Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Oct 14;71(Pt 11):o838–o839. doi: 10.1107/S2056989015018873

Crystal structure of methyl 4-(2-fluoro­phenyl)-6-methyl-2-sulfanylidene-1,2,3,4-tetra­hydro­pyrimidine-5-carb­oxy­late

M S Krishnamurthy a, Noor Shahina Begum a,*
PMCID: PMC4645072  PMID: 26594554

Abstract

In the title compound, C13H13FN2O2S, the pyrimidine ring adopts a twist-boat conformation with the MeCN and methine-C atoms displaced by 0.0938 (6) and 0.2739 (3) Å, respectively, from the mean plane through the other four atoms of the ring. The 2-fluoro­benzene ring is positioned axially and forms a dihedral angle of 89.13 (4)° with the mean plane through the pyrimidine ring. The crystal structure features N—H⋯O, N—H⋯S and C—H⋯O hydrogen bonds that link mol­ecules into supra­molecular chains along the b axis. These chains are linked into a layer parallel to (10-1) by C—H⋯π inter­actions; layers stack with no specific inter­actions between them.

Keywords: crystal structure; pyrimidine derivative; hydrogen bonding,C—H⋯π inter­actions

Related literature  

For the bioactivity of organo-fluorine compounds, see: Guru Row, (1999); Yamazaki et al., (2009). For biological activity of pyrimidine derivatives, see: Kappe (2000) and of di­hydro­pyrimidines (DHPMs) and their derivatives, see; Jauk et al. (2000); Kappe (1998); Mayer et al. (1999). For the Biginelli reaction, see: Biginelli (1893). For bond length data, see: Qin et al. (2006). For related structures, see: Krishnamurthy & Begum (2015a ,b ).graphic file with name e-71-0o838-scheme1.jpg

Experimental  

Crystal data  

  • C13H13FN2O2S

  • M r = 280.31

  • Monoclinic, Inline graphic

  • a = 13.3298 (15) Å

  • b = 7.1509 (8) Å

  • c = 14.5703 (17) Å

  • β = 109.854 (4)°

  • V = 1306.3 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 100 K

  • 0.24 × 0.22 × 0.18 mm

Data collection  

  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998) T min = 0.955, T max = 0.960

  • 9937 measured reflections

  • 2296 independent reflections

  • 1340 reflections with I > 2σ(I)

  • R int = 0.112

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.064

  • wR(F 2) = 0.133

  • S = 0.95

  • 2296 reflections

  • 174 parameters

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.26 e Å−3

Data collection: SMART (Bruker, 1998); cell refinement: SAINT-Plus (Bruker,1998); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and CAMERON (Watkin et al., 1996); software used to prepare material for publication: WinGX (Farrugia, 2012).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989015018873/tk5392sup1.cif

e-71-0o838-sup1.cif (17.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015018873/tk5392Isup2.hkl

e-71-0o838-Isup2.hkl (110.6KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015018873/tk5392Isup3.cml

. DOI: 10.1107/S2056989015018873/tk5392fig1.tif

The mol­ecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.

. DOI: 10.1107/S2056989015018873/tk5392fig2.tif

Unit cell packing of the title compound showing inter­molecular C—H⋯O, N—H⋯O and N—H⋯S inter­actions as dotted lines. H atoms not involved in hydrogen bonding have been excluded.

CCDC reference: 1430034

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (, ).

Cg is the centroid of the C8C13 ring.

DHA DH HA D A DHA
N1H1O1i 0.88 2.14 2.977(4) 159
N2H2S1ii 0.88 2.55 3.386(2) 159
C1H1BO1i 0.98 2.52 3.262(5) 133
C10H10Cg iii 0.95 2.86 3.648(2) 141

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

MSK thanks the University Grants Commission (UGC), India, for a UGC–BSR Meritorious Fellowship.

supplementary crystallographic information

S1. Comment

In recent years, dihydropyrimidines (DHPMs) and their derivatives have attracted considerable attention in synthetic organic chemistry because of their wide range of biological activities (Kappe et al., 2000), such as antibacterial, antiviral, antitumor and anti-inflammatory activities (Mayer et al., 1999). The Biginelli reaction (Biginelli et al., 1893), a one-pot condensation of aldehyde, acetoacetate and urea under strongly acidic conditions, is one of the most useful multicomponent reactions (MCRs), gaining increasing importance in organic and medicinal chemistry because of its capacity to generate multifunctionalized products including 3,4-dihydropyrimidin-2-ones, their thione analogs, and other related heterocyclic compounds. They are also noteworthy as calcium channel modulators (Kappe, 1998; Jauk et al., 2000). The presence of a fluorine atom in the molecule can have profound and unexpected results on the biological activity of the compound (Guru Row, 1999; Yamazaki et al., 2009). Herein, we report the crystal structure of the title compound. It is one of the analogue of our previously reported fluoro-DHPMs (Krishnamurthy & Begum, 2015a; Krishnamurthy & Begum, 2015b). The bond lengths and angles in the title compound are in good agreement with the corresponding bond distances and angles reported in closely related structures (Quin et al., 2006).

In the title compound, Fig. 1, the 2-fluorobenzene ring at chiral carbon atom C4 is positioned axially and bisects the pyrimidine ring with a dihedral angle of 89.13 (4)°. The pyrimidine ring adopts a twist-boat conformation with atoms C4 and N1 displaced by 0.2739 (3) Å and 0.0938 (6) Å from the mean plane of the other four atoms (C5/C6/C2/N2) respectively. The carbonyl group of the exocyclic ester at C5 adopts a trans orientation with respect to C5=C6 double bond. The 2-fluorobenzene ring shows an anti periplanar conformation with respect to C4—H4 bond of the pyrimidine ring. The molecular structure is stabilized by intermolecular C1—H1B···O1 and N1—H1···O1 interactions generating bifurcated bonds from two donor atoms C1 and N1, to the same acceptor O1 to form an R22(6) ring motif, which are in turn linked to form a molecular chain along crystallographic b axis. The packing is further stabilized by intermolecular N—H···S hydrogen bonds (N2—H2···S1) resulting in a centrosymmetric head to head dimer with graph set R22(8) notation (Table 1; Fig. 2). In addition, the crystal structure is stabilized by C10—H10···Cg (Cg is the centroid of aryl ring C8—C13) interaction (Table 1).

S2. Experimental

The title compound was synthesized by the reaction of 2-fluorobenzaldehyde (1.24 g, 10 mmol), methylacetoacetate (1.38 g, 12 mmol) and thiourea (1.14 g, 15 mmol) in 15 ml ethanol. The solution was refluxed for 6 h in the presence of concentrated hydrochloric acid as a catalyst. The reaction was monitored with TLC and the reaction medium was quenched in ice cold water. The precipitate obtained was filtered and dried. The compound was recrystallized from ethanol solvent by slow evaporation method, yielding colorless blocks suitable for X-ray diffraction studies (yield 72%; m.p. 476 K).

S3. Refinement

The H atoms were placed at calculated positions in the riding-model approximation with N—H = 0.86 Å and C—H = 0.93–0.96 Å, and with Uiso(H) = 1.5Ueq(C) for methyl H atoms and Uiso(H) = 1.2Ueq(N, C) for the other hydrogen atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.

Fig. 2.

Fig. 2.

Unit cell packing of the title compound showing intermolecular C—H···O, N—H···O and N—H···S interactions as dotted lines. H atoms not involved in hydrogen bonding have been excluded.

Crystal data

C13H13FN2O2S F(000) = 584
Mr = 280.31 Dx = 1.425 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 2296 reflections
a = 13.3298 (15) Å θ = 3.0–25.0°
b = 7.1509 (8) Å µ = 0.26 mm1
c = 14.5703 (17) Å T = 100 K
β = 109.854 (4)° Block, colourless
V = 1306.3 (3) Å3 0.24 × 0.22 × 0.18 mm
Z = 4

Data collection

Bruker SMART APEX CCD diffractometer 2296 independent reflections
Radiation source: fine-focus sealed tube 1340 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.112
ω scans θmax = 25.0°, θmin = 3.0°
Absorption correction: multi-scan (SADABS; Bruker, 1998) h = −15→15
Tmin = 0.955, Tmax = 0.960 k = −8→8
9937 measured reflections l = −15→17

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.064 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133 H-atom parameters constrained
S = 0.95 w = 1/[σ2(Fo2) + (0.0421P)2 + 1.6067P] where P = (Fo2 + 2Fc2)/3
2296 reflections (Δ/σ)max < 0.001
174 parameters Δρmax = 0.42 e Å3
0 restraints Δρmin = −0.26 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.95357 (8) 0.77963 (14) 0.05365 (8) 0.0312 (3)
O1 0.6807 (2) 0.0312 (4) 0.0894 (2) 0.0452 (9)
O2 0.5913 (2) 0.2422 (3) 0.1440 (2) 0.0460 (8)
N1 0.7803 (2) 0.6600 (4) 0.0856 (2) 0.0310 (9)
H1 0.7685 0.7788 0.0941 0.037*
N2 0.8688 (2) 0.4407 (4) 0.0289 (2) 0.0243 (8)
H2 0.9267 0.4070 0.0170 0.029*
F1 0.64843 (18) 0.5589 (3) −0.10951 (18) 0.0491 (7)
C1 0.6436 (4) 0.6093 (5) 0.1568 (4) 0.0500 (14)
H1A 0.5696 0.6128 0.1121 0.075*
H1B 0.6672 0.7365 0.1789 0.075*
H1C 0.6481 0.5311 0.2133 0.075*
C2 0.8628 (3) 0.6175 (5) 0.0542 (3) 0.0257 (9)
C3 0.6629 (3) 0.1929 (5) 0.1031 (3) 0.0305 (10)
C4 0.7879 (3) 0.2971 (5) 0.0189 (3) 0.0229 (9)
H4 0.8262 0.1789 0.0469 0.027*
C5 0.7196 (3) 0.3493 (5) 0.0792 (3) 0.0251 (9)
C6 0.7138 (3) 0.5290 (5) 0.1050 (3) 0.0306 (10)
C7 0.5324 (4) 0.0920 (6) 0.1694 (4) 0.0523 (14)
H7A 0.4917 0.0232 0.1103 0.079*
H7B 0.4833 0.1446 0.1997 0.079*
H7C 0.5824 0.0068 0.2154 0.079*
C8 0.7244 (3) 0.2591 (5) −0.0870 (3) 0.0237 (9)
C9 0.7339 (3) 0.0877 (6) −0.1298 (3) 0.0323 (10)
H9 0.7803 −0.0052 −0.0914 0.039*
C10 0.6779 (3) 0.0514 (7) −0.2255 (3) 0.0429 (12)
H10 0.6851 −0.0666 −0.2525 0.052*
C11 0.6117 (4) 0.1832 (8) −0.2826 (3) 0.0550 (15)
H11 0.5737 0.1571 −0.3494 0.066*
C12 0.5999 (3) 0.3552 (8) −0.2436 (3) 0.0509 (14)
H12 0.5536 0.4478 −0.2824 0.061*
C13 0.6574 (3) 0.3874 (6) −0.1470 (3) 0.0343 (10)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0345 (6) 0.0216 (5) 0.0415 (6) −0.0051 (5) 0.0183 (5) −0.0047 (5)
O1 0.072 (2) 0.0159 (16) 0.070 (2) 0.0026 (15) 0.0524 (19) −0.0029 (15)
O2 0.058 (2) 0.0187 (16) 0.085 (2) −0.0037 (14) 0.0553 (19) −0.0002 (15)
N1 0.043 (2) 0.0139 (17) 0.048 (2) 0.0005 (16) 0.0300 (19) 0.0032 (15)
N2 0.0213 (18) 0.0183 (18) 0.036 (2) 0.0019 (15) 0.0136 (15) −0.0013 (15)
F1 0.0443 (16) 0.0364 (15) 0.0604 (17) 0.0111 (13) 0.0097 (13) 0.0185 (13)
C1 0.075 (4) 0.014 (2) 0.089 (4) −0.003 (2) 0.065 (3) −0.004 (2)
C2 0.030 (2) 0.024 (2) 0.026 (2) 0.0024 (19) 0.013 (2) 0.0033 (18)
C3 0.039 (3) 0.022 (2) 0.039 (2) 0.001 (2) 0.023 (2) 0.002 (2)
C4 0.027 (2) 0.0146 (19) 0.029 (2) 0.0040 (18) 0.0123 (18) 0.0056 (18)
C5 0.031 (2) 0.014 (2) 0.034 (2) 0.0049 (18) 0.017 (2) 0.0040 (17)
C6 0.041 (3) 0.019 (2) 0.042 (3) 0.001 (2) 0.027 (2) 0.0048 (19)
C7 0.067 (3) 0.024 (2) 0.095 (4) −0.009 (2) 0.065 (3) −0.002 (3)
C8 0.023 (2) 0.024 (2) 0.028 (2) −0.0047 (19) 0.0144 (18) 0.0040 (19)
C9 0.031 (3) 0.038 (3) 0.033 (3) −0.006 (2) 0.017 (2) −0.006 (2)
C10 0.034 (3) 0.060 (3) 0.041 (3) −0.019 (3) 0.022 (2) −0.014 (3)
C11 0.045 (3) 0.090 (5) 0.030 (3) −0.031 (3) 0.013 (3) −0.012 (3)
C12 0.027 (3) 0.076 (4) 0.042 (3) −0.008 (3) 0.000 (2) 0.024 (3)
C13 0.029 (2) 0.030 (3) 0.045 (3) −0.003 (2) 0.015 (2) 0.002 (2)

Geometric parameters (Å, º)

S1—C2 1.677 (4) C4—C5 1.512 (5)
O1—C3 1.211 (4) C4—H4 1.0000
O2—C3 1.332 (4) C5—C6 1.348 (5)
O2—C7 1.451 (4) C7—H7A 0.9800
N1—C2 1.362 (4) C7—H7B 0.9800
N1—C6 1.383 (5) C7—H7C 0.9800
N1—H1 0.8800 C8—C13 1.368 (5)
N2—C2 1.327 (4) C8—C9 1.400 (5)
N2—C4 1.460 (4) C9—C10 1.364 (5)
N2—H2 0.8800 C9—H9 0.9500
F1—C13 1.364 (5) C10—C11 1.365 (7)
C1—C6 1.502 (5) C10—H10 0.9500
C1—H1A 0.9800 C11—C12 1.386 (7)
C1—H1B 0.9800 C11—H11 0.9500
C1—H1C 0.9800 C12—C13 1.374 (6)
C3—C5 1.457 (5) C12—H12 0.9500
C4—C8 1.511 (5)
C3—O2—C7 116.8 (3) C5—C6—N1 119.1 (3)
C2—N1—C6 124.4 (3) C5—C6—C1 127.5 (4)
C2—N1—H1 117.8 N1—C6—C1 113.3 (3)
C6—N1—H1 117.8 O2—C7—H7A 109.5
C2—N2—C4 125.8 (3) O2—C7—H7B 109.5
C2—N2—H2 117.1 H7A—C7—H7B 109.5
C4—N2—H2 117.1 O2—C7—H7C 109.5
C6—C1—H1A 109.5 H7A—C7—H7C 109.5
C6—C1—H1B 109.5 H7B—C7—H7C 109.5
H1A—C1—H1B 109.5 C13—C8—C9 116.1 (4)
C6—C1—H1C 109.5 C13—C8—C4 123.3 (3)
H1A—C1—H1C 109.5 C9—C8—C4 120.5 (3)
H1B—C1—H1C 109.5 C10—C9—C8 121.4 (4)
N2—C2—N1 116.0 (3) C10—C9—H9 119.3
N2—C2—S1 123.1 (3) C8—C9—H9 119.3
N1—C2—S1 120.9 (3) C9—C10—C11 120.6 (5)
O1—C3—O2 122.4 (3) C9—C10—H10 119.7
O1—C3—C5 123.2 (4) C11—C10—H10 119.7
O2—C3—C5 114.3 (3) C10—C11—C12 120.1 (4)
N2—C4—C8 111.5 (3) C10—C11—H11 119.9
N2—C4—C5 109.8 (3) C12—C11—H11 119.9
C8—C4—C5 113.5 (3) C13—C12—C11 117.9 (4)
N2—C4—H4 107.2 C13—C12—H12 121.1
C8—C4—H4 107.2 C11—C12—H12 121.1
C5—C4—H4 107.2 F1—C13—C8 118.3 (4)
C6—C5—C3 125.5 (3) F1—C13—C12 117.8 (4)
C6—C5—C4 120.1 (3) C8—C13—C12 123.9 (4)
C3—C5—C4 114.4 (3)
C4—N2—C2—N1 9.1 (5) C4—C5—C6—C1 174.3 (4)
C4—N2—C2—S1 −173.8 (3) C2—N1—C6—C5 −9.7 (6)
C6—N1—C2—N2 9.3 (5) C2—N1—C6—C1 168.7 (4)
C6—N1—C2—S1 −167.8 (3) N2—C4—C8—C13 −66.5 (4)
C7—O2—C3—O1 −1.7 (6) C5—C4—C8—C13 58.1 (5)
C7—O2—C3—C5 −180.0 (4) N2—C4—C8—C9 111.8 (4)
C2—N2—C4—C8 103.4 (4) C5—C4—C8—C9 −123.5 (4)
C2—N2—C4—C5 −23.3 (5) C13—C8—C9—C10 −1.0 (5)
O1—C3—C5—C6 −170.2 (4) C4—C8—C9—C10 −179.4 (3)
O2—C3—C5—C6 8.1 (6) C8—C9—C10—C11 0.8 (6)
O1—C3—C5—C4 10.8 (6) C9—C10—C11—C12 −0.7 (6)
O2—C3—C5—C4 −170.9 (3) C10—C11—C12—C13 0.6 (6)
N2—C4—C5—C6 21.7 (5) C9—C8—C13—F1 −177.7 (3)
C8—C4—C5—C6 −103.9 (4) C4—C8—C13—F1 0.7 (5)
N2—C4—C5—C3 −159.3 (3) C9—C8—C13—C12 1.0 (6)
C8—C4—C5—C3 75.1 (4) C4—C8—C13—C12 179.4 (4)
C3—C5—C6—N1 173.6 (4) C11—C12—C13—F1 177.9 (4)
C4—C5—C6—N1 −7.5 (6) C11—C12—C13—C8 −0.8 (6)
C3—C5—C6—C1 −4.6 (7)

Hydrogen-bond geometry (Å, º)

Cg is the centroid of the C8–C13 ring.

D—H···A D—H H···A D···A D—H···A
N1—H1···O1i 0.88 2.14 2.977 (4) 159
N2—H2···S1ii 0.88 2.55 3.386 (2) 159
C1—H1B···O1i 0.98 2.52 3.262 (5) 133
C10—H10···Cgiii 0.95 2.86 3.648 (2) 141

Symmetry codes: (i) x, y+1, z; (ii) −x+2, −y+1, −z; (iii) −x, −y+1, −z.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: TK5392).

References

  1. Biginelli, P. (1893). Gazz. Chim. Ital. 23, 360–413.
  2. Bruker. (1998). SMART, SAINT-Plus and SADABS. Bruker Axs Inc., Madison, Wisconsin, USA.
  3. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  4. Guru Row, T. N. (1999). Chem. Rev. 183, 81–100.
  5. Jauk, B., Pernat, T. & Kappe, C. O. (2000). Molecules, 5, 227–239.
  6. Kappe, C. O. (1998). Molecules, 3, 1–9.
  7. Kappe, C. O. (2000). Acc. Chem. Res. 33, 879–888. [DOI] [PubMed]
  8. Krishnamurthy, M. S. & Begum, N. S. (2015a). Acta Cryst. E71, o268–o269. [DOI] [PMC free article] [PubMed]
  9. Krishnamurthy, M. S. & Begum, N. S. (2015b). Acta Cryst. E71, o699–o700. [DOI] [PMC free article] [PubMed]
  10. Mayer, T. U., Kapoor, T. M., Haggarty, S. J., King, R. W., Schreiber, S. I. & Mitchison, T. J. (1999). Science, 286, 971–974. [DOI] [PubMed]
  11. Qin, Y.-Q., Ren, X.-Y., Liang, T.-L. & Jian, F.-F. (2006). Acta Cryst. E62, o5215–o5216.
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.
  14. Yamazaki, T., Taguchi, T. & Ojima, I. (2009). Fluorine in Medicinal Chemistry and Chemical Biology, edited by I. Ojima, pp. 3–46. Weinheim: Wiley-Blackwell.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989015018873/tk5392sup1.cif

e-71-0o838-sup1.cif (17.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015018873/tk5392Isup2.hkl

e-71-0o838-Isup2.hkl (110.6KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015018873/tk5392Isup3.cml

. DOI: 10.1107/S2056989015018873/tk5392fig1.tif

The mol­ecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.

. DOI: 10.1107/S2056989015018873/tk5392fig2.tif

Unit cell packing of the title compound showing inter­molecular C—H⋯O, N—H⋯O and N—H⋯S inter­actions as dotted lines. H atoms not involved in hydrogen bonding have been excluded.

CCDC reference: 1430034

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES