10 0.5333 −0.2386 0.5365 0.047*
C11 0.68472 (16) −0.11691 (16) 0.62203 (13) 0.0419 (3)
H11 0.6827 −0.1532 0.6960 0.050*
C12 0.77673 (15) −0.01253 (16) 0.60750 (12) 0.0381 (3)
H12 0.8362 0.0206 0.6719 0.046*
N1 1.16011 (14) 0.35893 (14) 0.60175 (11) 0.0442 (3)
N2 0.97356 (13) 0.19809 (13) 0.56961 (10) 0.0367 (3)
N3 0.50993 (13) −0.16657 (14) 0.31766 (11) 0.0420 (3)
O1 0.51160 (13) −0.11243 (14) 0.22310 (10) 0.0563 (3)
O2 0.43804 (16) −0.26586 (16) 0.33152 (13) 0.0698 (4)
S1 0.89807 (4) 0.21799 (4) 0.34482 (3) 0.03972 (13)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0339 (7) 0.0341 (7) 0.0386 (7) 0.0002 (5) 0.0009 (5) −0.0009 (6)
C2 0.0322 (7) 0.0348 (7) 0.0361 (7) 0.0004 (5) 0.0023 (5) −0.0029 (5)
C3 0.0387 (7) 0.0429 (8) 0.0565 (9) −0.0067 (6) 0.0004 (6) −0.0100 (7)
C4 0.0423 (8) 0.0379 (8) 0.0627 (10) −0.0072 (6) 0.0075 (7) 0.0012 (7)
C5 0.0445 (8) 0.0431 (8) 0.0458 (8) −0.0041 (6) 0.0048 (6) 0.0068 (6)
C6 0.0318 (6) 0.0337 (7) 0.0322 (6) 0.0021 (5) 0.0037 (5) −0.0016 (5)
C7 0.0293 (6) 0.0323 (6) 0.0355 (7) 0.0035 (5) 0.0049 (5) −0.0017 (5)
C8 0.0316 (6) 0.0351 (7) 0.0346 (6) 0.0035 (5) 0.0047 (5) −0.0004 (5)
C9 0.0279 (6) 0.0342 (7) 0.0398 (7) 0.0040 (5) 0.0024 (5) −0.0050 (5)
C10 0.0353 (7) 0.0349 (7) 0.0479 (8) −0.0002 (6) 0.0080 (6) 0.0028 (6)
C11 0.0436 (8) 0.0443 (8) 0.0380 (7) 0.0000 (6) 0.0060 (6) 0.0068 (6)
C12 0.0362 (7) 0.0417 (8) 0.0355 (7) 0.0001 (6) 0.0021 (5) −0.0002 (6)
N1 0.0410 (6) 0.0476 (7) 0.0420 (7) −0.0059 (5) −0.0012 (5) −0.0079 (6)
N2 0.0358 (6) 0.0401 (6) 0.0335 (6) −0.0017 (5) 0.0029 (5) −0.0017 (5)
N3 0.0352 (6) 0.0425 (7) 0.0467 (7) 0.0013 (5) 0.0006 (5) −0.0082 (6)
O1 0.0582 (7) 0.0652 (8) 0.0421 (6) −0.0030 (6) −0.0052 (5) −0.0054 (6)
O2 0.0684 (8) 0.0638 (9) 0.0724 (9) −0.0315 (7) −0.0067 (7) −0.0050 (7)
S1 0.0419 (2) 0.0429 (2) 0.0323 (2) −0.00887 (14) −0.00199 (14) 0.00294 (13)

Geometric parameters (Å, º)

C1—C5 1.383 (2) C7—C8 1.3935 (19)
C1—C2 1.408 (2) C7—C12 1.3974 (19)
C1—S1 1.7224 (14) C8—C9 1.383 (2)
C2—N1 1.3400 (19) C8—H8 0.9300
C2—N2 1.3836 (19) C9—C10 1.375 (2)
C3—N1 1.332 (2) C9—N3 1.4696 (18)
C3—C4 1.391 (2) C10—C11 1.385 (2)
C3—H3 0.9300 C10—H10 0.9300
C4—C5 1.379 (2) C11—C12 1.380 (2)
C4—H4 0.9300 C11—H11 0.9300
C5—H5 0.9300 C12—H12 0.9300
C6—N2 1.2980 (18) N3—O1 1.2190 (18)
C6—C7 1.4705 (19) N3—O2 1.221 (2)
C6—S1 1.7548 (14)
C5—C1—C2 120.20 (13) C9—C8—C7 118.53 (13)
C5—C1—S1 130.10 (12) C9—C8—H8 120.7
C2—C1—S1 109.69 (11) C7—C8—H8 120.7
N1—C2—N2 121.61 (13) C10—C9—C8 123.22 (13)
N1—C2—C1 123.16 (14) C10—C9—N3 118.65 (13)
N2—C2—C1 115.23 (12) C8—C9—N3 118.12 (13)
N1—C3—C4 124.99 (14) C9—C10—C11 117.85 (13)
N1—C3—H3 117.5 C9—C10—H10 121.1
C4—C3—H3 117.5 C11—C10—H10 121.1
C5—C4—C3 119.56 (15) C12—C11—C10 120.58 (14)
C5—C4—H4 120.2 C12—C11—H11 119.7
C3—C4—H4 120.2 C10—C11—H11 119.7
C4—C5—C1 116.54 (14) C11—C12—C7 120.90 (13)
C4—C5—H5 121.7 C11—C12—H12 119.5
C1—C5—H5 121.7 C7—C12—H12 119.5
N2—C6—C7 123.28 (12) C3—N1—C2 115.53 (14)
N2—C6—S1 116.30 (11) C6—N2—C2 110.10 (12)
C7—C6—S1 120.37 (10) O1—N3—O2 123.28 (14)
C8—C7—C12 118.91 (13) O1—N3—C9 118.36 (13)
C8—C7—C6 121.31 (12) O2—N3—C9 118.35 (13)
C12—C7—C6 119.76 (12) C1—S1—C6 88.68 (7)

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: HB7519).

References

  1. Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.
  2. Cambridge Soft (2001). CHEMDRAW Ultra. Cambridge Soft Corporation, Cambridge, Massachusetts, USA.
  3. El-Hiti, G. A. (2003). Monatsh. Chem. 134, 837–841.
  4. El-Hiti, G. A., Smith, K., Hegazy, A. S., Ajarim, M. D. & Kariuki, B. M. (2015). Acta Cryst. E71, o866. [DOI] [PMC free article] [PubMed]
  5. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  8. Smith, K., Anderson, D. & Matthews, I. (1995). Sulfur Lett. 18, 79–95.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S2056989015019118/hb7519sup1.cif

e-71-0o877-sup1.cif (155.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015019118/hb7519Isup2.hkl

e-71-0o877-Isup2.hkl (169KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015019118/hb7519Isup3.cml

12 7 3 2 . DOI: 10.1107/S2056989015019118/hb7519fig1.tif

The asymmetric unit of C12H7N3O2S with 50% probability displacement ellipsoids for nonhydrogen atoms.

. DOI: 10.1107/S2056989015019118/hb7519fig2.tif

A segment of the crystal structure showing with H atoms omitted for clarity.

CCDC reference: 1430578

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES