Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Oct 10;71(Pt 11):1300–1306. doi: 10.1107/S2056989015018216

Crystal structure of tetra­aqua­(di­methyl­formamide)­tetra­kis­(μ-N,2-dioxido­benzene-1-carboximidato)tetra­kis­(μ-tri­methyl­acetato)­tetra­manganese(III)sodiumyttrium–di­methyl­formamide–water (1/8.04/0.62)

Jordan R Travis a, Matthias Zeller b, Curtis M Zaleski a,*
PMCID: PMC4645067  PMID: 26594496

The title compound is an example of a 12-metallacrown-4 self-assembled supra­molecular coordination complex with ring MnIII ions. A YIII ion and Na+ ion are captured on opposite sides of the metallacrown cavity, and the YIII ion is tethered to the metallacrown with four tri­methyl­acetate anions.

Keywords: heterotrimetallic, metallacrown, self-assembled coordination complex, crystal structure

Abstract

The synthesis and crystal structure for the title compound, [YNaMn4(C7H4NO3)4(C5H9O2)4(H2O)3.76(C3H7NO)0.24]·8.04C3H7NO·0.62H2O or [YIIINa(OTMA)4[12-MCMn(III)N(shi)-4](H2O)3.76(DMF)0.24·8.04DMF·0.62H2O, where OTMA is tri­methyl­acetate, MC is metallacrown, shi3− is salicyl­hydroximate, and DMF is N,N-di­methyl­formamide, is reported. The macrocyclic metallacrown consists of an –[MnIII–N–O]4– ring repeat unit, and the metallacrown captures one YIII ion and one NaI ion in the central cavity on opposite faces of the metallacrown. Overall the metallacrown is domed towards the side of the NaI ion. Both the YIII and NaI ions are eight-coordinate, and the tri­methyl­acetate anions bridge the central YIII to each ring MnIII ion. The ring MnIII ions are six-coordinate with a tetra­gonally distorted octa­hedral geometry.

Chemical context  

Since 1989 metallacrowns (MCs) have served as an excellent example of the controllable self-assembly of supra­molecular coordination complexes (Mezei et al., 2007). Considered the structural and functional inorganic analogues to crown ethers, metallacrowns self-assemble in solution to form coordination complexes with multiple metal centers. Not only can homometallic complexes be synthesized, but heterobimetallic and heterotrimetallic metallacrowns can also be prepared through one-step reactions (Mezei et al., 2007; Azar et al., 2014). The deliberate formation of supra­molecular coordination complexes, especially those with multiple metal types, remains a synthetic challenge (Cook & Stang, 2015; Saalfrank et al., 2008); however, metallacrowns provide a class of mol­ecules that allows the investigation of the formation of multi-metal supra­molecular coordination complexes.

Recently we reported the first synthetic strategy for heterotrimetallic metallacrowns: Ln III M(OAc)4[12-MCMn(III)N(shi)-4], where Ln III is PrIII to YbIII (except PmIII) and YIII, M is NaI or KI, OAc is acetate, and shi3− is salicyl­hydroximate (Azar et al., 2014). In the previous report, we demonstrated the ability to systematically replace the central metal ions; however, the metallacrown framework has other points of alteration, in particular the bridging carboxyl­ate anion. In these alkali metal–lanthanide–manganese ion complexes, four acetate anions serve as bridges between the central lanthanide ion and the ring MnIII ions. Potentially the acetate anions could be replaced with other carboxyl­ate monoanions.

Herein we report the synthesis and crystal structure of YIIINa(OTMA)4[12-MCMn(III)N(shi)-4](H2O)3.76(DMF)0.24·8.04DMF·0.62H2O, (1), where OTMA is tri­methyl­acetate and DMF is N,N-di­methyl­formamide. This metallacrown demonstrates the ability to vary the bridging carboxyl­ate monoanion of this heterotrimetallic class of metallacrowns.graphic file with name e-71-01300-scheme1.jpg

Structural commentary  

The structure of the title compound YIIINa(OTMA)4[12-MCMn(III)N(shi)-4](H2O)3.76(DMF)0.24·8.04DMF·0.62H2O, (1), is based on the typical [12-MCMn(III)N(shi)-4] core. Four shi3− framework ligands and four MnIII ions self-assemble to form an overall square geometry with a –[Mn-N-O]4– repeat unit. The MC ring forms a central cavity with a pseudo-fourfold rotation axis that is capable of binding central metal ions, in this structure an YIII ion and a NaI ion. The two ions are bound on opposite faces of the MC, and the metallacrown is slightly domed with the YIII ion residing on the convex side of the central cavity and the NaI ion residing on the underside of the dome. The YIII ion is also connected to the MC core by four tri­methyl­acetate monoanions that serve to bridge the YIII ion to each ring MnIII ion. The mol­ecular structure is shown in Figs. 1 and 2.

Figure 1.

Figure 1

The mol­ecular structure of (1) in top view with displacement ellipsoids at the 50% probability level. For clarity, H atom and lattice solvent mol­ecules have been omitted, and only atom labels for all non-H atoms of the 12-MC-4 framework have been provided. Color scheme: aqua – YIII, green – MnIII, yellow – Na+, red – oxygen, blue – nitro­gen, and gray – carbon.

Figure 2.

Figure 2

The mol­ecular structure of (1) in side view. For clarity, only atom labels for all non-H atoms of the tri­methyl­acetate anions and the coordinating water mol­ecules and of the metal ions have been provided. For the solvent coordination site to Mn4, a water mol­ecule and DMF mol­ecule are disordered with an occupancy ratio of 0.758 (8):0.242 (8). Only the water mol­ecule is displayed. See Fig. 1 for display details.

The ring MnIII ions and the central YIII ion are assigned a 3+ oxidation state based on average bond lengths, calculated bond-valence-sum (BVS) values (Liu & Thorp, 1993), and overall mol­ecular charge considerations. For Mn1, Mn2, Mn3, and Mn4, the average bond lengths are 2.05, 2.04, 2.06, and 2.05 Å, respectively, and the calculated BVS values for Mn1–Mn4 are 3.04, 3.06, 3.07, and 3.05 v. u., respectively. In addition, each MnIII possesses elongated axial bond lengths, which would be expected for a high-spin d 4 ion. The Y1 ion has an average bond length and BVS value of 2.35 Å and 3.32 v. u., respectively. Mol­ecular charge neutrality considerations also support the assigned oxidation states as the four shi3− ligands and four tri­methyl­acetate monoanions (total 16- charge) are balanced by the presence of four MnIII ions, one YIII ion, and one NaI ion (total 16+ charge).

The YIII ion is eight-coordinate with a distorted square anti­prismatic geometry. The first coordination sphere is provided by two planes of four oxygen atoms each. One plane consists of four carboxyl­ate oxygen atoms from the bridging tri­methyl­acetate anions, and the second plane is formed by four oxime oxygen atoms of the MC ring. The YIII ion lies closer to the mean plane of the carboxyl­ate oxygen atoms (OcarMP), 1.07 Å, than the mean plane of the oxime oxygen atoms (OoxMP), 1.57 Å. Also, the two planes are twisted relative to each other with an average skew angle of 50.02o about the YIII ion (AlDamen et al., 2008, 2009). The skew angles were calculated with the program Mercury (Macrae et al., 2006) and determined as previously described (Azar et al., 2014). For an ideal square-prismatic geometry, the skew angle is 0o, while for an ideal square-anti­prismatic geometry, the skew angle is 45o. Given the measured skew angle and the placement of the YIII ion relative to the two planes of oxygen atoms, the best description of the geometry is distorted square anti­prismatic.

The NaI ion is eight-coordinated with a severely distorted square-anti­prismatic geometry. As in the YIII ion, the first coordination sphere is supplied by two planes of four oxygen atoms each. One plane is composed of the four oxime oxygen atoms of the MC ring, and the second plane consists of oxygen atoms from solvent mol­ecules. Three of the four coordination sites are occupied by water mol­ecules, while a water mol­ecule and DMF mol­ecule are disordered over the fourth site with an occupancy ratio of 0.758 (8):0.242 (8) (complete refinement details are given below). The NaI ion lies closer to the mean plane of the solvent oxygen atoms (OsolventMP), 0.67 Å, than the mean plane of the oxime oxygen atoms, 1.97 Å. Also, the two planes are twisted relative to each other with an average skew angle of 29.18o about the NaI ion. Lastly, the solvent oxygen atoms bridge the central NaI ion to the ring MnIII ions. The water and DMF mol­ecules disordered over the coordin­ation site to the NaI ion bridge the NaI ion to Mn4.

Each ring MnIII is six-coordinate with a tetra­gonally distorted octa­hedral geometry. The equatorial plane is comprised of a six-membered chelate ring and a trans five-membered chelate ring. The six-membered chelate ring is formed from the oxime nitro­gen atom and the phenolate oxygen atom of one shi3− ligand, and the five-membered chelate ring is formed from the oxime oxygen atom and the carbonyl oxygen atom of a second shi3− ligand. Each MnIII ion possesses an elongated axial axis, which is composed of a carboxyl­ate oxygen atom from a bridging tri­methyl­acetate anion and a bridging solvent oxygen atom from either a water or a DMF mol­ecule. The MnIII—Osolvent bond lengths are rather long (2.4–2.5 Å), which is likely due to the simultaneous coordination to the central NaI ion.

The metallacrown is slightly domed toward the central NaI ion. As previously reported, the doming effect is not likely due to the presence of either central metal ion, but likely due to the displacement of each ring MnIII ion from the equatorial mean plane of its first coordination sphere ligand atoms (Azar et al., 2014). For (1), the average distance of the ring MnIII ions above the equatorial ligand atom mean plane is 0.15 Å. Another indication of the doming effect in the MC is the angle between the axial carboxyl­ate oxygen atom, the ring MnIII ion, and the calculated centroid of the oxime oxygen atoms (Mercury; Macrae et al., 2006). In a planar MC, this angle would be 90o. For the title compound, the average angle about the MnIII ions is 101.74o, which indicates that the MC is slightly domed.

In addition to the MC, several solvent mol­ecules are located in the lattice some of which are only partially occupied (complete refinement details are given below). Three different DMF mol­ecules are flipped disordered over two sites, one DMF mol­ecule is disordered over two sites with different orientations, and two DMF mol­ecules are partially occupied. In addition, the disordered water/DMF binding site of the NaI ion is correlated to two DMF mol­ecules, one of which is disordered over two sites with different orientations, and to two partially occupied water mol­ecules. Overall there is a total of 8.04 DMF and 0.62 water mol­ecules located in the lattice.

Supra­molecular features  

No strong directional inter­molecular inter­actions are observed between the YIIINa(OTMA)4[12-MCMn(III)N(shi)-4](H2O)3.76(DMF)0.24 mol­ecules, but inter­molecular C—H⋯O inter­actions exist between adjacent metallacrowns (Table 1). The inter­actions exist between the carboxyl­ate oxygen atoms (O14 and O20) of the tri­methyl­acetate anions and the benzene carbon atoms (C18 and C25) of the shi3− ligands on adjacent metallacrowns (Fig. 3). In addition, the water mol­ecules (O21, O22, O23, and O24C) coordinating to the NaI ion are hydrogen bonded to several lattice water and DMF mol­ecules (Fig. 4), and the lattice DMF mol­ecules inter­act with the MC mol­ecule through C—H⋯O inter­actions (Fig. 5). The C—H⋯O inter­actions occur between either a phenolate oxygen atoms (O3 and O12) of shi3− ligands, a carboxyl­ate oxygen atom (O8) of a shi3− ligand, or a coordinating water oxygen atom (O21) and carbonyl carbon atoms (C55, C61, and C64B) or a methyl carbon atom (C71B) of lattice DMF mol­ecules (Fig. 5). Lastly, several C—H⋯O inter­actions exist between adjacent solvent mol­ecules (Fig. 6). The carbonyl (C49) or methyl (C51, C53, C56, C59, C63B, C72B, C74, and C75) carbon atoms of DMF mol­ecules inter­act with either an oxygen atom (O34) of a lattice water mol­ecule or carbonyl oxygen atoms (O27, O29, O31, O32, and O32B) of lattice DMF mol­ecules. The hydrogen bonding and weak C—H⋯O inter­actions, in addition to pure van der Waals forces, contribute to the overall packing of the mol­ecules.

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
C18H18O20i 0.95 2.60 3.359(5) 137
C25H25O14ii 0.95 2.59 3.374(5) 141
C49H49O29 0.95 2.58 3.180(8) 121
C51H51BO29iii 0.98 2.56 3.376(9) 141
C53H53BO31iv 0.98 2.48 3.377(9) 152
C55H55O8 0.95 2.36 3.098(8) 135
C56H56AO32iv 0.98 2.56 3.499(17) 162
C59H59BO29 0.98 2.56 3.262(11) 129
C61H61O12 0.95 2.52 3.457(8) 169
C63BH63FO32B iii 0.98 2.53 3.34(6) 140
C64BH64BO3 0.95 2.50 3.40(3) 157
C71BH71DO21 0.98 2.60 3.41(5) 141
C72BH72EO34iv 0.98 2.36 3.31(7) 163
C74H74BO27 0.98 2.27 2.87(3) 119
C75H75CO31 0.98 2.15 2.99(3) 143
O21H21AO25 0.82(2) 2.00(3) 2.767(4) 155(5)
O21H21BO28 0.83(2) 2.05(3) 2.792(5) 148(5)
O21H21BO28B 0.83(2) 1.87(3) 2.70(2) 172(5)
O22H22AO25 0.84(2) 1.96(3) 2.727(4) 151(5)
O22H22BO26 0.83(2) 1.93(3) 2.688(4) 151(5)
O23H23AO27 0.84(2) 2.06(3) 2.871(7) 164(5)
O23H23AO24B 0.84(2) 2.06(5) 2.696(19) 132(5)
O23H23BO26 0.86(2) 1.98(3) 2.789(5) 155(5)
O24CH24AO33 0.86(2) 1.91(4) 2.78(3) 179(5)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Figure 3.

Figure 3

Inter­molecular C—H⋯O inter­actions between adjacent metallacrowns. For clarity the inter­actions have been divided into two sections (a) and (b), only the H atoms (white) involved in the inter­actions have been included, and only the atoms involved in the inter­actions have been labelled. See Fig. 1 for display details. [Symmetry codes: (ii) −x + 2, −y + 1; (iii) −x + 2, −y + 1, −z.]

Figure 4.

Figure 4

Inter­molecular hydrogen bonding between the water mol­ecules coordin­ating to the Na+ ion and the water and DMF mol­ecules of the lattice. For clarity the hydrogen bonding has been divided into two sections (a) and (b), only the H atoms (white) involved in the hydrogen bonding have been included, and only the atoms involved in the hydrogen bonding have been labelled. See Fig. 1 for display details.

Figure 5.

Figure 5

Inter­molecular C—H⋯O inter­actions between the metallacrown and the DMF mol­ecules of the lattice. For clarity the inter­actions have been divided into two sections (a) and (b), only the H atoms (white) involved in the inter­actions have been included, and only the atoms involved in the inter­actions have been labelled. See Fig. 1 for display details.

Figure 6.

Figure 6

Inter­molecular C—H⋯O inter­actions between adjacent water and DMF mol­ecules. For clarity the inter­actions have been divided into two sections (a) and (b), only the H atoms (white) involved in the inter­actions have been included, and only the atoms involved in the inter­actions have been labelled. See Fig. 1 for display details. [Symmetry codes: (iv) −x + 1, −y + 1, −z; (v) −x + 1, −y + 1, −z + 1.]

Database survey  

The crystal structure of one other yttrium-based heterotrimetallic 12-MC-4 has been reported: YIIINa(OAc)4[12-MCMn(III)N(shi)-4](H2O)4·6DMF, 2 (Azar et al., 2014). In the title compound (1), tri­methyl­acetate anions bridge the central YIII ion to the ring MnIII ions, while in the previously reported compound (2) acetate anions bridge the YIII ion and the MnIII ions. Also for the previously reported compound (2), there are two independent MCs in each unit cell; thus, the labels (2A) and (2B) will be used to distinguish the two MCs. The replacement of acetate for tri­methyl­acetate does not severely distort the [12-MCMn(III)N(shi)-4] framework. Comparing the two carboxyl­ate monoanion structures, several key features of both MCs are very similar (Table 2). These features were calculated and measured using the program Mercury (Macrae et al., 2006) and in the same manner as previously described (Azar et al., 2014). Comparable measured values for the MC cavity radii, average adjacent MnIII—MnIII distances, cross cavity MnIII—MnIII distances, and cross cavity oxime oxygen (Oox—Oox) distances demonstrate that the [12-MCMn(III)N(shi)-4] framework is not significantly affected by the identity of the bridging carboxyl­ate anion. In addition, the determined metrics of the central YIII ions and Na+ ions are very similar in both (1) and (2) (Table 2). The greatest deviations between the structures is the distance of the NaI ion from the mean plane of the solvent oxygen atoms. This is likely due to the difference in the first coordination sphere of the NaI ions. In (2A) and (2B) only water mol­ecules bind to the NaI ions, while in (1) a mixture of water and DMF mol­ecules bind to the NaI ion.

Table 2. Structural feature comparison () of YIIINa(OTMA)4[12-MCMn(III)N(shi)-4](H2O)3.76(DMF)0.248.04DMF0.62H2O (1) and YIIINa(OAc)4[12-MCMn(III)N(shi)-4](H2O)46DMF (2).

Compound YIII crystal radius MC cavity radius Avg. adjacent MnIIIMnIII distance Avg. cross-cavity MnIIIMnIII distance Avg. cross-cavity OoxOox distance YIIIOcarMP distance YIIIOoxMP distance YIIIMnMP distance NaIOsolventMP distance NaIOoxMP distance
(1) 1.05 0.55 4.62 6.53 3.71 1.07 1.57 1.91 0.67 1.97
(2A) 1.05 0.55 4.61 6.52 3.70 1.04 1.57 1.92 0.79 1.92
(2B) 1.05 0.55 4.61 6.52 3.70 1.03 1.58 1.93 0.79 1.91

The identity of the bridging ligand does not significantly alter the domed feature of the metallacrown. As stated in the Structural commentary for (1), the average distance of the ring MnIII ions above the equatorial ligand atom mean plane is 0.15 Å, and the average angle about the MnIII ions with respect to the axial carboxyl­ate oxygen atom and the calculated centroid of the oxime oxygen atoms is 101.74o. For (2A) and (2B), the MnIII ions in both structures are on average 0.17 Å above the equatorial ligand atom mean plane, and the average angles about the MnIII ions with respect to the axial carboxyl­ate oxygen atom and the calculated centroid of the oxime oxygen atoms are 102.31 and 102.04o, respectively.

Synthesis and crystallization  

The title compound (1) was synthesized by first mixing yttrium(III) nitrate hexa­hydrate (0.125 mmol), sodium tri­methyl­acetate hydrate (4 mmol based on an assumption of three waters of hydration), and salicyl­hydroxamic acid (2 mmol) in 10 mL of DMF resulting in a cloudy, white mixture. In a separate beaker, manganese(II) acetate tetra­hydrate (2 mmol) was dissolved in 10 mL of DMF resulting in an orange–red solution. The two solutions were mixed resulting in a dark-brown solution and then allowed to stir overnight. The solution was then filtered to remove a dark-brown precipitate, which was discarded. Slow evaporation of the dark-brown filtrate yielded X-ray quality black/dark-brown crystals after 9 days. The yield was 20% based on yttrium(III) nitrate hexa­hydrate.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. The following low angle reflections were affected by the beam stop and were omitted from the refinement: 1 0 0, 0 1 0, Inline graphic Inline graphic 1, and Inline graphic 1 0. For all of the disordered solvate water and DMF mol­ecules, neighboring atoms were restrained to have similar U ij components of their ADPs if closer than 1.7 Å (SIMU restraints in SHELXL).

Table 3. Experimental details.

Crystal data
Chemical formula [YNaMn4(C7H4NO3)4(C5H9O2)4(C3H7NO)0.24(H2O)3.76]8.04C3H7NO0.62H2O
M r 2021.04
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 100
a, b, c () 14.8659(9), 17.3261(10), 19.2709(11)
, , () 83.488(3), 82.499(3), 72.805(3)
V (3) 4686.5(5)
Z 2
Radiation type Cu K
(mm1) 5.83
Crystal size (mm) 0.15 0.14 0.10
 
Data collection
Diffractometer Bruker X8 Prospector CCD
Absorption correction Multi-scan (SADABS; Bruker, 2014)
T min, T max 0.572, 0.753
No. of measured, independent and observed [I > 2(I)] reflections 59383, 16375, 14639
R int 0.045
(sin /)max (1) 0.596
 
Refinement
R[F 2 > 2(F 2)], wR(F 2), S 0.053, 0.142, 1.02
No. of reflections 16375
No. of parameters 1537
No. of restraints 1505
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
max, min (e 3) 1.73, 0.58

Computer programs: APEX2 and SAINT (Bruker, 2014), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2008) and SHELXLE (Hbschle et al., 2011), Mercury (Macrae et al., 2006) and publCIF (Westrip, 2010).

The geometries of the DMF mol­ecules associated with N7, N8B, N9, N9B, N10, N10B, N11, N12, N12B, N13, and N13B were restrained to be similar to the DMF mol­ecule associated with N5 (esd = 0.02 Å). For the DMF mol­ecules associated with N7B and N11B, the geometries were restrained to be similar to the DMF mol­ecule associated with N5 (esd = 0.001 Å). For the DMF mol­ecules associated with N8B, N11B, and N13B, the carbon, oxygen, and nitro­gen atoms were restrained to lie in the same plane (e.s.d. = 0.01 Å3).

A water mol­ecule (O24C) and DMF mol­ecule associated with N13 are disordered over a binding site to Na1. The atoms O24 and O24C were given identical coordinates, and to avoid correlation of the thermal parameters, the ADPs of O24 and O24C were constrained to be identical. Subject to these and the above conditions, the occupancy ratio of the disordered water and DMF mol­ecules refined to 0.758 (8) to 0.242 (8). Correlated to the occupation of the binding site to Na1 is a DMF mol­ecule associated with N13B and a DMF mol­ecule associated with N7 that is disordered over two sites with different orientations. Subject to the above restraints, the occupancy ratio of the DMF mol­ecule associated with N13B refined to 0.252 (5), and the occupancy ratio of the disordered DMF mol­ecule associated with N7 refined to 0.748 (5):0.252 (5). In addition, two partially occupied water mol­ecules associated with O33 and O34 are correlated to these water and DMF mol­ecules. The occupancy of the water mol­ecule of O33 and the water mol­ecule of O34 are 0.257 (14) and 0.361 (13), respectively.

Several DMF mol­ecules are disordered, and the above restraints were used to model the data. The DMF mol­ecule associated with N8 is flipped disordered over two sites, and the occupancy ratio refined to 0.813 (7):0.187 (7). The DMF mol­ecule associated with N9 is flipped disordered over two sites, and the occupancy ratio refined to 0.813 (7):0.187 (7). The DMF mol­ecule associated with N10 is disordered over two sites with different orientations, and the occupancy ratio refined to 0.795 (6):0.205 (6). The DMF mol­ecule associated with N11 is flipped disordered over two sites, and the occupancy ratio refined to 0.790 (9):0.210 (9). Two DMF mol­ecules associated with N12 and N12B are partially occupied. The occupancy of the DMF mol­ecule N12 and the DMF mol­ecule 12B are 0.662 (8) and 0.129 (7), respectively.

For the water mol­ecules, the oxygen–hydrogen bond lengths were restrained to 0.84 (2) Å. The hydrogen–hydrogen distances for the water mol­ecules associated with O24, O33, and O34 were restrained to 1.36 (2) Å. For the water mol­ecule O24C, the hydrogen atoms were restrained to a distance of at least 2.90 (2) Å from Na1. For the water mol­ecules associated with O33 and O34, the hydrogen atoms were refined as riding on the oxygen atoms.

For the methyl group carbon atoms C56B, C62B, C63B, C69, C69B, C71B, C72B, C74, C74B, C75, and C75B, hydrogen atoms were placed in tetra­hedral positions with an ideal staggered geometry (AFIX 33). All other methyl group hydrogen atoms were allowed to rotate. All other hydrogen atoms were placed in calculated positions and refined as riding on their carrier atoms with C—H distances of 0.95 Å for sp 2 carbon atoms and 0.98 Å for methyl carbon atoms. The U iso values for hydrogen atoms were set to a multiple of the value of the carrying carbon atom (1.2 times for sp 2-hybridized carbon atoms or 1.5 times for methyl carbon atoms and water oxygen atoms).

Several larger than desired residual electron density peaks remain after refinement of the data, which is typical for this class of compounds. The origin of these peaks is usually caused either by minor twinning, excessive twinning with multiple components that is beyond what can be completely handled with current integration and absorption correction software, pseudosymmetry (and correlation), or additional disorder not defined well enough to be modeled. In the case of the presented structure, the residual electron density is mostly due to additional disorder. The 3rd, 4th, 5th and 7th largest residual electron density peaks are due to alternative positions of manganese atoms of a minor moiety of the metallacrown unit (whole mol­ecule disorder). The height of these peaks, 1.3 to 1.2 electrons per Å3, indicate the presence of less than 5% of the second moiety, and most other atoms (carbon, nitro­gen, and oxygen) are not resolved. The 2nd largest residual density peak (1.71 electrons per Å3) is located close to the yttrium atom and is within the typical range of residual electron density peaks close to heavy atoms. The two remaining residual electron density peaks, the largest (1.73 electrons per Å3) and 6th largest (1.23 electrons per Å3) are due to minor twinning by a 180.0 degree rotation about the 1 1 0 reciprocal lattice direction (twin law 0.215 0.785 −0.203, 1.215 −0.215 −0.203, 0 0 −1). Refinement as a non-merohedric twin does reduce these peaks to 1.14 and 0.71 electrons per Å3, respectively; however, the R1 value slightly increases to 0.0553 from 0.0525. Also, the other larger residual electron density peaks (see above) are not improved by inclusion of twinning, nor is the structural model in any way changed. Considering the very minor effect, non-merohedric twinning was not used.

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015018216/bg2568sup1.cif

e-71-01300-sup1.cif (2MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015018216/bg2568Isup2.hkl

e-71-01300-Isup2.hkl (1.3MB, hkl)

CCDC reference: 1428526

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

CMZ and JRT thank the Undergraduate Research Grant Program and the CFEST Faculty Training and Continued Education program at Shippensburg University for financial support. MZ thanks the NSF (grant DMR 1337296) for funding for the X-ray diffractometer.

supplementary crystallographic information

Crystal data

[YNaMn4(C7H4NO3)4(C5H9O2)4(C3H7NO)\ 0.24(H2O)3.76]·8.04C3H7NO·0.62H2O Z = 2
Mr = 2021.04 F(000) = 2106.3
Triclinic, P1 Dx = 1.432 Mg m3
a = 14.8659 (9) Å Cu Kα radiation, λ = 1.54178 Å
b = 17.3261 (10) Å Cell parameters from 9921 reflections
c = 19.2709 (11) Å θ = 2.7–66.8°
α = 83.488 (3)° µ = 5.83 mm1
β = 82.499 (3)° T = 100 K
γ = 72.805 (3)° Plate, black
V = 4686.5 (5) Å3 0.15 × 0.14 × 0.10 mm

Data collection

Bruker X8 Prospector CCD diffractometer 16375 independent reflections
Radiation source: I-mu-S microsource X-ray tube 14639 reflections with I > 2σ(I)
Laterally graded multilayer (Goebel) mirror monochromator Rint = 0.045
ω and phi scans θmax = 66.9°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Bruker, 2014) h = −17→17
Tmin = 0.572, Tmax = 0.753 k = −20→20
59383 measured reflections l = −22→22

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053 Hydrogen site location: mixed
wR(F2) = 0.142 H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0737P)2 + 11.125P] where P = (Fo2 + 2Fc2)/3
16375 reflections (Δ/σ)max = 0.005
1537 parameters Δρmax = 1.73 e Å3
1505 restraints Δρmin = −0.58 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. For all of the disordered solvate water and DMF molecules, neighboring atoms were restrained to have similar Uij components of their ADPs if closter than 1.7 Angstoms (SIMU restraints in SHELXL).The geometries of the DMF molecules associated with N7, N8B, N9, N9B, N10, N10B, N11, N12, N12B, N13, and N13B were restrained to be similar to the DMF molecule associated with N5 (e.s.d. = 0.02 Angstrom). For the DMF molecules associated with N7B and N11B, the geometries were restrained to be similar to the DMF molecule associated with N5 (e.s.d. = 0.001 Angstrom). For the DMF molecules associated with N8B, N11B, and N13B, the carbon, oxygen, and nitrogen atoms were restrained to lie in the same plane (0.01 Angstroms cubed).A water molecule (O24C) and DMF molecule associated with N13 are disordered over a binding site to Na1. The atoms O24 and O24C were given identical coordinates, and to avoid correlation of the thermal parameters, the ADP of O24 and O24C were constrained to be identical. Subject to these and the above conditions, the occupancy ratio of the disordered water and DMF molecules refined to 0.758 (8) to 0.242 (8). Correlated to the occupation of the binding site is a DMF molecule associated with N13B and a DMF molecule associated with N7 that is disordered over two sites with different orientations. Subject to the above restraints, the occupancy ratio of the DMF molecule associated with N13B refined to 0.252 (5), and the occupancy ratio of the disordered DMF molecule associated with N7 refined to 0.748 (5) to 0.252 (5). In addition, two partially occupied water molecules associated with O33 and O34 are correlated to these water and DMF molecules. The occupancy of the water molecule of O33 and the water molecule of O34 are 0.257 (14) and 0.361 (13), respectively.Several DMF molecules are disordered, and the above restraints were used to model the data. The DMF molecule associated with N8 is flipped disordered over two sites, and the occupancy ratio refined to 0.813 (7) to 0.187 (7). The DMF molecule associated with N9 is flipped disordered over two sites, and the occupancy ratio refined to 0.813 (7) to 0.187 (7). The DMF molecule associated with N10 is disordered over two sites with different orientations, and the occupancy ratio refined to 0.795 (6) to 0.205 (6). The DMF molecule associated with N11 is flipped disordered over two sites, and the occupancy ratio refined to 0.790 (9) to 0.210 (9). Two DMF molecules associated with N12 and N12B are partially occupied. The occupancy of the DMF molecule N12 and the DMF molecule 12B are 0.662 (8) and 0.129 (7), respectively.For the water molecules, the oxygen-hydrogen bond distances were restrained to 0.84 (2) Angstrom. The hydrogen-hydrogen distances for the water molecules associated with O24, O33, and O34 were restrained to 1.36 (2) Angstroms. For the water molecule O24C, the hydrogen atoms were restrained to a distance of at least 2.90 (2) Angstroms from Na1. For the water molecules associated with O33 and O34, the hydrogen atoms were refined as riding on the oxygen atoms.For the methyl group carbon atoms 56B, 62B, 63B, 69, 69B, 71B, 72B, 74, 74B, 75, and 75B, hydrogen atoms were placed in tetrahedral positions with an ideal staggered geometry (AFIX 33). All other methyl group hydrogen atoms were allowed to rotate. All other hydrogen atoms were placed in calculated positions and refined as riding on their carrier atoms with C—H distances of 0.95 Angstrom for sp2 carbon atoms and 0.98 Angstrom for methyl carbon atoms. The Uiso values for hydrogen atoms were set to a multiple of the value of the carrying carbon atom (1.2 times for sp2 hybridized carbon atoms or 1.5 times for methyl carbon atoms and water oxygen atoms).The following low angle reflections were affected by the beam stop and were omitted from the refinement: 1 0 0, 0 1 0, −1 − 1 1, and −1 1 0.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
C1 0.7096 (2) 0.7443 (2) 0.05094 (17) 0.0206 (7)
C2 0.6469 (3) 0.7852 (2) −0.00412 (18) 0.0240 (7)
C3 0.5705 (3) 0.8557 (2) 0.00655 (18) 0.0241 (7)
C4 0.5182 (3) 0.8919 (2) −0.05003 (19) 0.0277 (8)
H4 0.4674 0.9399 −0.0441 0.033*
C5 0.5393 (3) 0.8590 (3) −0.1141 (2) 0.0319 (9)
H5 0.5032 0.8849 −0.1518 0.038*
C6 0.6124 (3) 0.7886 (3) −0.1243 (2) 0.0359 (9)
H6 0.6255 0.7656 −0.1683 0.043*
C7 0.6660 (3) 0.7522 (2) −0.0695 (2) 0.0302 (8)
H7 0.7164 0.7041 −0.0763 0.036*
C8 0.5234 (2) 0.9402 (2) 0.26837 (18) 0.0212 (7)
C9 0.4547 (3) 0.9900 (2) 0.31967 (19) 0.0245 (7)
C10 0.4589 (3) 0.9758 (2) 0.39318 (19) 0.0246 (7)
C11 0.3913 (3) 1.0274 (2) 0.4371 (2) 0.0289 (8)
H11 0.3937 1.0185 0.4865 0.035*
C12 0.3214 (3) 1.0907 (2) 0.4107 (2) 0.0340 (9)
H12 0.2768 1.1254 0.4418 0.041*
C13 0.3150 (3) 1.1048 (3) 0.3384 (2) 0.0388 (10)
H13 0.2660 1.1481 0.3202 0.047*
C14 0.3812 (3) 1.0545 (2) 0.2938 (2) 0.0330 (9)
H14 0.3771 1.0636 0.2446 0.040*
C15 0.7409 (3) 0.7195 (2) 0.45908 (18) 0.0226 (7)
C16 0.7741 (3) 0.6612 (2) 0.51876 (18) 0.0248 (8)
C17 0.8440 (3) 0.5863 (2) 0.50983 (19) 0.0258 (8)
C18 0.8731 (3) 0.5362 (2) 0.5704 (2) 0.0312 (8)
H18 0.9202 0.4858 0.5656 0.037*
C19 0.8348 (3) 0.5590 (2) 0.6365 (2) 0.0349 (9)
H19 0.8564 0.5244 0.6765 0.042*
C20 0.7645 (3) 0.6322 (3) 0.6456 (2) 0.0374 (10)
H20 0.7379 0.6473 0.6913 0.045*
C21 0.7344 (3) 0.6823 (2) 0.5869 (2) 0.0315 (9)
H21 0.6860 0.7318 0.5927 0.038*
C22 0.9346 (2) 0.5280 (2) 0.24097 (18) 0.0223 (7)
C23 0.9801 (3) 0.4625 (2) 0.1944 (2) 0.0255 (8)
C24 0.9629 (3) 0.4678 (2) 0.12331 (19) 0.0254 (8)
C25 1.0121 (3) 0.4030 (2) 0.0831 (2) 0.0307 (8)
H25 1.0020 0.4059 0.0351 0.037*
C26 1.0744 (3) 0.3355 (2) 0.1116 (2) 0.0357 (9)
H26 1.1068 0.2924 0.0831 0.043*
C27 1.0910 (3) 0.3289 (2) 0.1818 (2) 0.0398 (10)
H27 1.1337 0.2816 0.2014 0.048*
C28 1.0442 (3) 0.3923 (2) 0.2223 (2) 0.0319 (9)
H28 1.0555 0.3885 0.2702 0.038*
C29 0.9785 (3) 0.7356 (2) 0.0956 (2) 0.0275 (8)
C30 1.0344 (3) 0.7837 (3) 0.0444 (2) 0.0411 (11)
C31 1.0753 (4) 0.8352 (3) 0.0832 (3) 0.0509 (13)
H31A 1.1078 0.8671 0.0492 0.076*
H31B 1.1204 0.8000 0.1142 0.076*
H31C 1.0240 0.8719 0.1112 0.076*
C32 1.1134 (4) 0.7254 (4) 0.0017 (3) 0.0678 (18)
H32A 1.0862 0.6939 −0.0244 0.102*
H32B 1.1565 0.6886 0.0333 0.102*
H32C 1.1484 0.7561 −0.0314 0.102*
C33 0.9635 (5) 0.8392 (3) −0.0041 (3) 0.0616 (16)
H33A 0.9130 0.8765 0.0239 0.092*
H33B 0.9361 0.8061 −0.0283 0.092*
H33C 0.9962 0.8702 −0.0388 0.092*
C34 0.7526 (3) 0.9651 (2) 0.12915 (19) 0.0290 (8)
C35 0.7756 (3) 1.0463 (2) 0.1244 (2) 0.0371 (10)
C36 0.7445 (4) 1.0949 (3) 0.0567 (3) 0.0551 (13)
H36A 0.7590 1.1468 0.0535 0.083*
H36B 0.6762 1.1046 0.0562 0.083*
H36C 0.7782 1.0645 0.0166 0.083*
C37 0.7184 (3) 1.0906 (3) 0.1889 (3) 0.0492 (12)
H37A 0.6511 1.0959 0.1883 0.074*
H37B 0.7276 1.1446 0.1870 0.074*
H37C 0.7406 1.0593 0.2322 0.074*
C38 0.8809 (3) 1.0344 (3) 0.1280 (3) 0.0458 (11)
H38A 0.9175 1.0059 0.0878 0.069*
H38B 0.9002 1.0023 0.1717 0.069*
H38C 0.8925 1.0873 0.1270 0.069*
C39 0.7880 (3) 0.9357 (2) 0.3575 (2) 0.0286 (8)
C40 0.8520 (3) 0.9791 (3) 0.3829 (2) 0.0401 (10)
C41 0.9221 (3) 1.0004 (3) 0.3245 (3) 0.0461 (11)
H41A 0.9637 0.9507 0.3053 0.069*
H41B 0.9602 1.0291 0.3434 0.069*
H41C 0.8876 1.0353 0.2872 0.069*
C42 0.9077 (4) 0.9190 (4) 0.4386 (3) 0.0657 (17)
H42A 0.9432 0.8685 0.4175 0.099*
H42B 0.8635 0.9075 0.4779 0.099*
H42C 0.9519 0.9430 0.4557 0.099*
C43 0.7913 (5) 1.0551 (4) 0.4162 (4) 0.0710 (19)
H43A 0.7548 1.0922 0.3810 0.107*
H43B 0.8321 1.0816 0.4345 0.107*
H43C 0.7479 1.0406 0.4548 0.107*
C44 1.0183 (3) 0.7055 (2) 0.32290 (19) 0.0292 (8)
C45 1.1210 (3) 0.7093 (3) 0.3051 (2) 0.0350 (9)
C46 1.1251 (3) 0.7950 (3) 0.2804 (3) 0.0467 (11)
H46A 1.0880 0.8152 0.2403 0.070*
H46B 1.1911 0.7944 0.2663 0.070*
H46C 1.0989 0.8304 0.3187 0.070*
C47 1.1641 (3) 0.6538 (3) 0.2449 (3) 0.0471 (11)
H47A 1.1253 0.6716 0.2055 0.071*
H47B 1.1658 0.5978 0.2615 0.071*
H47C 1.2286 0.6567 0.2295 0.071*
C48 1.1755 (4) 0.6780 (3) 0.3692 (3) 0.0542 (13)
H48A 1.1759 0.6217 0.3828 0.081*
H48B 1.1449 0.7114 0.4082 0.081*
H48C 1.2408 0.6808 0.3579 0.081*
O26 0.3919 (2) 0.8164 (2) 0.29808 (18) 0.0521 (8)
C52 0.3186 (3) 0.8741 (3) 0.3082 (3) 0.0495 (12)
H52 0.2980 0.9116 0.2696 0.059*
N6 0.2689 (3) 0.8853 (3) 0.3696 (2) 0.0510 (10)
C53 0.2997 (5) 0.8315 (4) 0.4300 (3) 0.0709 (17)
H53A 0.3443 0.7810 0.4145 0.106*
H53B 0.2448 0.8196 0.4581 0.106*
H53C 0.3309 0.8573 0.4585 0.106*
C54 0.1848 (4) 0.9538 (4) 0.3792 (4) 0.0719 (19)
H54A 0.1966 0.9910 0.4092 0.108*
H54B 0.1316 0.9342 0.4013 0.108*
H54C 0.1695 0.9822 0.3334 0.108*
O27 0.4821 (5) 0.7058 (5) 0.5099 (3) 0.099 (2) 0.748 (5)
C55 0.4849 (6) 0.7581 (7) 0.5502 (4) 0.082 (2) 0.748 (5)
H55 0.5191 0.7953 0.5308 0.099* 0.748 (5)
N7 0.4468 (6) 0.7670 (6) 0.6144 (4) 0.089 (2) 0.748 (5)
C56 0.3832 (8) 0.7197 (8) 0.6489 (6) 0.123 (4) 0.748 (5)
H56A 0.4048 0.6947 0.6943 0.184* 0.748 (5)
H56B 0.3839 0.6773 0.6190 0.184* 0.748 (5)
H56C 0.3186 0.7556 0.6563 0.184* 0.748 (5)
C57 0.4594 (8) 0.8258 (8) 0.6569 (6) 0.106 (3) 0.748 (5)
H57A 0.4864 0.8647 0.6270 0.127* 0.748 (5)
H57B 0.5023 0.7980 0.6923 0.127* 0.748 (5)
H57C 0.3980 0.8545 0.6804 0.127* 0.748 (5)
O27B 0.486 (2) 0.7133 (14) 0.7576 (9) 0.175 (10) 0.252 (5)
C55B 0.4904 (18) 0.7687 (13) 0.7122 (8) 0.116 (6) 0.252 (5)
H55B 0.5196 0.8075 0.7223 0.140* 0.252 (5)
N7B 0.4572 (12) 0.7783 (8) 0.6510 (7) 0.098 (4) 0.252 (5)
C56B 0.4258 (19) 0.7137 (11) 0.6292 (11) 0.125 (7) 0.252 (5)
H56D 0.4030 0.7296 0.5827 0.188* 0.252 (5)
H56E 0.4787 0.6641 0.6271 0.188* 0.252 (5)
H56F 0.3743 0.7040 0.6631 0.188* 0.252 (5)
C57B 0.4632 (18) 0.8464 (12) 0.6004 (10) 0.096 (5) 0.252 (5)
H57D 0.5255 0.8554 0.5993 0.115* 0.252 (5)
H57E 0.4137 0.8952 0.6142 0.115* 0.252 (5)
H57F 0.4546 0.8342 0.5537 0.115* 0.252 (5)
O28 0.7538 (3) 0.4474 (3) 0.2625 (3) 0.0522 (12) 0.813 (7)
C58 0.8097 (5) 0.3802 (4) 0.2689 (4) 0.0566 (16) 0.813 (7)
H58 0.8491 0.3708 0.3058 0.068* 0.813 (7)
N8 0.8218 (5) 0.3195 (4) 0.2308 (4) 0.0559 (14) 0.813 (7)
C59 0.7602 (8) 0.3316 (6) 0.1739 (5) 0.090 (3) 0.813 (7)
H59A 0.7993 0.3163 0.1299 0.134* 0.813 (7)
H59B 0.7235 0.3888 0.1687 0.134* 0.813 (7)
H59C 0.7170 0.2979 0.1856 0.134* 0.813 (7)
C60 0.8925 (7) 0.2423 (5) 0.2366 (5) 0.078 (2) 0.813 (7)
H60A 0.9309 0.2324 0.1914 0.117* 0.813 (7)
H60B 0.8613 0.1993 0.2497 0.117* 0.813 (7)
H60C 0.9331 0.2424 0.2727 0.117* 0.813 (7)
O28B 0.7439 (16) 0.4344 (12) 0.2246 (14) 0.068 (5) 0.187 (7)
C58B 0.8040 (16) 0.3744 (12) 0.2020 (13) 0.060 (3) 0.187 (7)
H58B 0.8433 0.3831 0.1607 0.072* 0.187 (7)
N8B 0.8185 (17) 0.3000 (13) 0.2296 (14) 0.065 (4) 0.187 (7)
C59B 0.765 (3) 0.276 (2) 0.2927 (17) 0.093 (8) 0.187 (7)
H59D 0.7304 0.3243 0.3178 0.139* 0.187 (7)
H59E 0.8078 0.2377 0.3232 0.139* 0.187 (7)
H59F 0.7191 0.2507 0.2797 0.139* 0.187 (7)
C60B 0.892 (2) 0.2353 (17) 0.198 (2) 0.082 (7) 0.187 (7)
H60D 0.9536 0.2436 0.1996 0.123* 0.187 (7)
H60E 0.8811 0.2349 0.1484 0.123* 0.187 (7)
H60F 0.8898 0.1833 0.2228 0.123* 0.187 (7)
O24B 0.5766 (16) 0.6104 (12) 0.4575 (11) 0.094 (5) 0.252 (5)
C73B 0.6222 (16) 0.5394 (13) 0.4589 (17) 0.093 (5) 0.252 (5)
H73B 0.6528 0.5246 0.4139 0.112* 0.252 (5)
N13B 0.6396 (13) 0.4791 (12) 0.5058 (12) 0.101 (4) 0.252 (5)
C74B 0.605 (3) 0.480 (2) 0.5799 (14) 0.142 (11) 0.252 (5)
H74D 0.6289 0.4257 0.6033 0.213* 0.252 (5)
H74E 0.6259 0.5190 0.6015 0.213* 0.252 (5)
H74F 0.5352 0.4953 0.5848 0.213* 0.252 (5)
C75B 0.700 (2) 0.4037 (16) 0.4804 (17) 0.101 (6) 0.252 (5)
H75D 0.7097 0.3615 0.5194 0.152* 0.252 (5)
H75E 0.6709 0.3875 0.4441 0.152* 0.252 (5)
H75F 0.7617 0.4111 0.4606 0.152* 0.252 (5)
O29 0.6538 (5) 0.4705 (4) 0.0592 (3) 0.094 (2) 0.813 (7)
C61 0.7226 (5) 0.4828 (4) 0.0228 (4) 0.0627 (18) 0.813 (7)
H61 0.7729 0.4889 0.0455 0.075* 0.813 (7)
N9 0.7307 (5) 0.4879 (4) −0.0460 (3) 0.0588 (15) 0.813 (7)
C62 0.6558 (7) 0.4829 (6) −0.0858 (5) 0.085 (3) 0.813 (7)
H62A 0.6515 0.5217 −0.1272 0.127* 0.813 (7)
H62B 0.5953 0.4956 −0.0562 0.127* 0.813 (7)
H62C 0.6703 0.4279 −0.1007 0.127* 0.813 (7)
C63 0.8174 (6) 0.4974 (5) −0.0839 (6) 0.091 (3) 0.813 (7)
H63A 0.8511 0.4480 −0.1072 0.137* 0.813 (7)
H63B 0.8573 0.5071 −0.0510 0.137* 0.813 (7)
H63C 0.8029 0.5436 −0.1191 0.137* 0.813 (7)
O29B 0.593 (2) 0.474 (2) −0.0371 (18) 0.112 (7) 0.187 (7)
C61B 0.670 (2) 0.460 (2) −0.075 (2) 0.072 (4) 0.187 (7)
H61B 0.6843 0.4166 −0.1042 0.087* 0.187 (7)
N9B 0.732 (2) 0.501 (2) −0.0781 (14) 0.073 (4) 0.187 (7)
C62B 0.783 (3) 0.505 (2) −0.0198 (18) 0.085 (6) 0.187 (7)
H62D 0.8250 0.5392 −0.0348 0.128* 0.187 (7)
H62E 0.7376 0.5281 0.0194 0.128* 0.187 (7)
H62F 0.8203 0.4503 −0.0048 0.128* 0.187 (7)
C63B 0.770 (3) 0.529 (2) −0.1455 (16) 0.096 (8) 0.187 (7)
H63D 0.8149 0.5587 −0.1388 0.144* 0.187 (7)
H63E 0.8024 0.4829 −0.1729 0.144* 0.187 (7)
H63F 0.7183 0.5657 −0.1707 0.144* 0.187 (7)
O30 0.1094 (4) 1.1136 (3) 0.2412 (3) 0.0700 (15) 0.795 (6)
C64 0.1762 (5) 1.1008 (3) 0.1954 (3) 0.0485 (15) 0.795 (6)
H64 0.2132 1.1378 0.1889 0.058* 0.795 (6)
N10 0.2021 (4) 1.0394 (3) 0.1536 (3) 0.0428 (12) 0.795 (6)
C65 0.1457 (6) 0.9836 (6) 0.1555 (5) 0.053 (2) 0.795 (6)
H65A 0.0982 0.9918 0.1964 0.064* 0.795 (6)
H65B 0.1869 0.9278 0.1587 0.064* 0.795 (6)
H65C 0.1138 0.9935 0.1125 0.064* 0.795 (6)
C66 0.2827 (6) 1.0294 (5) 0.1004 (5) 0.060 (2) 0.795 (6)
H66A 0.2614 1.0314 0.0540 0.091* 0.795 (6)
H66B 0.3290 0.9769 0.1101 0.091* 0.795 (6)
H66C 0.3120 1.0730 0.1013 0.091* 0.795 (6)
O30B 0.315 (2) 0.8658 (15) 0.1790 (17) 0.128 (9) 0.205 (6)
C64B 0.3147 (19) 0.9280 (15) 0.1396 (17) 0.080 (5) 0.205 (6)
H64B 0.3701 0.9276 0.1087 0.096* 0.205 (6)
N10B 0.2436 (15) 0.9936 (12) 0.1381 (13) 0.063 (4) 0.205 (6)
C65B 0.149 (2) 0.996 (3) 0.173 (2) 0.061 (7) 0.205 (6)
H65D 0.1260 1.0420 0.2013 0.073* 0.205 (6)
H65E 0.1528 0.9454 0.2025 0.073* 0.205 (6)
H65F 0.1062 1.0008 0.1368 0.073* 0.205 (6)
C66B 0.253 (2) 1.0673 (16) 0.099 (2) 0.068 (6) 0.205 (6)
H66D 0.2186 1.0773 0.0574 0.102* 0.205 (6)
H66E 0.3202 1.0620 0.0844 0.102* 0.205 (6)
H66F 0.2271 1.1128 0.1287 0.102* 0.205 (6)
O32 0.4946 (10) 0.3953 (7) 0.2133 (6) 0.149 (4) 0.662 (8)
C70 0.5017 (10) 0.4644 (8) 0.2209 (7) 0.104 (3) 0.662 (8)
H70 0.5351 0.4896 0.1843 0.125* 0.662 (8)
N12 0.4647 (8) 0.5032 (6) 0.2776 (6) 0.097 (3) 0.662 (8)
C71 0.4145 (10) 0.4772 (9) 0.3425 (7) 0.119 (4) 0.662 (8)
H71A 0.3821 0.5243 0.3692 0.178* 0.662 (8)
H71B 0.4600 0.4378 0.3708 0.178* 0.662 (8)
H71C 0.3679 0.4521 0.3308 0.178* 0.662 (8)
C72 0.4817 (9) 0.5813 (7) 0.2843 (8) 0.104 (4) 0.662 (8)
H72A 0.5500 0.5745 0.2792 0.156* 0.662 (8)
H72B 0.4542 0.6002 0.3305 0.156* 0.662 (8)
H72C 0.4522 0.6212 0.2476 0.156* 0.662 (8)
O32B 0.393 (4) 0.438 (3) 0.258 (3) 0.125 (6) 0.129 (7)
C70B 0.383 (3) 0.489 (4) 0.302 (3) 0.102 (5) 0.129 (7)
H70B 0.3305 0.4985 0.3364 0.123* 0.129 (7)
N12B 0.447 (4) 0.529 (4) 0.299 (2) 0.102 (4) 0.129 (7)
C71B 0.501 (4) 0.539 (4) 0.231 (2) 0.104 (7) 0.129 (7)
H71D 0.5457 0.5696 0.2364 0.156* 0.129 (7)
H71E 0.5366 0.4855 0.2158 0.156* 0.129 (7)
H71F 0.4580 0.5684 0.1968 0.156* 0.129 (7)
C72B 0.485 (5) 0.540 (4) 0.362 (3) 0.113 (7) 0.129 (7)
H72D 0.5305 0.5710 0.3489 0.170* 0.129 (7)
H72E 0.4334 0.5684 0.3947 0.170* 0.129 (7)
H72F 0.5167 0.4863 0.3836 0.170* 0.129 (7)
N1 0.7053 (2) 0.78168 (17) 0.10739 (14) 0.0199 (6)
N2 0.6028 (2) 0.89077 (17) 0.28938 (14) 0.0204 (6)
N3 0.7847 (2) 0.70711 (17) 0.39560 (14) 0.0206 (6)
N4 0.8901 (2) 0.60026 (17) 0.21382 (15) 0.0203 (6)
O1 0.76938 (17) 0.73567 (14) 0.15509 (12) 0.0214 (5)
O2 0.76892 (17) 0.67437 (14) 0.04144 (12) 0.0239 (5)
O3 0.54324 (18) 0.88879 (15) 0.06758 (13) 0.0281 (6)
O4 0.66176 (17) 0.84794 (15) 0.23461 (12) 0.0221 (5)
O5 0.50616 (17) 0.94708 (15) 0.20380 (12) 0.0244 (5)
O6 0.52302 (18) 0.91461 (16) 0.42318 (13) 0.0292 (6)
O7 0.74262 (17) 0.76747 (14) 0.34465 (12) 0.0212 (5)
O8 0.67041 (18) 0.78276 (15) 0.47023 (12) 0.0252 (5)
O9 0.88376 (19) 0.55938 (16) 0.44801 (13) 0.0314 (6)
O10 0.85166 (17) 0.65657 (14) 0.26463 (12) 0.0206 (5)
O11 0.94163 (18) 0.51425 (15) 0.30769 (12) 0.0259 (5)
O12 0.90092 (19) 0.53000 (15) 0.09247 (13) 0.0284 (6)
O13 0.95902 (18) 0.75362 (15) 0.15842 (13) 0.0259 (5)
O14 0.95353 (18) 0.68252 (15) 0.07062 (13) 0.0277 (6)
O15 0.81358 (18) 0.90155 (15) 0.14887 (13) 0.0277 (6)
O16 0.67229 (19) 0.96743 (16) 0.11445 (14) 0.0303 (6)
O17 0.80583 (19) 0.91298 (15) 0.29535 (13) 0.0296 (6)
O18 0.71982 (19) 0.92547 (16) 0.39915 (13) 0.0295 (6)
O19 0.95190 (18) 0.76711 (15) 0.30493 (13) 0.0274 (6)
O20 1.00531 (19) 0.64178 (16) 0.35380 (14) 0.0300 (6)
O21 0.7043 (2) 0.59229 (17) 0.17790 (15) 0.0327 (6)
H21A 0.664 (3) 0.599 (3) 0.150 (2) 0.049*
H21B 0.715 (4) 0.5427 (13) 0.189 (3) 0.049*
O22 0.5360 (2) 0.76725 (18) 0.19837 (15) 0.0337 (6)
H22A 0.518 (4) 0.742 (3) 0.171 (2) 0.050*
H22B 0.482 (2) 0.778 (3) 0.219 (3) 0.050*
O23 0.5523 (2) 0.74493 (19) 0.36839 (16) 0.0385 (7)
H23A 0.534 (4) 0.725 (3) 0.4070 (17) 0.058*
H23B 0.4944 (19) 0.766 (3) 0.359 (3) 0.058*
O24C 0.7301 (2) 0.57216 (17) 0.34800 (16) 0.0374 (7) 0.758 (8)
H24A 0.693 (3) 0.566 (2) 0.3854 (16) 0.056* 0.758 (8)
H24B 0.742 (4) 0.5272 (10) 0.3291 (16) 0.056* 0.758 (8)
O24 0.7301 (2) 0.57216 (17) 0.34800 (16) 0.0374 (7) 0.242 (8)
C73 0.7336 (14) 0.5073 (10) 0.3849 (10) 0.053 (3) 0.242 (8)
H73 0.7839 0.4622 0.3699 0.064* 0.242 (8)
N13 0.6797 (15) 0.4908 (12) 0.4407 (11) 0.083 (4) 0.242 (8)
C74 0.589 (2) 0.554 (2) 0.455 (2) 0.086 (6) 0.242 (8)
H74A 0.5533 0.5370 0.4973 0.129* 0.242 (8)
H74B 0.6016 0.6050 0.4618 0.129* 0.242 (8)
H74C 0.5515 0.5626 0.4149 0.129* 0.242 (8)
C75 0.672 (3) 0.4096 (14) 0.458 (2) 0.105 (7) 0.242 (8)
H75A 0.6286 0.4087 0.5014 0.157* 0.242 (8)
H75B 0.6465 0.3926 0.4199 0.157* 0.242 (8)
H75C 0.7341 0.3723 0.4658 0.157* 0.242 (8)
O33 0.614 (2) 0.5511 (17) 0.4696 (16) 0.097 (4) 0.257 (14)
H33E 0.6474 0.5763 0.4848 0.145* 0.257 (14)
H33F 0.5717 0.5468 0.5014 0.145* 0.257 (14)
O34 0.6567 (9) 0.3773 (8) 0.5029 (7) 0.073 (4) 0.361 (13)
H34A 0.6407 0.4059 0.5379 0.109* 0.361 (13)
H34B 0.6056 0.3767 0.4882 0.109* 0.361 (13)
O25 0.5452 (2) 0.6557 (2) 0.10663 (18) 0.0504 (8)
C49 0.5246 (4) 0.6532 (3) 0.0472 (3) 0.0533 (12)
H49 0.5702 0.6184 0.0167 0.064*
N5 0.4446 (3) 0.6948 (3) 0.0228 (2) 0.0572 (11)
C50 0.3745 (4) 0.7508 (5) 0.0669 (3) 0.087 (2)
H50A 0.3800 0.8058 0.0546 0.130*
H50B 0.3852 0.7350 0.1163 0.130*
H50C 0.3110 0.7494 0.0596 0.130*
C51 0.4265 (5) 0.6905 (4) −0.0491 (3) 0.0772 (19)
H51A 0.4089 0.7452 −0.0727 0.116*
H51B 0.3748 0.6660 −0.0485 0.116*
H51C 0.4838 0.6573 −0.0745 0.116*
O31 0.8265 (6) 0.2547 (5) 0.4425 (5) 0.124 (3) 0.790 (9)
C67 0.9164 (7) 0.2283 (6) 0.4274 (5) 0.086 (2) 0.790 (9)
H67 0.9419 0.1729 0.4181 0.104* 0.790 (9)
N11 0.9754 (5) 0.2716 (5) 0.4240 (4) 0.0768 (19) 0.790 (9)
C68 0.9530 (8) 0.3518 (6) 0.4479 (6) 0.089 (3) 0.790 (9)
H68A 0.9751 0.3877 0.4109 0.133* 0.790 (9)
H68B 0.9844 0.3492 0.4901 0.133* 0.790 (9)
H68C 0.8844 0.3729 0.4588 0.133* 0.790 (9)
C69 1.0730 (6) 0.2372 (6) 0.3946 (6) 0.093 (3) 0.790 (9)
H69A 1.1089 0.2762 0.3953 0.139* 0.790 (9)
H69B 1.1020 0.1872 0.4226 0.139* 0.790 (9)
H69C 1.0737 0.2249 0.3460 0.139* 0.790 (9)
O31B 0.9091 (16) 0.1627 (9) 0.4682 (14) 0.123 (6) 0.210 (9)
C67B 0.8859 (10) 0.2372 (8) 0.4658 (12) 0.092 (4) 0.210 (9)
H67B 0.8207 0.2645 0.4760 0.110* 0.210 (9)
N11B 0.9444 (10) 0.2819 (8) 0.4504 (12) 0.091 (4) 0.210 (9)
C68B 1.0447 (11) 0.2424 (14) 0.435 (2) 0.100 (7) 0.210 (9)
H68D 1.0534 0.1878 0.4207 0.150* 0.210 (9)
H68E 1.0773 0.2388 0.4765 0.150* 0.210 (9)
H68F 1.0710 0.2740 0.3962 0.150* 0.210 (9)
C69B 0.9116 (19) 0.3701 (8) 0.449 (2) 0.098 (7) 0.210 (9)
H69D 0.9656 0.3922 0.4361 0.147* 0.210 (9)
H69E 0.8661 0.3911 0.4137 0.147* 0.210 (9)
H69F 0.8808 0.3864 0.4950 0.147* 0.210 (9)
Na1 0.66419 (10) 0.68887 (9) 0.26918 (8) 0.0300 (3)
Mn1 0.84339 (4) 0.63331 (3) 0.12120 (3) 0.01926 (13)
Mn2 0.60623 (4) 0.87295 (3) 0.14702 (3) 0.01915 (13)
Mn3 0.63617 (4) 0.84893 (3) 0.38408 (3) 0.02020 (13)
Mn4 0.87530 (4) 0.60976 (3) 0.35842 (3) 0.02184 (14)
Y1 0.83176 (2) 0.80033 (2) 0.23623 (2) 0.01941 (9)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0219 (17) 0.0207 (17) 0.0181 (16) −0.0060 (14) −0.0003 (13) 0.0003 (13)
C2 0.0255 (18) 0.0303 (19) 0.0174 (17) −0.0098 (15) −0.0057 (14) 0.0018 (14)
C3 0.0284 (19) 0.0244 (18) 0.0206 (17) −0.0095 (15) −0.0038 (14) 0.0006 (14)
C4 0.0278 (19) 0.0282 (19) 0.0253 (19) −0.0062 (16) −0.0061 (15) 0.0039 (15)
C5 0.032 (2) 0.041 (2) 0.0209 (18) −0.0080 (18) −0.0116 (16) 0.0074 (16)
C6 0.042 (2) 0.046 (2) 0.0195 (18) −0.010 (2) −0.0057 (17) −0.0055 (17)
C7 0.030 (2) 0.033 (2) 0.0254 (19) −0.0042 (16) −0.0035 (16) −0.0047 (16)
C8 0.0224 (17) 0.0175 (16) 0.0205 (17) −0.0027 (14) −0.0013 (14) 0.0027 (13)
C9 0.0219 (18) 0.0208 (17) 0.0249 (18) 0.0022 (14) 0.0018 (14) −0.0048 (14)
C10 0.0212 (18) 0.0238 (18) 0.0268 (18) −0.0026 (15) −0.0039 (14) −0.0020 (15)
C11 0.028 (2) 0.032 (2) 0.0239 (18) −0.0050 (16) −0.0003 (15) −0.0042 (15)
C12 0.033 (2) 0.029 (2) 0.032 (2) 0.0035 (17) 0.0058 (17) −0.0097 (17)
C13 0.036 (2) 0.031 (2) 0.036 (2) 0.0115 (18) −0.0021 (18) −0.0039 (18)
C14 0.036 (2) 0.030 (2) 0.0242 (19) 0.0041 (17) −0.0035 (16) −0.0010 (16)
C15 0.0255 (18) 0.0220 (17) 0.0204 (17) −0.0069 (15) −0.0025 (14) −0.0018 (14)
C16 0.0308 (19) 0.0275 (19) 0.0162 (17) −0.0098 (16) −0.0041 (14) 0.0034 (14)
C17 0.0292 (19) 0.0273 (19) 0.0206 (18) −0.0087 (15) −0.0029 (15) 0.0012 (14)
C18 0.037 (2) 0.0269 (19) 0.0268 (19) −0.0052 (17) −0.0076 (16) 0.0051 (16)
C19 0.048 (3) 0.034 (2) 0.0216 (19) −0.0111 (19) −0.0101 (17) 0.0105 (16)
C20 0.051 (3) 0.039 (2) 0.0174 (18) −0.008 (2) −0.0013 (17) 0.0017 (16)
C21 0.039 (2) 0.028 (2) 0.0230 (19) −0.0044 (17) −0.0024 (16) 0.0002 (15)
C22 0.0214 (17) 0.0188 (17) 0.0236 (18) −0.0016 (14) −0.0023 (14) 0.0001 (14)
C23 0.0251 (18) 0.0180 (17) 0.0293 (19) 0.0007 (14) −0.0006 (15) −0.0056 (14)
C24 0.0239 (18) 0.0234 (18) 0.0272 (18) −0.0045 (15) −0.0021 (15) −0.0016 (15)
C25 0.034 (2) 0.0271 (19) 0.030 (2) −0.0048 (16) −0.0002 (16) −0.0096 (16)
C26 0.036 (2) 0.027 (2) 0.041 (2) 0.0009 (17) −0.0035 (18) −0.0173 (18)
C27 0.040 (2) 0.023 (2) 0.048 (3) 0.0074 (18) −0.009 (2) −0.0071 (18)
C28 0.039 (2) 0.0261 (19) 0.0263 (19) −0.0001 (17) −0.0062 (17) −0.0055 (16)
C29 0.0265 (19) 0.0259 (19) 0.0265 (19) −0.0033 (15) 0.0034 (15) −0.0052 (15)
C30 0.050 (3) 0.046 (3) 0.033 (2) −0.027 (2) 0.016 (2) −0.0150 (19)
C31 0.062 (3) 0.054 (3) 0.046 (3) −0.036 (3) 0.025 (2) −0.024 (2)
C32 0.070 (4) 0.076 (4) 0.071 (4) −0.051 (3) 0.045 (3) −0.045 (3)
C33 0.106 (5) 0.055 (3) 0.033 (3) −0.045 (3) 0.002 (3) 0.006 (2)
C34 0.032 (2) 0.0258 (19) 0.0226 (18) −0.0020 (16) 0.0029 (15) 0.0021 (15)
C35 0.032 (2) 0.027 (2) 0.051 (3) −0.0097 (17) −0.0041 (19) 0.0052 (18)
C36 0.050 (3) 0.043 (3) 0.073 (4) −0.022 (2) −0.010 (3) 0.019 (3)
C37 0.041 (3) 0.033 (2) 0.075 (4) −0.009 (2) −0.005 (2) −0.012 (2)
C38 0.037 (2) 0.039 (2) 0.063 (3) −0.016 (2) −0.003 (2) 0.004 (2)
C39 0.032 (2) 0.0227 (18) 0.028 (2) −0.0026 (16) −0.0017 (16) −0.0037 (15)
C40 0.045 (3) 0.048 (3) 0.034 (2) −0.023 (2) 0.0065 (19) −0.0156 (19)
C41 0.046 (3) 0.051 (3) 0.050 (3) −0.026 (2) 0.006 (2) −0.015 (2)
C42 0.061 (3) 0.112 (5) 0.039 (3) −0.049 (4) −0.010 (2) 0.001 (3)
C43 0.072 (4) 0.071 (4) 0.084 (4) −0.044 (3) 0.029 (3) −0.047 (3)
C44 0.031 (2) 0.032 (2) 0.0231 (18) −0.0049 (17) −0.0065 (15) −0.0053 (16)
C45 0.028 (2) 0.035 (2) 0.042 (2) −0.0083 (17) −0.0079 (18) −0.0016 (18)
C46 0.038 (2) 0.043 (3) 0.062 (3) −0.017 (2) −0.007 (2) −0.004 (2)
C47 0.038 (3) 0.040 (2) 0.058 (3) −0.010 (2) 0.009 (2) −0.005 (2)
C48 0.040 (3) 0.064 (3) 0.060 (3) −0.016 (2) −0.020 (2) 0.008 (3)
O26 0.0374 (18) 0.068 (2) 0.051 (2) −0.0147 (17) 0.0045 (15) −0.0159 (17)
C52 0.032 (2) 0.068 (3) 0.054 (3) −0.019 (2) 0.001 (2) −0.021 (3)
N6 0.038 (2) 0.065 (3) 0.056 (3) −0.022 (2) 0.0059 (19) −0.025 (2)
C53 0.082 (4) 0.074 (4) 0.063 (4) −0.038 (4) 0.021 (3) −0.021 (3)
C54 0.040 (3) 0.086 (4) 0.094 (5) −0.013 (3) 0.005 (3) −0.049 (4)
O27 0.104 (5) 0.158 (7) 0.057 (4) −0.082 (5) 0.000 (3) 0.004 (4)
C55 0.067 (4) 0.142 (6) 0.053 (4) −0.057 (4) 0.002 (3) −0.010 (4)
N7 0.072 (4) 0.138 (6) 0.063 (4) −0.049 (4) 0.008 (3) 0.002 (4)
C56 0.091 (7) 0.172 (9) 0.088 (7) −0.045 (7) 0.037 (6) 0.031 (7)
C57 0.069 (5) 0.168 (9) 0.083 (6) −0.035 (6) 0.009 (5) −0.033 (6)
O27B 0.155 (18) 0.20 (2) 0.144 (18) −0.016 (18) −0.013 (16) −0.023 (17)
C55B 0.094 (9) 0.164 (11) 0.085 (9) −0.031 (10) 0.005 (9) −0.014 (9)
N7B 0.079 (6) 0.148 (7) 0.073 (6) −0.042 (6) 0.000 (6) −0.010 (6)
C56B 0.097 (11) 0.166 (11) 0.096 (10) −0.030 (11) 0.016 (10) 0.011 (10)
C57B 0.062 (9) 0.147 (11) 0.088 (10) −0.051 (9) 0.004 (9) −0.003 (10)
O28 0.067 (3) 0.032 (2) 0.057 (3) −0.014 (2) −0.005 (2) −0.002 (2)
C58 0.071 (4) 0.038 (3) 0.063 (3) −0.019 (3) −0.007 (3) −0.006 (3)
N8 0.070 (3) 0.039 (3) 0.065 (3) −0.025 (2) 0.002 (3) −0.018 (2)
C59 0.121 (7) 0.078 (5) 0.066 (5) −0.016 (5) −0.011 (5) −0.023 (4)
C60 0.084 (5) 0.048 (4) 0.102 (6) −0.016 (4) −0.002 (5) −0.022 (4)
O28B 0.088 (9) 0.047 (8) 0.072 (9) −0.024 (7) −0.005 (9) −0.008 (8)
C58B 0.075 (6) 0.044 (5) 0.066 (6) −0.025 (5) −0.004 (5) −0.010 (5)
N8B 0.078 (6) 0.047 (6) 0.071 (5) −0.020 (5) −0.001 (5) −0.011 (5)
C59B 0.104 (14) 0.073 (13) 0.088 (13) −0.018 (12) 0.013 (13) −0.002 (12)
C60B 0.089 (11) 0.060 (11) 0.097 (12) −0.025 (10) 0.004 (12) −0.015 (11)
O24B 0.121 (11) 0.086 (10) 0.077 (9) −0.044 (9) −0.003 (9) 0.014 (9)
C73B 0.097 (8) 0.096 (7) 0.081 (8) −0.041 (7) 0.019 (7) 0.017 (7)
N13B 0.099 (7) 0.107 (7) 0.090 (7) −0.033 (6) −0.001 (6) 0.018 (6)
C74B 0.113 (18) 0.152 (19) 0.138 (19) −0.003 (17) −0.020 (17) −0.001 (18)
C75B 0.093 (11) 0.119 (11) 0.088 (11) −0.036 (10) −0.020 (10) 0.033 (10)
O29 0.122 (5) 0.080 (4) 0.072 (4) −0.020 (4) −0.003 (4) 0.002 (3)
C61 0.066 (4) 0.052 (3) 0.073 (4) −0.014 (3) −0.016 (3) −0.016 (3)
N9 0.065 (3) 0.050 (3) 0.068 (4) −0.027 (2) 0.000 (3) −0.013 (3)
C62 0.101 (6) 0.078 (6) 0.078 (6) −0.024 (5) −0.024 (5) −0.010 (5)
C63 0.081 (5) 0.067 (5) 0.126 (7) −0.037 (4) 0.026 (5) −0.013 (5)
O29B 0.116 (13) 0.098 (13) 0.123 (14) −0.035 (12) −0.002 (12) −0.012 (12)
C61B 0.079 (7) 0.062 (7) 0.083 (7) −0.028 (7) −0.008 (7) −0.011 (7)
N9B 0.077 (6) 0.060 (6) 0.086 (6) −0.024 (5) −0.009 (6) −0.015 (6)
C62B 0.084 (10) 0.067 (10) 0.102 (10) −0.018 (9) −0.007 (10) −0.011 (10)
C63B 0.092 (13) 0.076 (13) 0.120 (14) −0.032 (12) 0.013 (13) −0.019 (13)
O30 0.066 (3) 0.068 (3) 0.068 (3) −0.003 (3) −0.003 (3) −0.021 (3)
C64 0.057 (4) 0.038 (3) 0.055 (4) −0.016 (3) −0.020 (3) 0.000 (3)
N10 0.049 (3) 0.040 (3) 0.048 (3) −0.025 (2) −0.011 (2) −0.001 (2)
C65 0.061 (4) 0.056 (5) 0.057 (5) −0.036 (3) −0.009 (3) −0.010 (4)
C66 0.068 (5) 0.063 (5) 0.060 (4) −0.035 (4) −0.001 (4) −0.007 (4)
O30B 0.116 (16) 0.104 (16) 0.139 (18) −0.010 (14) 0.035 (15) −0.011 (15)
C64B 0.079 (9) 0.078 (9) 0.078 (9) −0.023 (8) 0.008 (9) −0.001 (9)
N10B 0.068 (7) 0.064 (7) 0.064 (7) −0.031 (6) −0.002 (6) −0.001 (6)
C65B 0.068 (11) 0.056 (11) 0.065 (12) −0.026 (10) −0.003 (10) −0.015 (10)
C66B 0.072 (11) 0.068 (12) 0.065 (10) −0.030 (10) −0.006 (10) 0.013 (11)
O32 0.180 (10) 0.154 (9) 0.113 (7) −0.032 (8) −0.060 (7) 0.006 (7)
C70 0.114 (7) 0.106 (7) 0.109 (7) −0.050 (6) −0.043 (6) 0.014 (6)
N12 0.087 (5) 0.100 (6) 0.115 (6) −0.053 (5) −0.015 (5) 0.026 (5)
C71 0.107 (8) 0.116 (8) 0.130 (9) −0.049 (7) −0.002 (7) 0.042 (7)
C72 0.094 (7) 0.098 (7) 0.129 (9) −0.055 (6) −0.002 (7) 0.018 (7)
O32B 0.123 (10) 0.127 (10) 0.126 (10) −0.045 (10) −0.020 (10) 0.025 (10)
C70B 0.094 (8) 0.104 (9) 0.119 (9) −0.055 (8) −0.019 (8) 0.027 (8)
N12B 0.097 (7) 0.103 (8) 0.118 (8) −0.054 (7) −0.024 (7) 0.026 (7)
C71B 0.101 (11) 0.103 (11) 0.117 (12) −0.053 (11) −0.020 (11) 0.025 (11)
C72B 0.103 (11) 0.110 (11) 0.128 (12) −0.048 (11) −0.011 (11) 0.029 (11)
N1 0.0207 (14) 0.0223 (14) 0.0152 (13) −0.0033 (12) −0.0052 (11) 0.0015 (11)
N2 0.0187 (14) 0.0221 (14) 0.0166 (14) −0.0011 (12) 0.0032 (11) −0.0049 (11)
N3 0.0258 (15) 0.0182 (14) 0.0143 (13) −0.0022 (12) −0.0036 (11) 0.0034 (11)
N4 0.0233 (15) 0.0165 (14) 0.0184 (14) −0.0014 (11) 0.0005 (11) −0.0054 (11)
O1 0.0227 (12) 0.0190 (11) 0.0187 (11) 0.0004 (10) −0.0047 (9) 0.0000 (9)
O2 0.0271 (13) 0.0220 (12) 0.0192 (12) −0.0005 (10) −0.0028 (10) −0.0048 (10)
O3 0.0286 (14) 0.0257 (13) 0.0247 (13) 0.0023 (11) −0.0066 (11) −0.0033 (10)
O4 0.0200 (12) 0.0258 (12) 0.0155 (11) 0.0008 (10) 0.0007 (9) −0.0041 (9)
O5 0.0258 (13) 0.0237 (12) 0.0183 (12) 0.0015 (10) −0.0030 (10) −0.0011 (10)
O6 0.0281 (14) 0.0337 (14) 0.0199 (12) −0.0012 (11) 0.0007 (10) −0.0023 (11)
O7 0.0229 (12) 0.0192 (11) 0.0160 (11) 0.0004 (10) −0.0012 (9) 0.0031 (9)
O8 0.0286 (13) 0.0238 (13) 0.0175 (12) 0.0004 (11) 0.0002 (10) −0.0022 (10)
O9 0.0361 (15) 0.0253 (13) 0.0231 (13) 0.0032 (11) −0.0007 (11) 0.0028 (10)
O10 0.0256 (12) 0.0157 (11) 0.0169 (11) −0.0005 (9) 0.0000 (9) −0.0033 (9)
O11 0.0317 (14) 0.0206 (12) 0.0196 (12) 0.0016 (10) −0.0043 (10) 0.0002 (10)
O12 0.0357 (15) 0.0243 (13) 0.0225 (13) −0.0022 (11) −0.0049 (11) −0.0056 (10)
O13 0.0248 (13) 0.0289 (13) 0.0217 (13) −0.0053 (11) 0.0026 (10) −0.0052 (10)
O14 0.0317 (14) 0.0274 (13) 0.0239 (13) −0.0101 (11) 0.0043 (11) −0.0052 (11)
O15 0.0290 (14) 0.0254 (13) 0.0247 (13) −0.0045 (11) 0.0003 (11) 0.0023 (10)
O16 0.0322 (15) 0.0269 (13) 0.0327 (14) −0.0108 (11) −0.0058 (11) 0.0036 (11)
O17 0.0367 (15) 0.0253 (13) 0.0258 (13) −0.0081 (11) 0.0005 (11) −0.0047 (11)
O18 0.0293 (14) 0.0326 (14) 0.0270 (13) −0.0101 (11) 0.0041 (11) −0.0093 (11)
O19 0.0278 (14) 0.0272 (13) 0.0255 (13) −0.0034 (11) −0.0066 (11) −0.0030 (10)
O20 0.0293 (14) 0.0296 (14) 0.0297 (14) −0.0068 (11) −0.0073 (11) 0.0044 (11)
O21 0.0360 (16) 0.0293 (14) 0.0341 (15) −0.0104 (13) −0.0069 (12) −0.0006 (12)
O22 0.0302 (15) 0.0360 (16) 0.0348 (16) −0.0112 (13) 0.0029 (12) −0.0051 (12)
O23 0.0369 (16) 0.0433 (17) 0.0347 (16) −0.0144 (14) 0.0015 (13) 0.0018 (13)
O24C 0.0448 (17) 0.0280 (14) 0.0382 (16) −0.0118 (13) −0.0002 (13) 0.0009 (12)
O24 0.0448 (17) 0.0280 (14) 0.0382 (16) −0.0118 (13) −0.0002 (13) 0.0009 (12)
C73 0.057 (6) 0.050 (6) 0.053 (6) −0.026 (5) 0.004 (5) 0.009 (5)
N13 0.084 (7) 0.083 (6) 0.079 (6) −0.036 (6) 0.007 (6) 0.023 (6)
C74 0.089 (11) 0.098 (10) 0.072 (10) −0.040 (10) 0.000 (9) 0.018 (9)
C75 0.097 (11) 0.116 (11) 0.092 (11) −0.030 (10) −0.008 (10) 0.032 (10)
O33 0.100 (8) 0.099 (7) 0.085 (7) −0.042 (7) 0.017 (6) 0.018 (6)
O34 0.073 (7) 0.091 (7) 0.070 (7) −0.056 (5) −0.011 (5) 0.026 (5)
O25 0.053 (2) 0.0454 (18) 0.056 (2) −0.0126 (16) −0.0182 (17) −0.0072 (16)
C49 0.058 (3) 0.045 (3) 0.064 (3) −0.019 (2) −0.019 (3) −0.004 (2)
N5 0.053 (2) 0.057 (3) 0.067 (3) −0.024 (2) −0.023 (2) 0.014 (2)
C50 0.047 (3) 0.114 (6) 0.078 (4) −0.006 (4) −0.005 (3) 0.031 (4)
C51 0.092 (5) 0.077 (4) 0.077 (4) −0.041 (4) −0.040 (4) 0.017 (3)
O31 0.128 (6) 0.150 (6) 0.128 (6) −0.099 (5) 0.031 (5) −0.039 (5)
C67 0.108 (5) 0.105 (5) 0.071 (5) −0.079 (4) 0.019 (4) −0.014 (4)
N11 0.096 (5) 0.097 (4) 0.060 (4) −0.073 (4) 0.006 (3) 0.004 (3)
C68 0.119 (7) 0.103 (6) 0.072 (5) −0.082 (6) 0.018 (6) −0.020 (5)
C69 0.084 (6) 0.085 (6) 0.109 (8) −0.034 (5) −0.010 (6) 0.021 (6)
O31B 0.132 (11) 0.143 (11) 0.108 (11) −0.070 (10) 0.009 (10) −0.009 (10)
C67B 0.108 (7) 0.114 (6) 0.076 (7) −0.069 (6) 0.003 (6) −0.015 (6)
N11B 0.111 (7) 0.108 (6) 0.075 (6) −0.074 (6) 0.011 (6) −0.010 (6)
C68B 0.105 (12) 0.109 (11) 0.084 (12) −0.040 (11) 0.009 (12) 0.008 (11)
C69B 0.123 (13) 0.110 (11) 0.071 (11) −0.061 (11) 0.011 (12) 0.000 (11)
Na1 0.0306 (8) 0.0275 (7) 0.0303 (8) −0.0058 (6) −0.0019 (6) −0.0044 (6)
Mn1 0.0231 (3) 0.0161 (3) 0.0155 (3) −0.0002 (2) −0.0028 (2) −0.0023 (2)
Mn2 0.0202 (3) 0.0180 (3) 0.0155 (3) 0.0006 (2) −0.0024 (2) −0.0015 (2)
Mn3 0.0203 (3) 0.0211 (3) 0.0140 (3) 0.0012 (2) −0.0003 (2) −0.0006 (2)
Mn4 0.0272 (3) 0.0174 (3) 0.0152 (3) 0.0012 (2) −0.0008 (2) 0.0001 (2)
Y1 0.02044 (16) 0.01900 (16) 0.01589 (15) −0.00179 (11) −0.00074 (11) −0.00104 (11)

Geometric parameters (Å, º)

C1—O2 1.287 (4) C74B—H74D 0.9800
C1—N1 1.313 (4) C74B—H74E 0.9800
C1—C2 1.481 (5) C74B—H74F 0.9800
C2—C7 1.404 (5) C75B—H75D 0.9800
C2—C3 1.414 (5) C75B—H75E 0.9800
C3—O3 1.329 (4) C75B—H75F 0.9800
C3—C4 1.402 (5) O29—C61 1.222 (9)
C4—C5 1.379 (5) C61—N9 1.311 (8)
C4—H4 0.9500 C61—H61 0.9500
C5—C6 1.386 (6) N9—C63 1.441 (9)
C5—H5 0.9500 N9—C62 1.460 (9)
C6—C7 1.385 (6) C62—H62A 0.9800
C6—H6 0.9500 C62—H62B 0.9800
C7—H7 0.9500 C62—H62C 0.9800
C8—O5 1.288 (4) C63—H63A 0.9800
C8—N2 1.320 (5) C63—H63B 0.9800
C8—C9 1.475 (5) C63—H63C 0.9800
C9—C14 1.408 (5) O29B—C61B 1.245 (16)
C9—C10 1.417 (5) C61B—N9B 1.310 (15)
C10—O6 1.332 (4) C61B—H61B 0.9500
C10—C11 1.395 (5) N9B—C63B 1.441 (15)
C11—C12 1.371 (6) N9B—C62B 1.455 (15)
C11—H11 0.9500 C62B—H62D 0.9800
C12—C13 1.397 (6) C62B—H62E 0.9800
C12—H12 0.9500 C62B—H62F 0.9800
C13—C14 1.381 (6) C63B—H63D 0.9800
C13—H13 0.9500 C63B—H63E 0.9800
C14—H14 0.9500 C63B—H63F 0.9800
C15—O8 1.289 (4) O30—C64 1.225 (7)
C15—N3 1.317 (5) C64—N10 1.342 (7)
C15—C16 1.475 (5) C64—H64 0.9500
C16—C21 1.409 (5) N10—C65 1.450 (8)
C16—C17 1.414 (5) N10—C66 1.453 (8)
C17—O9 1.329 (4) C65—H65A 0.9800
C17—C18 1.408 (5) C65—H65B 0.9800
C18—C19 1.376 (6) C65—H65C 0.9800
C18—H18 0.9500 C66—H66A 0.9800
C19—C20 1.396 (6) C66—H66B 0.9800
C19—H19 0.9500 C66—H66C 0.9800
C20—C21 1.383 (5) O30B—C64B 1.247 (15)
C20—H20 0.9500 C64B—N10B 1.303 (14)
C21—H21 0.9500 C64B—H64B 0.9500
C22—O11 1.293 (4) N10B—C66B 1.443 (14)
C22—N4 1.315 (4) N10B—C65B 1.462 (15)
C22—C23 1.474 (5) C65B—H65D 0.9800
C23—C28 1.406 (5) C65B—H65E 0.9800
C23—C24 1.414 (5) C65B—H65F 0.9800
C24—O12 1.332 (4) C66B—H66D 0.9800
C24—C25 1.401 (5) C66B—H66E 0.9800
C25—C26 1.369 (6) C66B—H66F 0.9800
C25—H25 0.9500 O32—C70 1.258 (11)
C26—C27 1.393 (6) C70—N12 1.319 (12)
C26—H26 0.9500 C70—H70 0.9500
C27—C28 1.378 (6) N12—C71 1.467 (11)
C27—H27 0.9500 N12—C72 1.469 (11)
C28—H28 0.9500 C71—H71A 0.9800
C29—O14 1.251 (5) C71—H71B 0.9800
C29—O13 1.261 (4) C71—H71C 0.9800
C29—C30 1.537 (6) C72—H72A 0.9800
C30—C32 1.521 (6) C72—H72B 0.9800
C30—C31 1.522 (6) C72—H72C 0.9800
C30—C33 1.538 (8) O32B—C70B 1.250 (16)
C31—H31A 0.9800 C70B—N12B 1.323 (15)
C31—H31B 0.9800 C70B—H70B 0.9500
C31—H31C 0.9800 N12B—C72B 1.440 (16)
C32—H32A 0.9800 N12B—C71B 1.468 (16)
C32—H32B 0.9800 C71B—H71D 0.9800
C32—H32C 0.9800 C71B—H71E 0.9800
C33—H33A 0.9800 C71B—H71F 0.9800
C33—H33B 0.9800 C72B—H72D 0.9800
C33—H33C 0.9800 C72B—H72E 0.9800
C34—O16 1.251 (5) C72B—H72F 0.9800
C34—O15 1.259 (5) N1—O1 1.415 (4)
C34—C35 1.534 (6) N1—Mn2 1.964 (3)
C35—C36 1.518 (7) N2—O4 1.408 (4)
C35—C38 1.527 (6) N2—Mn3 1.956 (3)
C35—C37 1.553 (7) N3—O7 1.411 (4)
C36—H36A 0.9800 N3—Mn4 1.962 (3)
C36—H36B 0.9800 N4—O10 1.406 (4)
C36—H36C 0.9800 N4—Mn1 1.963 (3)
C37—H37A 0.9800 O1—Mn1 1.925 (2)
C37—H37B 0.9800 O1—Y1 2.439 (2)
C37—H37C 0.9800 O1—Na1 2.717 (3)
C38—H38A 0.9800 O2—Mn1 1.956 (2)
C38—H38B 0.9800 O3—Mn2 1.850 (3)
C38—H38C 0.9800 O4—Mn2 1.925 (2)
C39—O18 1.250 (5) O4—Y1 2.419 (2)
C39—O17 1.274 (5) O4—Na1 2.752 (3)
C39—C40 1.529 (6) O5—Mn2 1.956 (2)
C40—C43 1.516 (7) O6—Mn3 1.850 (3)
C40—C41 1.523 (6) O7—Mn3 1.919 (2)
C40—C42 1.547 (8) O7—Y1 2.429 (2)
C41—H41A 0.9800 O7—Na1 2.676 (3)
C41—H41B 0.9800 O8—Mn3 1.943 (2)
C41—H41C 0.9800 O9—Mn4 1.846 (3)
C42—H42A 0.9800 O10—Mn4 1.927 (2)
C42—H42B 0.9800 O10—Y1 2.427 (2)
C42—H42C 0.9800 O10—Na1 2.667 (3)
C43—H43A 0.9800 O11—Mn4 1.954 (2)
C43—H43B 0.9800 O12—Mn1 1.854 (3)
C43—H43C 0.9800 O13—Y1 2.261 (2)
C44—O20 1.248 (5) O14—Mn1 2.140 (3)
C44—O19 1.271 (5) O15—Y1 2.270 (2)
C44—C45 1.540 (6) O16—Mn2 2.143 (3)
C45—C46 1.522 (6) O17—Y1 2.281 (3)
C45—C48 1.526 (6) O18—Mn3 2.132 (3)
C45—C47 1.542 (6) O19—Y1 2.261 (2)
C46—H46A 0.9800 O20—Mn4 2.152 (3)
C46—H46B 0.9800 O21—Na1 2.460 (3)
C46—H46C 0.9800 O21—Mn1 2.466 (3)
C47—H47A 0.9800 O21—H21A 0.82 (2)
C47—H47B 0.9800 O21—H21B 0.83 (2)
C47—H47C 0.9800 O22—Mn2 2.423 (3)
C48—H48A 0.9800 O22—Na1 2.463 (3)
C48—H48B 0.9800 O22—H22A 0.84 (2)
C48—H48C 0.9800 O22—H22B 0.83 (2)
O26—C52 1.252 (6) O23—Na1 2.449 (3)
C52—N6 1.312 (6) O23—H23A 0.84 (2)
C52—H52 0.9500 O23—H23B 0.86 (2)
N6—C53 1.440 (8) O24C—Na1 2.424 (3)
N6—C54 1.455 (7) O24C—Mn4 2.469 (3)
C53—H53A 0.9800 O24C—H24A 0.863 (19)
C53—H53B 0.9800 O24C—H24B 0.859 (19)
C53—H53C 0.9800 O24—C73 1.251 (12)
C54—H54A 0.9800 O24—Na1 2.424 (3)
C54—H54B 0.9800 O24—Mn4 2.469 (3)
C54—H54C 0.9800 C73—N13 1.313 (14)
O27—C55 1.271 (9) C73—H73 0.9500
C55—N7 1.298 (9) N13—C75 1.447 (15)
C55—H55 0.9500 N13—C74 1.483 (15)
N7—C57 1.444 (10) C74—H74A 0.9800
N7—C56 1.477 (10) C74—H74B 0.9800
C56—H56A 0.9800 C74—H74C 0.9800
C56—H56B 0.9800 C75—H75A 0.9800
C56—H56C 0.9800 C75—H75B 0.9800
C57—H57A 0.9800 C75—H75C 0.9800
C57—H57B 0.9800 O33—H33E 0.8447
C57—H57C 0.9800 O33—H33F 0.8356
O27B—C55B 1.232 (6) O34—H34A 0.8494
C55B—N7B 1.311 (6) O34—H34B 0.8475
C55B—H55B 0.9500 O25—C49 1.232 (5)
N7B—C56B 1.453 (7) C49—N5 1.311 (6)
N7B—C57B 1.460 (6) C49—H49 0.9500
C56B—H56D 0.9800 N5—C50 1.452 (7)
C56B—H56E 0.9800 N5—C51 1.459 (6)
C56B—H56F 0.9800 C50—H50A 0.9800
C57B—H57D 0.9800 C50—H50B 0.9800
C57B—H57E 0.9800 C50—H50C 0.9800
C57B—H57F 0.9800 C51—H51A 0.9800
O28—C58 1.218 (8) C51—H51B 0.9800
C58—N8 1.306 (9) C51—H51C 0.9800
C58—H58 0.9500 O31—C67 1.284 (10)
N8—C60 1.439 (10) C67—N11 1.304 (8)
N8—C59 1.476 (11) C67—H67 0.9500
C59—H59A 0.9800 N11—C68 1.445 (9)
C59—H59B 0.9800 N11—C69 1.461 (10)
C59—H59C 0.9800 C68—H68A 0.9800
C60—H60A 0.9800 C68—H68B 0.9800
C60—H60B 0.9800 C68—H68C 0.9800
C60—H60C 0.9800 C69—H69A 0.9800
O28B—C58B 1.233 (15) C69—H69B 0.9800
C58B—N8B 1.304 (14) C69—H69C 0.9800
C58B—H58B 0.9500 O31B—C67B 1.232 (6)
N8B—C60B 1.444 (15) C67B—N11B 1.311 (6)
N8B—C59B 1.455 (15) C67B—H67B 0.9500
C59B—H59D 0.9800 N11B—C68B 1.452 (7)
C59B—H59E 0.9800 N11B—C69B 1.459 (6)
C59B—H59F 0.9800 C68B—H68D 0.9800
C60B—H60D 0.9800 C68B—H68E 0.9800
C60B—H60E 0.9800 C68B—H68F 0.9800
C60B—H60F 0.9800 C69B—H69D 0.9800
O24B—C73B 1.215 (15) C69B—H69E 0.9800
C73B—N13B 1.290 (14) C69B—H69F 0.9800
C73B—H73B 0.9500 Na1—Y1 3.5343 (15)
N13B—C75B 1.448 (15) Na1—Mn4 3.6079 (16)
N13B—C74B 1.454 (15) Na1—Mn3 3.6382 (15)
O2—C1—N1 121.6 (3) O32—C70—N12 122.8 (13)
O2—C1—C2 119.4 (3) O32—C70—H70 118.6
N1—C1—C2 119.0 (3) N12—C70—H70 118.6
C7—C2—C3 119.6 (3) C70—N12—C71 129.9 (11)
C7—C2—C1 117.7 (3) C70—N12—C72 119.3 (10)
C3—C2—C1 122.8 (3) C71—N12—C72 110.5 (11)
O3—C3—C4 117.6 (3) N12—C71—H71A 109.5
O3—C3—C2 124.1 (3) N12—C71—H71B 109.5
C4—C3—C2 118.2 (3) H71A—C71—H71B 109.5
C5—C4—C3 121.1 (4) N12—C71—H71C 109.5
C5—C4—H4 119.5 H71A—C71—H71C 109.5
C3—C4—H4 119.5 H71B—C71—H71C 109.5
C4—C5—C6 120.9 (3) N12—C72—H72A 109.5
C4—C5—H5 119.5 N12—C72—H72B 109.5
C6—C5—H5 119.5 H72A—C72—H72B 109.5
C7—C6—C5 119.2 (4) N12—C72—H72C 109.5
C7—C6—H6 120.4 H72A—C72—H72C 109.5
C5—C6—H6 120.4 H72B—C72—H72C 109.5
C6—C7—C2 121.0 (4) O32B—C70B—N12B 120 (3)
C6—C7—H7 119.5 O32B—C70B—H70B 120.2
C2—C7—H7 119.5 N12B—C70B—H70B 120.2
O5—C8—N2 121.2 (3) C70B—N12B—C72B 122 (3)
O5—C8—C9 119.8 (3) C70B—N12B—C71B 117 (2)
N2—C8—C9 119.0 (3) C72B—N12B—C71B 118 (2)
C14—C9—C10 118.9 (3) N12B—C71B—H71D 109.5
C14—C9—C8 117.9 (3) N12B—C71B—H71E 109.5
C10—C9—C8 123.2 (3) H71D—C71B—H71E 109.5
O6—C10—C11 117.7 (3) N12B—C71B—H71F 109.5
O6—C10—C9 123.7 (3) H71D—C71B—H71F 109.5
C11—C10—C9 118.6 (3) H71E—C71B—H71F 109.5
C12—C11—C10 121.5 (4) N12B—C72B—H72D 109.5
C12—C11—H11 119.3 N12B—C72B—H72E 109.5
C10—C11—H11 119.3 H72D—C72B—H72E 109.5
C11—C12—C13 120.7 (4) N12B—C72B—H72F 109.5
C11—C12—H12 119.7 H72D—C72B—H72F 109.5
C13—C12—H12 119.7 H72E—C72B—H72F 109.5
C14—C13—C12 118.9 (4) C1—N1—O1 112.7 (3)
C14—C13—H13 120.6 C1—N1—Mn2 130.4 (2)
C12—C13—H13 120.6 O1—N1—Mn2 114.56 (19)
C13—C14—C9 121.4 (4) C8—N2—O4 112.6 (3)
C13—C14—H14 119.3 C8—N2—Mn3 130.1 (2)
C9—C14—H14 119.3 O4—N2—Mn3 115.3 (2)
O8—C15—N3 121.0 (3) C15—N3—O7 112.3 (3)
O8—C15—C16 119.3 (3) C15—N3—Mn4 130.6 (2)
N3—C15—C16 119.7 (3) O7—N3—Mn4 115.36 (19)
C21—C16—C17 119.6 (3) C22—N4—O10 112.9 (3)
C21—C16—C15 117.9 (3) C22—N4—Mn1 129.9 (2)
C17—C16—C15 122.5 (3) O10—N4—Mn1 115.28 (19)
O9—C17—C18 117.5 (3) N1—O1—Mn1 112.17 (18)
O9—C17—C16 124.5 (3) N1—O1—Y1 121.55 (18)
C18—C17—C16 118.0 (3) Mn1—O1—Y1 120.20 (11)
C19—C18—C17 121.3 (4) N1—O1—Na1 106.95 (17)
C19—C18—H18 119.4 Mn1—O1—Na1 102.09 (10)
C17—C18—H18 119.4 Y1—O1—Na1 86.36 (8)
C18—C19—C20 121.0 (4) C1—O2—Mn1 111.7 (2)
C18—C19—H19 119.5 C3—O3—Mn2 130.0 (2)
C20—C19—H19 119.5 N2—O4—Mn2 112.58 (18)
C21—C20—C19 118.9 (4) N2—O4—Y1 121.43 (18)
C21—C20—H20 120.6 Mn2—O4—Y1 120.63 (11)
C19—C20—H20 120.6 N2—O4—Na1 104.91 (17)
C20—C21—C16 121.3 (4) Mn2—O4—Na1 102.99 (10)
C20—C21—H21 119.4 Y1—O4—Na1 85.99 (8)
C16—C21—H21 119.4 C8—O5—Mn2 111.9 (2)
O11—C22—N4 121.0 (3) C10—O6—Mn3 129.7 (2)
O11—C22—C23 119.4 (3) N3—O7—Mn3 112.68 (18)
N4—C22—C23 119.6 (3) N3—O7—Y1 121.91 (18)
C28—C23—C24 119.2 (3) Mn3—O7—Y1 119.81 (11)
C28—C23—C22 117.9 (3) N3—O7—Na1 103.38 (17)
C24—C23—C22 122.9 (3) Mn3—O7—Na1 103.48 (10)
O12—C24—C25 117.7 (3) Y1—O7—Na1 87.50 (8)
O12—C24—C23 124.1 (3) C15—O8—Mn3 112.2 (2)
C25—C24—C23 118.2 (3) C17—O9—Mn4 130.9 (2)
C26—C25—C24 121.3 (4) N4—O10—Mn4 112.48 (18)
C26—C25—H25 119.3 N4—O10—Y1 121.36 (18)
C24—C25—H25 119.3 Mn4—O10—Y1 119.71 (11)
C25—C26—C27 121.0 (4) N4—O10—Na1 106.01 (17)
C25—C26—H26 119.5 Mn4—O10—Na1 102.31 (10)
C27—C26—H26 119.5 Y1—O10—Na1 87.74 (8)
C28—C27—C26 118.8 (4) C22—O11—Mn4 111.9 (2)
C28—C27—H27 120.6 C24—O12—Mn1 129.6 (2)
C26—C27—H27 120.6 C29—O13—Y1 139.9 (2)
C27—C28—C23 121.4 (4) C29—O14—Mn1 123.2 (2)
C27—C28—H28 119.3 C34—O15—Y1 139.9 (2)
C23—C28—H28 119.3 C34—O16—Mn2 123.8 (2)
O14—C29—O13 124.8 (4) C39—O17—Y1 140.9 (2)
O14—C29—C30 116.8 (3) C39—O18—Mn3 124.7 (2)
O13—C29—C30 118.4 (3) C44—O19—Y1 139.1 (2)
C32—C30—C31 110.1 (4) C44—O20—Mn4 123.9 (2)
C32—C30—C29 109.5 (4) Na1—O21—Mn1 95.42 (10)
C31—C30—C29 111.4 (4) Na1—O21—H21A 116 (4)
C32—C30—C33 110.1 (4) Mn1—O21—H21A 111 (4)
C31—C30—C33 109.4 (4) Na1—O21—H21B 121 (4)
C29—C30—C33 106.2 (4) Mn1—O21—H21B 114 (4)
C30—C31—H31A 109.5 H21A—O21—H21B 100 (5)
C30—C31—H31B 109.5 Mn2—O22—Na1 98.28 (11)
H31A—C31—H31B 109.5 Mn2—O22—H22A 118 (4)
C30—C31—H31C 109.5 Na1—O22—H22A 117 (4)
H31A—C31—H31C 109.5 Mn2—O22—H22B 122 (4)
H31B—C31—H31C 109.5 Na1—O22—H22B 116 (4)
C30—C32—H32A 109.5 H22A—O22—H22B 88 (5)
C30—C32—H32B 109.5 Na1—O23—H23A 133 (4)
H32A—C32—H32B 109.5 Na1—O23—H23B 115 (4)
C30—C32—H32C 109.5 H23A—O23—H23B 90 (5)
H32A—C32—H32C 109.5 Na1—O24C—Mn4 95.00 (10)
H32B—C32—H32C 109.5 Na1—O24C—H24A 115 (2)
C30—C33—H33A 109.5 Mn4—O24C—H24A 119 (4)
C30—C33—H33B 109.5 Na1—O24C—H24B 112.6 (19)
H33A—C33—H33B 109.5 Mn4—O24C—H24B 113 (4)
C30—C33—H33C 109.5 H24A—O24C—H24B 103 (3)
H33A—C33—H33C 109.5 C73—O24—Na1 157.0 (10)
H33B—C33—H33C 109.5 C73—O24—Mn4 108.0 (10)
O16—C34—O15 124.4 (4) Na1—O24—Mn4 95.00 (10)
O16—C34—C35 116.8 (3) O24—C73—N13 131.1 (17)
O15—C34—C35 118.8 (4) O24—C73—H73 114.5
C36—C35—C38 110.3 (4) N13—C73—H73 114.5
C36—C35—C34 109.2 (4) C73—N13—C75 120.8 (19)
C38—C35—C34 111.7 (3) C73—N13—C74 115.0 (18)
C36—C35—C37 110.5 (4) C75—N13—C74 112.9 (19)
C38—C35—C37 109.0 (4) N13—C74—H74A 109.5
C34—C35—C37 106.0 (3) N13—C74—H74B 109.5
C35—C36—H36A 109.5 H74A—C74—H74B 109.5
C35—C36—H36B 109.5 N13—C74—H74C 109.5
H36A—C36—H36B 109.5 H74A—C74—H74C 109.5
C35—C36—H36C 109.5 H74B—C74—H74C 109.5
H36A—C36—H36C 109.5 N13—C75—H75A 109.5
H36B—C36—H36C 109.5 N13—C75—H75B 109.5
C35—C37—H37A 109.5 H75A—C75—H75B 109.5
C35—C37—H37B 109.5 N13—C75—H75C 109.5
H37A—C37—H37B 109.5 H75A—C75—H75C 109.5
C35—C37—H37C 109.5 H75B—C75—H75C 109.5
H37A—C37—H37C 109.5 H33E—O33—H33F 107.6
H37B—C37—H37C 109.5 H34A—O34—H34B 106.1
C35—C38—H38A 109.5 O25—C49—N5 125.1 (5)
C35—C38—H38B 109.5 O25—C49—H49 117.5
H38A—C38—H38B 109.5 N5—C49—H49 117.5
C35—C38—H38C 109.5 C49—N5—C50 119.1 (5)
H38A—C38—H38C 109.5 C49—N5—C51 121.8 (5)
H38B—C38—H38C 109.5 C50—N5—C51 119.0 (5)
O18—C39—O17 123.6 (4) N5—C50—H50A 109.5
O18—C39—C40 117.6 (3) N5—C50—H50B 109.5
O17—C39—C40 118.7 (3) H50A—C50—H50B 109.5
C43—C40—C41 110.0 (4) N5—C50—H50C 109.5
C43—C40—C39 109.3 (4) H50A—C50—H50C 109.5
C41—C40—C39 112.9 (4) H50B—C50—H50C 109.5
C43—C40—C42 109.9 (5) N5—C51—H51A 109.5
C41—C40—C42 108.7 (4) N5—C51—H51B 109.5
C39—C40—C42 105.8 (4) H51A—C51—H51B 109.5
C40—C41—H41A 109.5 N5—C51—H51C 109.5
C40—C41—H41B 109.5 H51A—C51—H51C 109.5
H41A—C41—H41B 109.5 H51B—C51—H51C 109.5
C40—C41—H41C 109.5 O31—C67—N11 125.0 (9)
H41A—C41—H41C 109.5 O31—C67—H67 117.5
H41B—C41—H41C 109.5 N11—C67—H67 117.5
C40—C42—H42A 109.5 C67—N11—C68 125.4 (8)
C40—C42—H42B 109.5 C67—N11—C69 118.5 (8)
H42A—C42—H42B 109.5 C68—N11—C69 116.1 (7)
C40—C42—H42C 109.5 N11—C68—H68A 109.5
H42A—C42—H42C 109.5 N11—C68—H68B 109.5
H42B—C42—H42C 109.5 H68A—C68—H68B 109.5
C40—C43—H43A 109.5 N11—C68—H68C 109.5
C40—C43—H43B 109.5 H68A—C68—H68C 109.5
H43A—C43—H43B 109.5 H68B—C68—H68C 109.5
C40—C43—H43C 109.5 N11—C69—H69A 109.5
H43A—C43—H43C 109.5 N11—C69—H69B 109.5
H43B—C43—H43C 109.5 H69A—C69—H69B 109.5
O20—C44—O19 124.0 (4) N11—C69—H69C 109.5
O20—C44—C45 117.9 (3) H69A—C69—H69C 109.5
O19—C44—C45 118.2 (4) H69B—C69—H69C 109.5
C46—C45—C48 110.2 (4) O31B—C67B—N11B 125.1 (6)
C46—C45—C44 111.7 (3) O31B—C67B—H67B 117.5
C48—C45—C44 109.6 (4) N11B—C67B—H67B 117.5
C46—C45—C47 109.0 (4) C67B—N11B—C68B 119.1 (5)
C48—C45—C47 110.1 (4) C67B—N11B—C69B 121.9 (5)
C44—C45—C47 106.1 (3) C68B—N11B—C69B 119.0 (5)
C45—C46—H46A 109.5 N11B—C68B—H68D 109.5
C45—C46—H46B 109.5 N11B—C68B—H68E 109.5
H46A—C46—H46B 109.5 H68D—C68B—H68E 109.5
C45—C46—H46C 109.5 N11B—C68B—H68F 109.5
H46A—C46—H46C 109.5 H68D—C68B—H68F 109.5
H46B—C46—H46C 109.5 H68E—C68B—H68F 109.5
C45—C47—H47A 109.5 N11B—C69B—H69D 109.5
C45—C47—H47B 109.5 N11B—C69B—H69E 109.5
H47A—C47—H47B 109.5 H69D—C69B—H69E 109.5
C45—C47—H47C 109.5 N11B—C69B—H69F 109.5
H47A—C47—H47C 109.5 H69D—C69B—H69F 109.5
H47B—C47—H47C 109.5 H69E—C69B—H69F 109.5
C45—C48—H48A 109.5 O24—Na1—O23 87.79 (11)
C45—C48—H48B 109.5 O24C—Na1—O23 87.79 (11)
H48A—C48—H48B 109.5 O24—Na1—O21 85.54 (11)
C45—C48—H48C 109.5 O24C—Na1—O21 85.54 (11)
H48A—C48—H48C 109.5 O23—Na1—O21 146.26 (12)
H48B—C48—H48C 109.5 O24—Na1—O22 149.78 (12)
O26—C52—N6 123.2 (5) O24C—Na1—O22 149.78 (12)
O26—C52—H52 118.4 O23—Na1—O22 84.02 (11)
N6—C52—H52 118.4 O21—Na1—O22 85.33 (11)
C52—N6—C53 120.0 (5) O24—Na1—O10 68.52 (9)
C52—N6—C54 121.3 (5) O24C—Na1—O10 68.52 (9)
C53—N6—C54 118.6 (5) O23—Na1—O10 124.35 (11)
N6—C53—H53A 109.5 O21—Na1—O10 83.38 (9)
N6—C53—H53B 109.5 O22—Na1—O10 138.49 (10)
H53A—C53—H53B 109.5 O24—Na1—O7 84.56 (10)
N6—C53—H53C 109.5 O24C—Na1—O7 84.56 (10)
H53A—C53—H53C 109.5 O23—Na1—O7 69.82 (10)
H53B—C53—H53C 109.5 O21—Na1—O7 141.90 (11)
N6—C54—H54A 109.5 O22—Na1—O7 119.17 (10)
N6—C54—H54B 109.5 O10—Na1—O7 58.78 (8)
H54A—C54—H54B 109.5 O24—Na1—O1 121.82 (10)
N6—C54—H54C 109.5 O24C—Na1—O1 121.82 (10)
H54A—C54—H54C 109.5 O23—Na1—O1 140.89 (11)
H54B—C54—H54C 109.5 O21—Na1—O1 67.70 (9)
O27—C55—N7 128.1 (9) O22—Na1—O1 80.57 (9)
O27—C55—H55 116.0 O10—Na1—O1 58.19 (8)
N7—C55—H55 116.0 O7—Na1—O1 86.88 (8)
C55—N7—C57 123.4 (8) O24—Na1—O4 142.11 (11)
C55—N7—C56 122.2 (9) O24C—Na1—O4 142.11 (11)
C57—N7—C56 114.4 (8) O23—Na1—O4 83.54 (10)
N7—C56—H56A 109.5 O21—Na1—O4 120.40 (10)
N7—C56—H56B 109.5 O22—Na1—O4 65.63 (9)
H56A—C56—H56B 109.5 O10—Na1—O4 86.37 (8)
N7—C56—H56C 109.5 O7—Na1—O4 57.82 (7)
H56A—C56—H56C 109.5 O1—Na1—O4 57.35 (7)
H56B—C56—H56C 109.5 O24—Na1—Y1 106.73 (9)
N7—C57—H57A 109.5 O24C—Na1—Y1 106.73 (9)
N7—C57—H57B 109.5 O23—Na1—Y1 107.52 (9)
H57A—C57—H57B 109.5 O21—Na1—Y1 106.08 (8)
N7—C57—H57C 109.5 O22—Na1—Y1 103.48 (8)
H57A—C57—H57C 109.5 O10—Na1—Y1 43.32 (5)
H57B—C57—H57C 109.5 O7—Na1—Y1 43.36 (5)
O27B—C55B—N7B 125.0 (6) O1—Na1—Y1 43.53 (5)
O27B—C55B—H55B 117.5 O4—Na1—Y1 43.05 (5)
N7B—C55B—H55B 117.5 O24—Na1—Mn4 42.98 (8)
C55B—N7B—C56B 118.9 (5) O24C—Na1—Mn4 42.98 (8)
C55B—N7B—C57B 121.7 (5) O23—Na1—Mn4 99.01 (9)
C56B—N7B—C57B 118.8 (5) O21—Na1—Mn4 98.38 (8)
N7B—C56B—H56D 109.5 O22—Na1—Mn4 167.24 (9)
N7B—C56B—H56E 109.5 O10—Na1—Mn4 31.45 (5)
H56D—C56B—H56E 109.5 O7—Na1—Mn4 51.71 (6)
N7B—C56B—H56F 109.5 O1—Na1—Mn4 89.51 (6)
H56D—C56B—H56F 109.5 O4—Na1—Mn4 102.24 (7)
H56E—C56B—H56F 109.5 Y1—Na1—Mn4 63.77 (3)
N7B—C57B—H57D 109.5 O24—Na1—Mn3 99.33 (8)
N7B—C57B—H57E 109.5 O24C—Na1—Mn3 99.33 (8)
H57D—C57B—H57E 109.5 O23—Na1—Mn3 44.12 (8)
N7B—C57B—H57F 109.5 O21—Na1—Mn3 169.26 (9)
H57D—C57B—H57F 109.5 O22—Na1—Mn3 94.84 (8)
H57E—C57B—H57F 109.5 O10—Na1—Mn3 89.48 (6)
O28—C58—N8 127.6 (7) O7—Na1—Mn3 30.86 (5)
O28—C58—H58 116.2 O1—Na1—Mn3 101.70 (7)
N8—C58—H58 116.2 O4—Na1—Mn3 50.83 (5)
C58—N8—C60 126.4 (8) Y1—Na1—Mn3 63.41 (3)
C58—N8—C59 117.5 (7) Mn4—Na1—Mn3 79.24 (3)
C60—N8—C59 116.1 (7) O12—Mn1—O1 172.51 (12)
N8—C59—H59A 109.5 O12—Mn1—O2 96.78 (11)
N8—C59—H59B 109.5 O1—Mn1—O2 81.85 (10)
H59A—C59—H59B 109.5 O12—Mn1—N4 90.93 (11)
N8—C59—H59C 109.5 O1—Mn1—N4 89.15 (11)
H59A—C59—H59C 109.5 O2—Mn1—N4 166.95 (11)
H59B—C59—H59C 109.5 O12—Mn1—O14 94.63 (11)
N8—C60—H60A 109.5 O1—Mn1—O14 92.76 (10)
N8—C60—H60B 109.5 O2—Mn1—O14 90.79 (11)
H60A—C60—H60B 109.5 N4—Mn1—O14 99.10 (11)
N8—C60—H60C 109.5 O12—Mn1—O21 91.16 (11)
H60A—C60—H60C 109.5 O1—Mn1—O21 81.40 (10)
H60B—C60—H60C 109.5 O2—Mn1—O21 85.59 (10)
O28B—C58B—N8B 126 (2) N4—Mn1—O21 83.73 (11)
O28B—C58B—H58B 117.0 O14—Mn1—O21 173.51 (10)
N8B—C58B—H58B 117.0 O12—Mn1—Na1 126.89 (9)
C58B—N8B—C60B 120.2 (19) O1—Mn1—Na1 46.81 (8)
C58B—N8B—C59B 124.0 (19) O2—Mn1—Na1 101.65 (8)
C60B—N8B—C59B 115.9 (18) N4—Mn1—Na1 65.33 (9)
N8B—C59B—H59D 109.5 O14—Mn1—Na1 133.92 (7)
N8B—C59B—H59E 109.5 O21—Mn1—Na1 42.23 (7)
H59D—C59B—H59E 109.5 O3—Mn2—O4 172.75 (12)
N8B—C59B—H59F 109.5 O3—Mn2—O5 96.84 (11)
H59D—C59B—H59F 109.5 O4—Mn2—O5 81.62 (10)
H59E—C59B—H59F 109.5 O3—Mn2—N1 90.58 (11)
N8B—C60B—H60D 109.5 O4—Mn2—N1 89.78 (11)
N8B—C60B—H60E 109.5 O5—Mn2—N1 167.69 (11)
H60D—C60B—H60E 109.5 O3—Mn2—O16 94.43 (11)
N8B—C60B—H60F 109.5 O4—Mn2—O16 92.66 (11)
H60D—C60B—H60F 109.5 O5—Mn2—O16 90.25 (11)
H60E—C60B—H60F 109.5 N1—Mn2—O16 98.98 (11)
O24B—C73B—N13B 136 (3) O3—Mn2—O22 92.31 (11)
O24B—C73B—H73B 111.9 O4—Mn2—O22 80.55 (10)
N13B—C73B—H73B 111.9 O5—Mn2—O22 86.75 (10)
C73B—N13B—C75B 115.0 (18) N1—Mn2—O22 83.14 (11)
C73B—N13B—C74B 126.8 (19) O16—Mn2—O22 172.91 (10)
C75B—N13B—C74B 118.1 (18) O3—Mn2—Na1 127.54 (9)
N13B—C74B—H74D 109.5 O4—Mn2—Na1 46.51 (8)
N13B—C74B—H74E 109.5 O5—Mn2—Na1 101.65 (8)
H74D—C74B—H74E 109.5 N1—Mn2—Na1 66.07 (8)
N13B—C74B—H74F 109.5 O16—Mn2—Na1 133.63 (8)
H74D—C74B—H74F 109.5 O22—Mn2—Na1 41.26 (7)
H74E—C74B—H74F 109.5 O6—Mn3—O7 170.54 (12)
N13B—C75B—H75D 109.5 O6—Mn3—O8 95.86 (11)
N13B—C75B—H75E 109.5 O7—Mn3—O8 81.69 (10)
H75D—C75B—H75E 109.5 O6—Mn3—N2 91.04 (11)
N13B—C75B—H75F 109.5 O7—Mn3—N2 89.58 (11)
H75D—C75B—H75F 109.5 O8—Mn3—N2 166.28 (12)
H75E—C75B—H75F 109.5 O6—Mn3—O18 95.75 (11)
O29—C61—N9 123.3 (7) O7—Mn3—O18 93.46 (10)
O29—C61—H61 118.4 O8—Mn3—O18 91.75 (11)
N9—C61—H61 118.4 N2—Mn3—O18 99.36 (11)
C61—N9—C63 118.8 (7) O6—Mn3—Na1 126.47 (9)
C61—N9—C62 122.6 (7) O7—Mn3—Na1 45.66 (8)
C63—N9—C62 118.6 (8) O8—Mn3—Na1 99.23 (8)
N9—C62—H62A 109.5 N2—Mn3—Na1 67.21 (9)
N9—C62—H62B 109.5 O18—Mn3—Na1 134.40 (7)
H62A—C62—H62B 109.5 O9—Mn4—O10 172.02 (12)
N9—C62—H62C 109.5 O9—Mn4—O11 97.27 (11)
H62A—C62—H62C 109.5 O10—Mn4—O11 81.63 (10)
H62B—C62—H62C 109.5 O9—Mn4—N3 90.42 (11)
N9—C63—H63A 109.5 O10—Mn4—N3 89.20 (11)
N9—C63—H63B 109.5 O11—Mn4—N3 166.41 (12)
H63A—C63—H63B 109.5 O9—Mn4—O20 94.64 (12)
N9—C63—H63C 109.5 O10—Mn4—O20 93.27 (10)
H63A—C63—H63C 109.5 O11—Mn4—O20 90.16 (11)
H63B—C63—H63C 109.5 N3—Mn4—O20 100.40 (12)
O29B—C61B—N9B 125 (3) O9—Mn4—O24 91.44 (12)
O29B—C61B—H61B 117.4 O10—Mn4—O24 80.60 (10)
N9B—C61B—H61B 117.4 O11—Mn4—O24 85.58 (11)
C61B—N9B—C63B 120 (2) N3—Mn4—O24 83.03 (11)
C61B—N9B—C62B 124 (2) O20—Mn4—O24 172.98 (10)
C63B—N9B—C62B 114.4 (19) O9—Mn4—O24C 91.44 (12)
N9B—C62B—H62D 109.5 O10—Mn4—O24C 80.60 (10)
N9B—C62B—H62E 109.5 O11—Mn4—O24C 85.58 (11)
H62D—C62B—H62E 109.5 N3—Mn4—O24C 83.03 (11)
N9B—C62B—H62F 109.5 O20—Mn4—O24C 172.98 (10)
H62D—C62B—H62F 109.5 O9—Mn4—Na1 126.87 (9)
H62E—C62B—H62F 109.5 O10—Mn4—Na1 46.24 (8)
N9B—C63B—H63D 109.5 O11—Mn4—Na1 101.43 (8)
N9B—C63B—H63E 109.5 N3—Mn4—Na1 65.06 (9)
H63D—C63B—H63E 109.5 O20—Mn4—Na1 134.11 (7)
N9B—C63B—H63F 109.5 O24—Mn4—Na1 42.02 (7)
H63D—C63B—H63F 109.5 O24C—Mn4—Na1 42.02 (7)
H63E—C63B—H63F 109.5 O19—Y1—O13 77.98 (9)
O30—C64—N10 126.2 (6) O19—Y1—O15 123.27 (10)
O30—C64—H64 116.9 O13—Y1—O15 77.25 (9)
N10—C64—H64 116.9 O19—Y1—O17 76.42 (9)
C64—N10—C65 121.1 (6) O13—Y1—O17 124.40 (10)
C64—N10—C66 122.1 (5) O15—Y1—O17 77.15 (9)
C65—N10—C66 116.6 (6) O19—Y1—O4 145.05 (9)
N10—C65—H65A 109.5 O13—Y1—O4 136.80 (8)
N10—C65—H65B 109.5 O15—Y1—O4 77.39 (9)
H65A—C65—H65B 109.5 O17—Y1—O4 82.48 (9)
N10—C65—H65C 109.5 O19—Y1—O10 78.54 (9)
H65A—C65—H65C 109.5 O13—Y1—O10 82.23 (9)
H65B—C65—H65C 109.5 O15—Y1—O10 145.10 (9)
N10—C66—H66A 109.5 O17—Y1—O10 137.52 (9)
N10—C66—H66B 109.5 O4—Y1—O10 99.89 (8)
H66A—C66—H66B 109.5 O19—Y1—O7 82.80 (9)
N10—C66—H66C 109.5 O13—Y1—O7 145.03 (8)
H66A—C66—H66C 109.5 O15—Y1—O7 137.39 (8)
H66B—C66—H66C 109.5 O17—Y1—O7 77.84 (9)
O30B—C64B—N10B 124 (2) O4—Y1—O7 65.56 (8)
O30B—C64B—H64B 118.0 O10—Y1—O7 65.37 (8)
N10B—C64B—H64B 118.0 O19—Y1—O1 138.13 (8)
C64B—N10B—C66B 121.2 (18) O13—Y1—O1 77.21 (9)
C64B—N10B—C65B 122.4 (19) O15—Y1—O1 82.85 (9)
C66B—N10B—C65B 116.4 (19) O17—Y1—O1 145.20 (9)
N10B—C65B—H65D 109.5 O4—Y1—O1 65.40 (8)
N10B—C65B—H65E 109.5 O10—Y1—O1 65.11 (8)
H65D—C65B—H65E 109.5 O7—Y1—O1 99.25 (8)
N10B—C65B—H65F 109.5 O19—Y1—Na1 117.64 (7)
H65D—C65B—H65F 109.5 O13—Y1—Na1 117.35 (7)
H65E—C65B—H65F 109.5 O15—Y1—Na1 119.08 (7)
N10B—C66B—H66D 109.5 O17—Y1—Na1 118.24 (7)
N10B—C66B—H66E 109.5 O4—Y1—Na1 50.95 (6)
H66D—C66B—H66E 109.5 O10—Y1—Na1 48.94 (6)
N10B—C66B—H66F 109.5 O7—Y1—Na1 49.15 (6)
H66D—C66B—H66F 109.5 O1—Y1—Na1 50.11 (6)
H66E—C66B—H66F 109.5
O2—C1—C2—C7 −10.7 (5) O32—C70—N12—C72 176.0 (13)
N1—C1—C2—C7 167.2 (3) O32B—C70B—N12B—C72B −134 (7)
O2—C1—C2—C3 170.0 (3) O32B—C70B—N12B—C71B 25 (9)
N1—C1—C2—C3 −12.1 (5) O2—C1—N1—O1 −1.9 (5)
C7—C2—C3—O3 175.8 (3) C2—C1—N1—O1 −179.7 (3)
C1—C2—C3—O3 −4.9 (6) O2—C1—N1—Mn2 −163.5 (2)
C7—C2—C3—C4 −2.3 (5) C2—C1—N1—Mn2 18.6 (5)
C1—C2—C3—C4 177.0 (3) O5—C8—N2—O4 −1.1 (5)
O3—C3—C4—C5 −177.0 (4) C9—C8—N2—O4 −179.3 (3)
C2—C3—C4—C5 1.3 (6) O5—C8—N2—Mn3 −164.1 (2)
C3—C4—C5—C6 0.6 (6) C9—C8—N2—Mn3 17.7 (5)
C4—C5—C6—C7 −1.5 (6) O8—C15—N3—O7 −2.7 (5)
C5—C6—C7—C2 0.4 (6) C16—C15—N3—O7 178.6 (3)
C3—C2—C7—C6 1.5 (6) O8—C15—N3—Mn4 −166.5 (3)
C1—C2—C7—C6 −177.8 (4) C16—C15—N3—Mn4 14.8 (5)
O5—C8—C9—C14 −12.0 (5) O11—C22—N4—O10 −1.3 (5)
N2—C8—C9—C14 166.3 (4) C23—C22—N4—O10 −179.1 (3)
O5—C8—C9—C10 167.7 (3) O11—C22—N4—Mn1 −164.5 (3)
N2—C8—C9—C10 −14.1 (5) C23—C22—N4—Mn1 17.8 (5)
C14—C9—C10—O6 177.2 (4) C1—N1—O1—Mn1 0.6 (3)
C8—C9—C10—O6 −2.4 (6) Mn2—N1—O1—Mn1 165.36 (13)
C14—C9—C10—C11 −1.5 (6) C1—N1—O1—Y1 153.2 (2)
C8—C9—C10—C11 178.9 (3) Mn2—N1—O1—Y1 −42.1 (3)
O6—C10—C11—C12 −178.4 (4) C1—N1—O1—Na1 −110.5 (3)
C9—C10—C11—C12 0.3 (6) Mn2—N1—O1—Na1 54.2 (2)
C10—C11—C12—C13 0.9 (7) N1—C1—O2—Mn1 2.1 (4)
C11—C12—C13—C14 −1.0 (7) C2—C1—O2—Mn1 179.9 (2)
C12—C13—C14—C9 −0.2 (7) C4—C3—O3—Mn2 −165.7 (3)
C10—C9—C14—C13 1.4 (6) C2—C3—O3—Mn2 16.2 (5)
C8—C9—C14—C13 −178.9 (4) C8—N2—O4—Mn2 −1.5 (3)
O8—C15—C16—C21 −7.5 (5) Mn3—N2—O4—Mn2 164.14 (13)
N3—C15—C16—C21 171.1 (3) C8—N2—O4—Y1 152.7 (2)
O8—C15—C16—C17 172.9 (3) Mn3—N2—O4—Y1 −41.6 (3)
N3—C15—C16—C17 −8.4 (5) C8—N2—O4—Na1 −112.8 (3)
C21—C16—C17—O9 177.8 (4) Mn3—N2—O4—Na1 52.9 (2)
C15—C16—C17—O9 −2.7 (6) N2—C8—O5—Mn2 3.2 (4)
C21—C16—C17—C18 −1.7 (6) C9—C8—O5—Mn2 −178.6 (3)
C15—C16—C17—C18 177.8 (3) C11—C10—O6—Mn3 −165.1 (3)
O9—C17—C18—C19 −179.2 (4) C9—C10—O6—Mn3 16.3 (5)
C16—C17—C18—C19 0.3 (6) C15—N3—O7—Mn3 0.7 (3)
C17—C18—C19—C20 0.9 (7) Mn4—N3—O7—Mn3 167.18 (13)
C18—C19—C20—C21 −0.6 (7) C15—N3—O7—Y1 154.2 (2)
C19—C20—C21—C16 −0.8 (7) Mn4—N3—O7—Y1 −39.3 (3)
C17—C16—C21—C20 2.0 (6) C15—N3—O7—Na1 −110.3 (3)
C15—C16—C21—C20 −177.5 (4) Mn4—N3—O7—Na1 56.1 (2)
O11—C22—C23—C28 −11.8 (5) N3—C15—O8—Mn3 3.3 (4)
N4—C22—C23—C28 166.0 (4) C16—C15—O8—Mn3 −178.0 (3)
O11—C22—C23—C24 169.0 (3) C18—C17—O9—Mn4 −172.5 (3)
N4—C22—C23—C24 −13.2 (6) C16—C17—O9—Mn4 7.9 (6)
C28—C23—C24—O12 177.2 (4) C22—N4—O10—Mn4 −0.6 (3)
C22—C23—C24—O12 −3.6 (6) Mn1—N4—O10—Mn4 165.20 (13)
C28—C23—C24—C25 −1.1 (6) C22—N4—O10—Y1 151.1 (2)
C22—C23—C24—C25 178.1 (4) Mn1—N4—O10—Y1 −43.1 (3)
O12—C24—C25—C26 −177.5 (4) C22—N4—O10—Na1 −111.6 (3)
C23—C24—C25—C26 0.8 (6) Mn1—N4—O10—Na1 54.2 (2)
C24—C25—C26—C27 0.1 (7) N4—C22—O11—Mn4 2.5 (4)
C25—C26—C27—C28 −0.8 (7) C23—C22—O11—Mn4 −179.8 (3)
C26—C27—C28—C23 0.5 (7) C25—C24—O12—Mn1 −165.3 (3)
C24—C23—C28—C27 0.4 (6) C23—C24—O12—Mn1 16.5 (5)
C22—C23—C28—C27 −178.8 (4) O14—C29—O13—Y1 −60.1 (6)
O14—C29—C30—C32 −47.8 (6) C30—C29—O13—Y1 117.9 (4)
O13—C29—C30—C32 134.0 (4) O13—C29—O14—Mn1 16.7 (5)
O14—C29—C30—C31 −169.9 (4) C30—C29—O14—Mn1 −161.3 (3)
O13—C29—C30—C31 11.9 (6) O16—C34—O15—Y1 −59.2 (6)
O14—C29—C30—C33 71.0 (5) C35—C34—O15—Y1 118.9 (4)
O13—C29—C30—C33 −107.1 (4) O15—C34—O16—Mn2 18.4 (5)
O16—C34—C35—C36 −45.5 (5) C35—C34—O16—Mn2 −159.8 (3)
O15—C34—C35—C36 136.2 (4) O18—C39—O17—Y1 −54.7 (6)
O16—C34—C35—C38 −167.8 (4) C40—C39—O17—Y1 126.3 (4)
O15—C34—C35—C38 13.9 (5) O17—C39—O18—Mn3 12.7 (5)
O16—C34—C35—C37 73.6 (5) C40—C39—O18—Mn3 −168.3 (3)
O15—C34—C35—C37 −104.7 (4) O20—C44—O19—Y1 −60.2 (6)
O18—C39—C40—C43 −47.7 (6) C45—C44—O19—Y1 119.3 (4)
O17—C39—C40—C43 131.4 (4) O19—C44—O20—Mn4 17.2 (5)
O18—C39—C40—C41 −170.5 (4) C45—C44—O20—Mn4 −162.3 (3)
O17—C39—C40—C41 8.5 (6) Na1—O24—C73—N13 −63 (4)
O18—C39—C40—C42 70.7 (5) Mn4—O24—C73—N13 116 (3)
O17—C39—C40—C42 −110.3 (4) O24—C73—N13—C75 155 (3)
O20—C44—C45—C46 −169.2 (4) O24—C73—N13—C74 14 (4)
O19—C44—C45—C46 11.2 (5) O25—C49—N5—C50 2.1 (8)
O20—C44—C45—C48 −46.8 (5) O25—C49—N5—C51 178.0 (5)
O19—C44—C45—C48 133.6 (4) O31—C67—N11—C68 11.3 (16)
O20—C44—C45—C47 72.0 (4) O31—C67—N11—C69 −169.6 (10)
O19—C44—C45—C47 −107.5 (4) O31B—C67B—N11B—C68B −0.1 (4)
O26—C52—N6—C53 2.1 (7) O31B—C67B—N11B—C69B −180.0 (4)
O26—C52—N6—C54 179.3 (5) C24—O12—Mn1—O2 179.9 (3)
O27—C55—N7—C57 176.1 (11) C24—O12—Mn1—N4 −10.7 (3)
O27—C55—N7—C56 −6.7 (18) C24—O12—Mn1—O14 88.5 (3)
O27B—C55B—N7B—C56B −10 (4) C24—O12—Mn1—O21 −94.4 (3)
O27B—C55B—N7B—C57B 179 (3) C24—O12—Mn1—Na1 −70.0 (3)
O28—C58—N8—C60 175.8 (8) C3—O3—Mn2—O5 −179.4 (3)
O28—C58—N8—C59 −1.4 (12) C3—O3—Mn2—N1 −9.2 (3)
O28B—C58B—N8B—C60B 180.0 (4) C3—O3—Mn2—O16 89.8 (3)
O28B—C58B—N8B—C59B 0.0 (4) C3—O3—Mn2—O22 −92.4 (3)
O24B—C73B—N13B—C75B 179.9 (4) C3—O3—Mn2—Na1 −69.0 (3)
O24B—C73B—N13B—C74B 0.1 (5) C10—O6—Mn3—O8 −179.4 (3)
O29—C61—N9—C63 −176.1 (8) C10—O6—Mn3—N2 −11.3 (3)
O29—C61—N9—C62 2.7 (13) C10—O6—Mn3—O18 88.2 (3)
O29B—C61B—N9B—C63B −131 (5) C10—O6—Mn3—Na1 −73.4 (3)
O29B—C61B—N9B—C62B 64 (7) C17—O9—Mn4—O11 −171.4 (3)
O30—C64—N10—C65 5.1 (11) C17—O9—Mn4—N3 −2.7 (3)
O30—C64—N10—C66 179.9 (7) C17—O9—Mn4—O20 97.8 (3)
O30B—C64B—N10B—C66B 171 (4) C17—O9—Mn4—O24 −85.7 (3)
O30B—C64B—N10B—C65B −13 (6) C17—O9—Mn4—O24C −85.7 (3)
O32—C70—N12—C71 3 (2) C17—O9—Mn4—Na1 −61.2 (4)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C18—H18···O20i 0.95 2.60 3.359 (5) 137
C25—H25···O14ii 0.95 2.59 3.374 (5) 141
C49—H49···O29 0.95 2.58 3.180 (8) 121
C51—H51B···O29iii 0.98 2.56 3.376 (9) 141
C53—H53B···O31iv 0.98 2.48 3.377 (9) 152
C55—H55···O8 0.95 2.36 3.098 (8) 135
C56—H56A···O32iv 0.98 2.56 3.499 (17) 162
C59—H59B···O29 0.98 2.56 3.262 (11) 129
C61—H61···O12 0.95 2.52 3.457 (8) 169
C63B—H63F···O32Biii 0.98 2.53 3.34 (6) 140
C64B—H64B···O3 0.95 2.50 3.40 (3) 157
C71B—H71D···O21 0.98 2.60 3.41 (5) 141
C72B—H72E···O34iv 0.98 2.36 3.31 (7) 163
C74—H74B···O27 0.98 2.27 2.87 (3) 119
C75—H75C···O31 0.98 2.15 2.99 (3) 143
O21—H21A···O25 0.82 (2) 2.00 (3) 2.767 (4) 155 (5)
O21—H21B···O28 0.83 (2) 2.05 (3) 2.792 (5) 148 (5)
O21—H21B···O28B 0.83 (2) 1.87 (3) 2.70 (2) 172 (5)
O22—H22A···O25 0.84 (2) 1.96 (3) 2.727 (4) 151 (5)
O22—H22B···O26 0.83 (2) 1.93 (3) 2.688 (4) 151 (5)
O23—H23A···O27 0.84 (2) 2.06 (3) 2.871 (7) 164 (5)
O23—H23A···O24B 0.84 (2) 2.06 (5) 2.696 (19) 132 (5)
O23—H23B···O26 0.86 (2) 1.98 (3) 2.789 (5) 155 (5)
O24C—H24A···O33 0.86 (2) 1.91 (4) 2.78 (3) 179 (5)

Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) −x+2, −y+1, −z; (iii) −x+1, −y+1, −z; (iv) −x+1, −y+1, −z+1.

References

  1. AlDamen, M. A., Cardona-Serra, S., Clemente-Juan, J. M., Coronado, E., Gaita-Ariño, A., Martí-Gastaldo, C., Luis, F. & Montero, O. (2009). Inorg. Chem. 48, 3467–3479. [DOI] [PubMed]
  2. AlDamen, M. A., Clemente-Juan, J. M., Coronado, E., Martí-Gastaldo, C. & Gaita-Ariño, A. (2008). J. Am. Chem. Soc. 130, 8874–8875. [DOI] [PubMed]
  3. Azar, M. R., Boron, T. T., Lutter, J. C., Daly, C. I., Zegalia, K. A., Nimthong, R., Ferrence, G. M., Zeller, M., Kampf, J. W., Pecoraro, V. L. & Zaleski, C. M. (2014). Inorg. Chem. 53, 1729–1742. [DOI] [PubMed]
  4. Bruker (2014). APEX2, SADABS, and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Cook, T. R. & Stang, P. J. (2015). Chem. Rev. 115, 7001–7045. [DOI] [PubMed]
  6. Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284. [DOI] [PMC free article] [PubMed]
  7. Liu, W. & Thorp, H. H. (1993). Inorg. Chem. 32, 4102–4105.
  8. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  9. Mezei, G., Zaleski, C. M. & Pecoraro, V. L. (2007). Chem. Rev. 107, 4933–5003. [DOI] [PubMed]
  10. Saalfrank, R. W., Maid, H. & Scheurer, A. (2008). Angew. Chem. Int. Ed. 47, 8794–8824. [DOI] [PubMed]
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015018216/bg2568sup1.cif

e-71-01300-sup1.cif (2MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015018216/bg2568Isup2.hkl

e-71-01300-Isup2.hkl (1.3MB, hkl)

CCDC reference: 1428526

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES