Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Oct 24;71(Pt 11):o875–o876. doi: 10.1107/S2056989015019635

Crystal structure of (5-chloro-2-hy­droxy­phen­yl)(3-methyl­isoxazolo[5,4-b]pyridin-5-yl)methanone

Rajamani Raja a, Nataraj Poomathi b, Paramasivam T Perumal b, A SubbiahPandi a,*
PMCID: PMC4645069  PMID: 26594574

Abstract

In the title compound, C14H9ClN2O3, the fused pyridine and isoxazole rings are approximately planar, making a dihedral angle of 1.14 (16)°. The mol­ecule is twisted with the benzene ring and the mean plane through the fused pyridine-isoxazole ring system being inclined to one another by 47.03 (13)°. There is an intra­molecular O—H⋯O hydrogen bond forming an S(6) ring motif. In the crystal, mol­ecules are linked by C—H⋯N hydrogen bonds, forming chains propagating along [001]. The chains are linked by slipped parallel π–π inter­actions, involving inversion-related benzene rings, forming slabs lying parallel to the bc plane {inter-centroid distance = 3.770 (2) Å].

Keywords: crystal structure, polyfunctional pyridines, isoxazole, O—H⋯O hydrogen bonds, C—H⋯N hydrogen bonds

Related literature  

For various applications of polyfunctional pyridines, see: Knyazhanskii et al. (1996); Kürfurst et al. (1989); Enyedy et al. (2003); Arora & Knaus (1999); Kim et al. 2004); Pillai et al.(2003).graphic file with name e-71-0o875-scheme1.jpg

Experimental  

Crystal data  

  • C14H9ClN2O3

  • M r = 288.68

  • Monoclinic, Inline graphic

  • a = 11.0317 (10) Å

  • b = 11.8701 (10) Å

  • c = 11.1220 (9) Å

  • β = 118.675 (2)°

  • V = 1277.78 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 293 K

  • 0.35 × 0.30 × 0.25 mm

Data collection  

  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008) T min = 0.900, T max = 0.927

  • 17705 measured reflections

  • 2250 independent reflections

  • 1763 reflections with I > 2σ(I)

  • R int = 0.022

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.048

  • wR(F 2) = 0.110

  • S = 1.13

  • 2250 reflections

  • 182 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.42 e Å−3

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989015019635/su5220sup1.cif

e-71-0o875-sup1.cif (17.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015019635/su5220Isup2.hkl

e-71-0o875-Isup2.hkl (110.6KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015019635/su5220Isup3.cml

. DOI: 10.1107/S2056989015019635/su5220fig1.tif

The mol­ecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level.

b- . DOI: 10.1107/S2056989015019635/su5220fig2.tif

A view along the b-axis of the crystal packing of the title compound. The hydrogen bonds are shown as dashed lines (see Table 1 for details).

CCDC reference: 1431889

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
O1H1O2 0.82 1.84 2.561(4) 145
C12H12N2i 0.93 2.40 3.315(4) 168

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors thank the Department of Chemistry, IIT, Chennai, India, for the data collection.

supplementary crystallographic information

S1. Chemical context

Poly-functional pyridines are an inter­esting class of compounds due to their optical properties (Knyazhanskii et al., 1996; Kürfurst et al., 1989), and their biological activities (Enyedy et al., 2003), such as anti­convulsants (Arora et al., 1999), anti­histaminic reagents (Kim et al., 2004), and cardivascular disorder treatments (Pillai et al., 2003). In view of such facts we herein report on the synthesis and crystal structure of the new title poly-functional pyridine compound.

S2. Structural commentary

In the title compound, Fig. 1, the fused pyridine ring (N1/C8—C12) and isoxazole ring (O3/N2/C13/C11/C10) are almost coplanar being inclined to one another by 1.14 (16) °. The molecule is twisted with the benzene ring (C1—C6) and the mean plane through the fused pyridine-isoxazole ring system being inclined to one another by 47.03 (13) °. The molecular conformation is partly determined by the intra­molecular O—H···O hydrogen bond which forms an S(6) ring motif.

In the crystal, molecules are linked by C—H···N hydrogen bond to form chains propagating along the c axis direction (Table 1 and Fig. 2). The chains are linked by slipped parallel π—π inter­actions, involving inversion related 5-chloro-2-hy­droxy­phenyl rings, forming slabs parallel to the bc-plane; see Fig. 2 [Cg3—Cg3i = 3.770 (2) Å, inter-planar distance = 3.4094 (14) Å, slippage = 1.609 Å; Cg3 is the centroid of ring (C1—C6); symmetry code: (i) −x, −y, 2 − z].

S3. Synthesis and crystallization

To a mixture of 6-chloro-3-formyl­chromone (1 mmol) and 3-methyl­isoxazol-5-amine (1 mmol) in ethanol (3 ml) was added a catalytic amount (0.050 mmol) of In(OTf)3 and the mixture was refluxed for about 20 min. The precipitated solid was filtered and dried under vacuum to afford the pure product in 87% yield. The purified compound was recrystallized from ethanol and DMSO-D6 by slow evaporation giving colourless block-like crystals.

S4. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The OH and C-bound H atoms were positioned geometrically (O—H = 0.82 Å, C–H = 0.93–0.96 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.5Ueq(O,C) for hydroxyl and methyl H atoms and 1.2Ueq(C) for other H atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2.

Fig. 2.

A view along the b-axis of the crystal packing of the title compound. The hydrogen bonds are shown as dashed lines (see Table 1 for details).

Crystal data

C14H9ClN2O3 F(000) = 592
Mr = 288.68 Dx = 1.501 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 1763 reflections
a = 11.0317 (10) Å θ = 2.1–25.0°
b = 11.8701 (10) Å µ = 0.31 mm1
c = 11.1220 (9) Å T = 293 K
β = 118.675 (2)° Block, colourless
V = 1277.78 (19) Å3 0.35 × 0.30 × 0.25 mm
Z = 4

Data collection

Bruker SMART APEXII CCD diffractometer 2250 independent reflections
Radiation source: fine-focus sealed tube 1763 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.022
ω and φ scans θmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Bruker, 2008) h = −13→13
Tmin = 0.900, Tmax = 0.927 k = −14→14
17705 measured reflections l = −13→13

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110 H-atom parameters constrained
S = 1.13 w = 1/[σ2(Fo2) + (0.0188P)2 + 1.3834P] where P = (Fo2 + 2Fc2)/3
2250 reflections (Δ/σ)max < 0.001
182 parameters Δρmax = 0.28 e Å3
0 restraints Δρmin = −0.42 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.1833 (3) −0.0368 (3) 0.9816 (3) 0.0592 (8)
C2 0.1378 (3) 0.0264 (4) 0.8629 (3) 0.0738 (10)
H2 0.1386 −0.0051 0.7868 0.089*
C3 0.0917 (3) 0.1343 (3) 0.8560 (3) 0.0711 (10)
H3 0.0614 0.1755 0.7755 0.085*
C4 0.0900 (3) 0.1827 (3) 0.9696 (3) 0.0541 (7)
C5 0.1386 (2) 0.1234 (2) 1.0890 (2) 0.0432 (6)
H5 0.1384 0.1564 1.1648 0.052*
C6 0.1887 (2) 0.0133 (2) 1.0988 (3) 0.0436 (6)
C7 0.2418 (2) −0.0531 (2) 1.2263 (3) 0.0455 (6)
C8 0.2796 (2) −0.0001 (2) 1.3606 (3) 0.0424 (6)
C9 0.2544 (3) −0.0637 (2) 1.4535 (3) 0.0578 (7)
H9 0.2125 −0.1336 1.4243 0.069*
C10 0.3469 (3) 0.0675 (3) 1.6116 (3) 0.0528 (7)
C11 0.3811 (2) 0.1373 (2) 1.5332 (2) 0.0414 (6)
C12 0.3455 (2) 0.1025 (2) 1.4011 (2) 0.0388 (6)
H12 0.3652 0.1460 1.3430 0.047*
C13 0.4447 (3) 0.2330 (2) 1.6185 (2) 0.0471 (6)
C14 0.5010 (3) 0.3350 (3) 1.5876 (3) 0.0607 (8)
H14A 0.5386 0.3840 1.6659 0.091*
H14B 0.4286 0.3733 1.5107 0.091*
H14C 0.5726 0.3140 1.5662 0.091*
N1 0.2861 (3) −0.0312 (2) 1.5798 (3) 0.0656 (7)
N2 0.4480 (3) 0.2213 (2) 1.7365 (2) 0.0640 (7)
O1 0.2205 (3) −0.1444 (2) 0.9793 (3) 0.0850 (8)
H1 0.2460 −0.1732 1.0547 0.127*
O2 0.2567 (2) −0.15626 (16) 1.2243 (2) 0.0661 (6)
O3 0.3854 (2) 0.1149 (2) 1.73518 (19) 0.0709 (6)
Cl1 0.02472 (9) 0.31717 (7) 0.95930 (9) 0.0802 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0495 (17) 0.074 (2) 0.0569 (18) −0.0167 (15) 0.0281 (14) −0.0221 (16)
C2 0.071 (2) 0.106 (3) 0.0519 (19) −0.033 (2) 0.0359 (17) −0.0268 (19)
C3 0.061 (2) 0.102 (3) 0.0392 (16) −0.0353 (19) 0.0150 (14) 0.0022 (17)
C4 0.0383 (14) 0.0663 (18) 0.0424 (15) −0.0144 (13) 0.0070 (12) 0.0058 (13)
C5 0.0346 (13) 0.0518 (15) 0.0355 (13) −0.0093 (11) 0.0106 (11) −0.0045 (11)
C6 0.0340 (13) 0.0525 (15) 0.0442 (14) −0.0113 (11) 0.0188 (11) −0.0120 (12)
C7 0.0335 (13) 0.0425 (15) 0.0556 (16) 0.0001 (11) 0.0175 (12) −0.0020 (12)
C8 0.0371 (13) 0.0408 (14) 0.0444 (14) 0.0072 (11) 0.0156 (11) 0.0055 (11)
C9 0.0558 (17) 0.0484 (16) 0.0618 (18) 0.0011 (13) 0.0222 (15) 0.0138 (14)
C10 0.0456 (16) 0.073 (2) 0.0380 (14) 0.0126 (14) 0.0183 (12) 0.0119 (14)
C11 0.0364 (13) 0.0506 (15) 0.0355 (13) 0.0095 (11) 0.0159 (11) 0.0066 (11)
C12 0.0336 (12) 0.0447 (14) 0.0365 (12) 0.0059 (11) 0.0154 (10) 0.0061 (11)
C13 0.0381 (14) 0.0623 (17) 0.0339 (13) 0.0125 (12) 0.0116 (11) −0.0022 (12)
C14 0.0591 (18) 0.0647 (19) 0.0491 (16) −0.0026 (15) 0.0185 (14) −0.0124 (14)
N1 0.0707 (17) 0.0709 (18) 0.0530 (15) 0.0019 (14) 0.0277 (13) 0.0197 (13)
N2 0.0630 (16) 0.088 (2) 0.0388 (13) 0.0124 (14) 0.0224 (12) −0.0035 (13)
O1 0.0909 (17) 0.0841 (17) 0.0906 (17) −0.0042 (14) 0.0521 (15) −0.0375 (14)
O2 0.0642 (13) 0.0443 (12) 0.0777 (15) 0.0077 (10) 0.0243 (11) −0.0065 (10)
O3 0.0781 (15) 0.0984 (18) 0.0404 (11) 0.0073 (13) 0.0317 (11) 0.0092 (11)
Cl1 0.0684 (5) 0.0677 (5) 0.0732 (6) −0.0036 (4) 0.0090 (4) 0.0258 (4)

Geometric parameters (Å, º)

C1—O1 1.345 (4) C9—N1 1.331 (4)
C1—C2 1.386 (5) C9—H9 0.9300
C1—C6 1.408 (4) C10—N1 1.312 (4)
C2—C3 1.366 (5) C10—O3 1.351 (3)
C2—H2 0.9300 C10—C11 1.380 (4)
C3—C4 1.396 (4) C11—C12 1.390 (3)
C3—H3 0.9300 C11—C13 1.430 (4)
C4—C5 1.365 (4) C12—H12 0.9300
C4—Cl1 1.733 (3) C13—N2 1.302 (3)
C5—C6 1.403 (4) C13—C14 1.474 (4)
C5—H5 0.9300 C14—H14A 0.9600
C6—C7 1.476 (4) C14—H14B 0.9600
C7—O2 1.237 (3) C14—H14C 0.9600
C7—C8 1.485 (4) N2—O3 1.436 (3)
C8—C12 1.378 (3) O1—H1 0.8200
C8—C9 1.411 (4)
O1—C1—C2 118.0 (3) N1—C9—H9 117.5
O1—C1—C6 122.8 (3) C8—C9—H9 117.5
C2—C1—C6 119.2 (3) N1—C10—O3 121.1 (3)
C3—C2—C1 121.1 (3) N1—C10—C11 128.7 (3)
C3—C2—H2 119.5 O3—C10—C11 110.2 (3)
C1—C2—H2 119.5 C10—C11—C12 117.7 (3)
C2—C3—C4 120.1 (3) C10—C11—C13 104.7 (2)
C2—C3—H3 120.0 C12—C11—C13 137.5 (2)
C4—C3—H3 120.0 C8—C12—C11 116.4 (2)
C5—C4—C3 120.0 (3) C8—C12—H12 121.8
C5—C4—Cl1 119.7 (2) C11—C12—H12 121.8
C3—C4—Cl1 120.4 (2) N2—C13—C11 110.5 (3)
C4—C5—C6 120.8 (3) N2—C13—C14 120.7 (3)
C4—C5—H5 119.6 C11—C13—C14 128.7 (2)
C6—C5—H5 119.6 C13—C14—H14A 109.5
C5—C6—C1 118.8 (3) C13—C14—H14B 109.5
C5—C6—C7 122.2 (2) H14A—C14—H14B 109.5
C1—C6—C7 119.0 (3) C13—C14—H14C 109.5
O2—C7—C6 120.4 (2) H14A—C14—H14C 109.5
O2—C7—C8 117.6 (2) H14B—C14—H14C 109.5
C6—C7—C8 122.0 (2) C10—N1—C9 112.6 (2)
C12—C8—C9 119.5 (2) C13—N2—O3 107.7 (2)
C12—C8—C7 123.5 (2) C1—O1—H1 109.5
C9—C8—C7 116.8 (2) C10—O3—N2 106.9 (2)
N1—C9—C8 125.0 (3)
O1—C1—C2—C3 176.6 (3) C7—C8—C9—N1 177.5 (3)
C6—C1—C2—C3 −3.4 (5) N1—C10—C11—C12 1.4 (4)
C1—C2—C3—C4 0.1 (5) O3—C10—C11—C12 −178.4 (2)
C2—C3—C4—C5 2.1 (4) N1—C10—C11—C13 179.9 (3)
C2—C3—C4—Cl1 −177.2 (2) O3—C10—C11—C13 0.1 (3)
C3—C4—C5—C6 −0.9 (4) C9—C8—C12—C11 −1.1 (3)
Cl1—C4—C5—C6 178.34 (18) C7—C8—C12—C11 −176.2 (2)
C4—C5—C6—C1 −2.4 (4) C10—C11—C12—C8 −0.4 (3)
C4—C5—C6—C7 −180.0 (2) C13—C11—C12—C8 −178.3 (3)
O1—C1—C6—C5 −175.5 (2) C10—C11—C13—N2 0.0 (3)
C2—C1—C6—C5 4.4 (4) C12—C11—C13—N2 178.0 (3)
O1—C1—C6—C7 2.2 (4) C10—C11—C13—C14 −179.6 (3)
C2—C1—C6—C7 −177.9 (3) C12—C11—C13—C14 −1.6 (5)
C5—C6—C7—O2 164.1 (2) O3—C10—N1—C9 179.3 (3)
C1—C6—C7—O2 −13.5 (4) C11—C10—N1—C9 −0.6 (4)
C5—C6—C7—C8 −16.1 (4) C8—C9—N1—C10 −1.2 (4)
C1—C6—C7—C8 166.3 (2) C11—C13—N2—O3 0.0 (3)
O2—C7—C8—C12 140.6 (3) C14—C13—N2—O3 179.6 (2)
C6—C7—C8—C12 −39.3 (4) N1—C10—O3—N2 −179.9 (2)
O2—C7—C8—C9 −34.7 (3) C11—C10—O3—N2 −0.1 (3)
C6—C7—C8—C9 145.5 (2) C13—N2—O3—C10 0.0 (3)
C12—C8—C9—N1 2.1 (4)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1—H1···O2 0.82 1.84 2.561 (4) 145
C12—H12···N2i 0.93 2.40 3.315 (4) 168

Symmetry code: (i) x, −y+1/2, z−1/2.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: SU5220).

References

  1. Arora, V. K. & Knaus, E. E. (1999). J. Heterocycl. Chem. 36, 201–203.
  2. Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Enyedy, I. J., Sakamuri, S., Zaman, W. A., Johnson, K. M. & Wang, S. (2003). Bioorg. Med. Chem. Lett. 13, 513–517. [DOI] [PubMed]
  4. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  5. Kim, B. Y., Ahn, J. B., Lee, H. W., Kang, S. K., Lee, J. H., Shin, J. S., Ahn, S. K., Hong, C. I. & Yoon, S. S. (2004). Eur. J. Med. Chem. 39, 433–447. [DOI] [PubMed]
  6. Knyazhanskii, M. I., Makarova, N. I., Olekhmovich, E. P. & Kharlanov, A. (1996). Zh. Org. Khim 32, 1097–1103.
  7. Kurfürst, A., Lhoták, P., Petrů, M. & Kuthan, J. (1989). Collect. Czech. Chem. Commun. 54, 462–472.
  8. Pillai, A. D., Rathod, P. D., Franklin, P. X., Patel, M., Nivsarkar, M., Vasu, K. K., Padh, H. & Sudarsanam, V. (2003). Biochem. Biophys. Res. Commun 301, 183–186. [DOI] [PubMed]
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989015019635/su5220sup1.cif

e-71-0o875-sup1.cif (17.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015019635/su5220Isup2.hkl

e-71-0o875-Isup2.hkl (110.6KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015019635/su5220Isup3.cml

. DOI: 10.1107/S2056989015019635/su5220fig1.tif

The mol­ecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level.

b- . DOI: 10.1107/S2056989015019635/su5220fig2.tif

A view along the b-axis of the crystal packing of the title compound. The hydrogen bonds are shown as dashed lines (see Table 1 for details).

CCDC reference: 1431889

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES