Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Oct 17;71(Pt 11):o852–o853. doi: 10.1107/S2056989015019155

Crystal structure of 2-cyano-1-methyl­pyridinium perchlorate

Vu D Nguyen a, Cameron A McCormick a, Joel T Mague b,*, Lynn V Koplitz a
PMCID: PMC4645073  PMID: 26594561

Abstract

The asymmetric unit of the title salt, C7H7N2 +·ClO4 , comprises two independent formula units. The solid-state structure comprises corrugated layers of cations and of anions, approximately parallel to (010). The supra­molecular layers are stabilized and connected by C—H⋯O hydrogen bonding to consolidate a three-dimensional architecture. A close pyridin­ium–perchlorate N⋯O contact [2.867 (5) Å] is noted. The crystal was refined as an inversion twin.

Keywords: crystal structure, salt, pyridinium, perchlorate, hydrogen bonding

Related literature  

For structures of other salts of the 2-cyano-1-methyl­pyridinium cation, see: Koplitz et al. (2012); Kammer et al. (2013); Vaccaro et al. (2015). For structures of salts of the isomeric 2-cyano­anilinium cation, see: Zhang (2009); Cui & Chen (2010).graphic file with name e-71-0o852-scheme1.jpg

Experimental  

Crystal data  

  • C7H7N2 +·ClO4

  • M r = 218.60

  • Monoclinic, Inline graphic

  • a = 8.0112 (12) Å

  • b = 7.7011 (12) Å

  • c = 14.742 (2) Å

  • β = 90.982 (2)°

  • V = 909.4 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.41 mm−1

  • T = 150 K

  • 0.19 × 0.14 × 0.13 mm

Data collection  

  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (TWINABS; Sheldrick, 2009) T min = 0.93, T max = 0.95

  • 22843 measured reflections

  • 22843 independent reflections

  • 20913 reflections with I > 2σ(I)

  • R int = 0.051

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.043

  • wR(F 2) = 0.109

  • S = 1.00

  • 22843 reflections

  • 256 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.34 e Å−3

  • Absolute structure: Flack x determined using 1908 quotients [(I +)−(I )]/[(I +)+(I )] (Parsons et al., 2013)

  • Absolute structure parameter: 0.04 (3)

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT and CELL_NOW (Sheldrick, 2008a ); program(s) used to solve structure: SHELXT (Sheldrick, 2015a ); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b ); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008b ).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989015019155/tk5395sup1.cif

e-71-0o852-sup1.cif (1MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015019155/tk5395Isup2.hkl

e-71-0o852-Isup2.hkl (1.8MB, hkl)

Supporting information file. DOI: 10.1107/S2056989015019155/tk5395Isup3.cml

. DOI: 10.1107/S2056989015019155/tk5395fig1.tif

Perspective view of the asymmetric unit with 50% probability ellipsoids. C—H⋯O inter­actions are shown by dotted lines.

a . DOI: 10.1107/S2056989015019155/tk5395fig2.tif

Packing viewed down the a axis showing an edge view of two corrugated layers and the C—H⋯O inter­action (dotted line) holding them together.

b . DOI: 10.1107/S2056989015019155/tk5395fig3.tif

Packing viewed down the b axis providing a plan view of the corrugated sheets with C—H⋯O inter­actions shown as dotted lines.

CCDC reference: 1430590

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
C1H1AO1i 0.98 2.53 3.441(5) 154
C1H1CO3 0.98 2.52 3.164(5) 123
C3H3O5ii 0.95 2.54 3.326(5) 140
C5H5O8iii 0.95 2.66 3.262(6) 122
C6H6O1i 0.95 2.55 3.415(6) 152
C6H6O4i 0.95 2.65 3.534(6) 155
C8H8AO1iv 0.98 2.55 3.294(6) 132
C8H8BO7v 0.98 2.57 3.538(6) 169
C8H8CO6 0.98 2.51 3.425(5) 156
C10H10O2vi 0.95 2.51 3.367(5) 150
C12H12O2vii 0.95 2.52 3.347(5) 145
C13H13O6 0.95 2.35 3.247(6) 156

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic; (vii) Inline graphic.

Acknowledgments

JTM thanks Tulane University for support of the Tulane Crystallography Laboratory.

supplementary crystallographic information

S1. Comment

The asymmetric unit comprises two independent formula units. A portion of the C—H···O hydrogen bonding network which aids the packing of the several ions is shown in Fig. 1 with a fuller depiction appearing in Figs 2 and 3. The solid state structure consists of corrugated layers of cations and anions formed by C—H···O hydrogen bonding between them and approximately parallel to (010). These layers are held to one another by additional C—H···O interactions. The overall structure is essentially the same as found for the tetrafluoroborate salt (Vaccaro et al., 2015).

S2. Experimental

2-Cyano-1-methylpyridinium iodide (0.42 g, 1.70 mmol; m.p. 146–150°) was dissolved in a solution of silver perchlorate previously prepared by reacting Ag2O (0.20 g, 0.86 mmol) with 1M aqueous HClO4 (1.8 ml) in 8.0 ml of H2O. After stirring, the precipitated AgI was removed by vacuum filtration. The filtrate was slowly evaporated to dryness in a freezer at about -5° over several months to form crystals suitable for single-crystal X-ray diffraction.

S3. Refinement

H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.98 Å). All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms. The crystal was refined as a 2-component twin.

Figures

Fig. 1.

Fig. 1.

Perspective view of the asymmetric unit with 50% probability ellipsoids. C—H···O interactions are shown by dotted lines.

Fig. 2.

Fig. 2.

Packing viewed down the a axis showing an edge view of two corrugated layers and the C—H···O interaction (dotted line) holding them together.

Fig. 3.

Fig. 3.

Packing viewed down the b axis providing a plan view of the corrugated sheets with C—H···O interactions shown as dotted lines.

Crystal data

C7H7N2+·ClO4 F(000) = 448
Mr = 218.60 Dx = 1.597 Mg m3
Monoclinic, P21 Mo Kα radiation, λ = 0.71073 Å
a = 8.0112 (12) Å Cell parameters from 9987 reflections
b = 7.7011 (12) Å θ = 2.5–29.2°
c = 14.742 (2) Å µ = 0.41 mm1
β = 90.982 (2)° T = 150 K
V = 909.4 (2) Å3 Block, colourless
Z = 4 0.19 × 0.14 × 0.13 mm

Data collection

Bruker SMART APEX CCD diffractometer 22843 independent reflections
Radiation source: fine-focus sealed tube 20913 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.051
Detector resolution: 8.3660 pixels mm-1 θmax = 29.2°, θmin = 2.5°
φ and ω scans h = −10→10
Absorption correction: multi-scan (TWINABS; Sheldrick, 2009) k = −10→10
Tmin = 0.93, Tmax = 0.95 l = −20→20
22843 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043 H-atom parameters constrained
wR(F2) = 0.109 w = 1/[σ2(Fo2) + (0.0531P)2] where P = (Fo2 + 2Fc2)/3
S = 1.00 (Δ/σ)max < 0.001
22843 reflections Δρmax = 0.30 e Å3
256 parameters Δρmin = −0.34 e Å3
1 restraint Absolute structure: Flack x determined using 1908 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methods Absolute structure parameter: 0.04 (3)

Special details

Experimental. The diffraction data were obtained from 3 sets of 400 frames, each of width 0.5° in ω, collected at φ = 0.00, 90.00 and 180.00° and 2 sets of 800 frames, each of width 0.45° in φ, collected at ω = -30.00 and 210.00°. The scan time was 15 sec/frame. Analysis of 3152 reflections having I/σ(I) > 13 and chosen from the full data set with CELL_NOW (Sheldrick, 2008a) showed the crystal to belong to the monoclinic system and to be twinned by a 180° rotation about c*. The raw data were processed using the multi-component version of SAINT under control of the two-component orientation file generated by CELL_NOW.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.98 Å). All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms. Refined as a 2-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.2547 (4) 0.1723 (5) 0.8742 (2) 0.0186 (7)
N2 0.6652 (5) 0.0531 (8) 0.8975 (3) 0.0424 (14)
C1 0.3149 (5) 0.1871 (7) 0.7797 (3) 0.0268 (10)
H1A 0.2255 0.2339 0.7406 0.040*
H1B 0.3474 0.0721 0.7577 0.040*
H1C 0.4115 0.2651 0.7785 0.040*
C2 0.3617 (5) 0.1208 (6) 0.9418 (3) 0.0204 (10)
C3 0.3089 (5) 0.1017 (7) 1.0292 (3) 0.0262 (11)
H3 0.3845 0.0658 1.0759 0.031*
C4 0.1425 (5) 0.1359 (7) 1.0482 (3) 0.0261 (11)
H4 0.1033 0.1237 1.1083 0.031*
C5 0.0358 (5) 0.1874 (7) 0.9798 (3) 0.0265 (11)
H5 −0.0780 0.2106 0.9921 0.032*
C6 0.0947 (5) 0.2053 (7) 0.8927 (3) 0.0237 (10)
H6 0.0208 0.2414 0.8453 0.028*
C7 0.5316 (5) 0.0839 (8) 0.9162 (3) 0.0266 (11)
Cl1 0.77813 (11) 0.34996 (12) 0.68489 (7) 0.0185 (2)
O1 0.9290 (4) 0.2488 (5) 0.6789 (3) 0.0300 (8)
O2 0.7857 (4) 0.4925 (4) 0.6214 (2) 0.0263 (7)
O3 0.6375 (4) 0.2420 (5) 0.6622 (3) 0.0295 (9)
O4 0.7628 (4) 0.4142 (5) 0.7754 (2) 0.0370 (9)
N3 0.7638 (4) 0.8780 (5) 0.6208 (3) 0.0167 (8)
N4 1.1905 (4) 0.9228 (7) 0.6055 (3) 0.0374 (12)
C8 0.8152 (5) 0.8446 (7) 0.7165 (3) 0.0214 (9)
H8A 0.8523 0.9534 0.7448 0.032*
H8B 0.9070 0.7604 0.7181 0.032*
H8C 0.7203 0.7979 0.7497 0.032*
C9 0.8788 (4) 0.9197 (6) 0.5573 (3) 0.0187 (9)
C10 0.8332 (5) 0.9575 (7) 0.4697 (3) 0.0232 (10)
H10 0.9152 0.9855 0.4263 0.028*
C11 0.6647 (5) 0.9542 (7) 0.4452 (3) 0.0254 (10)
H11 0.6295 0.9816 0.3850 0.030*
C12 0.5499 (5) 0.9103 (7) 0.5099 (4) 0.0253 (11)
H12 0.4345 0.9046 0.4942 0.030*
C13 0.6021 (4) 0.8747 (6) 0.5969 (3) 0.0214 (10)
H13 0.5216 0.8472 0.6413 0.026*
C14 1.0526 (5) 0.9217 (7) 0.5867 (4) 0.0259 (11)
Cl2 0.26845 (11) 0.66595 (14) 0.81449 (7) 0.0213 (2)
O5 0.3040 (4) 0.5521 (5) 0.8898 (2) 0.0329 (9)
O6 0.4209 (4) 0.7202 (7) 0.7750 (3) 0.0629 (16)
O7 0.1683 (5) 0.5742 (6) 0.7490 (3) 0.0436 (10)
O8 0.1756 (4) 0.8134 (5) 0.8449 (3) 0.0405 (10)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0224 (14) 0.0147 (18) 0.0187 (19) −0.0010 (15) 0.0002 (13) 0.0016 (17)
N2 0.0285 (19) 0.069 (4) 0.030 (3) 0.009 (2) −0.0004 (17) −0.009 (3)
C1 0.034 (2) 0.026 (3) 0.020 (2) 0.004 (2) 0.0063 (17) 0.004 (2)
C2 0.0181 (16) 0.018 (3) 0.025 (3) −0.0009 (15) −0.0016 (15) −0.003 (2)
C3 0.026 (2) 0.030 (3) 0.023 (3) 0.0038 (19) −0.0050 (17) −0.001 (2)
C4 0.0295 (19) 0.028 (3) 0.021 (2) −0.0039 (18) 0.0058 (16) −0.001 (2)
C5 0.0207 (18) 0.027 (3) 0.032 (3) 0.0011 (19) 0.0009 (16) 0.000 (2)
C6 0.0229 (18) 0.023 (3) 0.025 (3) 0.0020 (17) −0.0027 (16) −0.001 (2)
C7 0.026 (2) 0.035 (3) 0.019 (3) 0.003 (2) −0.0029 (17) −0.004 (2)
Cl1 0.0208 (4) 0.0165 (5) 0.0182 (5) 0.0004 (4) −0.0004 (3) −0.0003 (4)
O1 0.0220 (14) 0.0215 (19) 0.046 (2) 0.0039 (12) −0.0011 (14) 0.0018 (18)
O2 0.0350 (15) 0.0197 (18) 0.0240 (18) −0.0006 (13) −0.0028 (13) 0.0059 (15)
O3 0.0232 (14) 0.026 (2) 0.040 (2) −0.0055 (13) −0.0023 (13) 0.0019 (17)
O4 0.056 (2) 0.035 (2) 0.0192 (17) 0.0011 (18) 0.0047 (16) −0.0051 (16)
N3 0.0189 (14) 0.0122 (19) 0.019 (2) 0.0020 (13) 0.0013 (13) −0.0005 (15)
N4 0.0229 (17) 0.061 (4) 0.028 (2) 0.0016 (19) 0.0012 (16) 0.003 (2)
C8 0.0263 (17) 0.022 (2) 0.016 (2) −0.0008 (19) −0.0004 (15) 0.001 (2)
C9 0.0162 (16) 0.016 (2) 0.024 (2) 0.0016 (15) 0.0018 (15) 0.000 (2)
C10 0.0225 (18) 0.027 (3) 0.020 (2) −0.0014 (17) 0.0054 (16) −0.001 (2)
C11 0.0272 (19) 0.031 (3) 0.017 (2) 0.0028 (19) −0.0008 (17) −0.001 (2)
C12 0.0205 (17) 0.031 (3) 0.025 (3) −0.0007 (17) −0.0022 (17) −0.006 (2)
C13 0.0180 (16) 0.019 (3) 0.027 (3) −0.0033 (16) 0.0034 (15) −0.004 (2)
C14 0.0213 (19) 0.033 (3) 0.024 (3) 0.0006 (18) 0.0052 (17) 0.000 (2)
Cl2 0.0207 (4) 0.0245 (6) 0.0188 (5) −0.0032 (4) 0.0023 (3) 0.0007 (5)
O5 0.0409 (18) 0.032 (2) 0.026 (2) −0.0075 (16) −0.0042 (15) 0.0064 (17)
O6 0.0260 (17) 0.092 (4) 0.071 (3) −0.0020 (19) 0.0140 (17) 0.046 (3)
O7 0.058 (2) 0.030 (2) 0.042 (2) 0.0098 (18) −0.0241 (18) −0.011 (2)
O8 0.058 (2) 0.021 (2) 0.043 (2) 0.0024 (17) 0.0123 (18) −0.0073 (18)

Geometric parameters (Å, º)

N1—C6 1.338 (5) N3—C13 1.337 (5)
N1—C2 1.363 (6) N3—C9 1.363 (5)
N1—C1 1.487 (5) N3—C8 1.486 (6)
N2—C7 1.135 (6) N4—C14 1.134 (5)
C1—H1A 0.9800 C8—H8A 0.9800
C1—H1B 0.9800 C8—H8B 0.9800
C1—H1C 0.9800 C8—H8C 0.9800
C2—C3 1.370 (6) C9—C10 1.368 (6)
C2—C7 1.446 (6) C9—C14 1.451 (5)
C3—C4 1.392 (6) C10—C11 1.391 (5)
C3—H3 0.9500 C10—H10 0.9500
C4—C5 1.370 (7) C11—C12 1.379 (7)
C4—H4 0.9500 C11—H11 0.9500
C5—C6 1.383 (7) C12—C13 1.370 (7)
C5—H5 0.9500 C12—H12 0.9500
C6—H6 0.9500 C13—H13 0.9500
Cl1—O4 1.430 (3) Cl2—O6 1.425 (4)
Cl1—O3 1.435 (3) Cl2—O7 1.431 (4)
Cl1—O1 1.442 (3) Cl2—O8 1.434 (4)
Cl1—O2 1.444 (3) Cl2—O5 1.439 (4)
C6—N1—C2 120.0 (4) C13—N3—C9 119.2 (4)
C6—N1—C1 120.2 (4) C13—N3—C8 119.9 (4)
C2—N1—C1 119.8 (3) C9—N3—C8 120.9 (3)
N1—C1—H1A 109.5 N3—C8—H8A 109.5
N1—C1—H1B 109.5 N3—C8—H8B 109.5
H1A—C1—H1B 109.5 H8A—C8—H8B 109.5
N1—C1—H1C 109.5 N3—C8—H8C 109.5
H1A—C1—H1C 109.5 H8A—C8—H8C 109.5
H1B—C1—H1C 109.5 H8B—C8—H8C 109.5
N1—C2—C3 121.2 (4) N3—C9—C10 121.7 (3)
N1—C2—C7 116.7 (4) N3—C9—C14 117.0 (4)
C3—C2—C7 122.1 (4) C10—C9—C14 121.3 (4)
C2—C3—C4 118.8 (4) C9—C10—C11 119.0 (4)
C2—C3—H3 120.6 C9—C10—H10 120.5
C4—C3—H3 120.6 C11—C10—H10 120.5
C5—C4—C3 119.6 (5) C12—C11—C10 118.7 (5)
C5—C4—H4 120.2 C12—C11—H11 120.7
C3—C4—H4 120.2 C10—C11—H11 120.7
C4—C5—C6 119.6 (4) C13—C12—C11 120.0 (4)
C4—C5—H5 120.2 C13—C12—H12 120.0
C6—C5—H5 120.2 C11—C12—H12 120.0
N1—C6—C5 120.8 (4) N3—C13—C12 121.5 (4)
N1—C6—H6 119.6 N3—C13—H13 119.3
C5—C6—H6 119.6 C12—C13—H13 119.3
N2—C7—C2 178.7 (6) N4—C14—C9 176.8 (5)
O4—Cl1—O3 109.8 (2) O6—Cl2—O7 110.1 (3)
O4—Cl1—O1 109.3 (2) O6—Cl2—O8 110.4 (3)
O3—Cl1—O1 109.2 (2) O7—Cl2—O8 108.3 (2)
O4—Cl1—O2 110.3 (2) O6—Cl2—O5 109.5 (2)
O3—Cl1—O2 109.3 (2) O7—Cl2—O5 108.7 (3)
O1—Cl1—O2 109.0 (2) O8—Cl2—O5 109.8 (2)
C6—N1—C2—C3 0.0 (7) C13—N3—C9—C10 −0.3 (7)
C1—N1—C2—C3 −178.3 (5) C8—N3—C9—C10 −177.4 (5)
C6—N1—C2—C7 178.6 (5) C13—N3—C9—C14 179.9 (4)
C1—N1—C2—C7 0.3 (7) C8—N3—C9—C14 2.8 (6)
N1—C2—C3—C4 0.1 (8) N3—C9—C10—C11 0.4 (8)
C7—C2—C3—C4 −178.5 (5) C14—C9—C10—C11 −179.8 (5)
C2—C3—C4—C5 0.1 (8) C9—C10—C11—C12 −1.0 (8)
C3—C4—C5—C6 −0.2 (8) C10—C11—C12—C13 1.5 (8)
C2—N1—C6—C5 −0.1 (7) C9—N3—C13—C12 0.8 (7)
C1—N1—C6—C5 178.2 (5) C8—N3—C13—C12 178.0 (5)
C4—C5—C6—N1 0.3 (8) C11—C12—C13—N3 −1.4 (8)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C1—H1A···O1i 0.98 2.53 3.441 (5) 154
C1—H1C···O3 0.98 2.52 3.164 (5) 123
C3—H3···O5ii 0.95 2.54 3.326 (5) 140
C5—H5···O8iii 0.95 2.66 3.262 (6) 122
C6—H6···O1i 0.95 2.55 3.415 (6) 152
C6—H6···O4i 0.95 2.65 3.534 (6) 155
C8—H8A···O1iv 0.98 2.55 3.294 (6) 132
C8—H8B···O7v 0.98 2.57 3.538 (6) 169
C8—H8C···O6 0.98 2.51 3.425 (5) 156
C10—H10···O2vi 0.95 2.51 3.367 (5) 150
C12—H12···O2vii 0.95 2.52 3.347 (5) 145
C13—H13···O6 0.95 2.35 3.247 (6) 156

Symmetry codes: (i) x−1, y, z; (ii) −x+1, y−1/2, −z+2; (iii) −x, y−1/2, −z+2; (iv) x, y+1, z; (v) x+1, y, z; (vi) −x+2, y+1/2, −z+1; (vii) −x+1, y+1/2, −z+1.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: TK5395).

References

  1. Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  2. Bruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconson, USA.
  3. Cui, L.-J. & Chen, X.-Y. (2010). Acta Cryst. E66, o467. [DOI] [PMC free article] [PubMed]
  4. Kammer, M. N., Koplitz, L. V. & Mague, J. T. (2013). Acta Cryst. E69, o1281. [DOI] [PMC free article] [PubMed]
  5. Koplitz, L. V., Mague, J. T., Kammer, M. N., McCormick, C. A., Renfro, H. E. & Vumbaco, D. J. (2012). Acta Cryst. E68, o1653. [DOI] [PMC free article] [PubMed]
  6. Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
  7. Sheldrick, G. M. (2008a). CELL_NOW. University of Göttingen, Göttingen, Germany.
  8. Sheldrick, G. M. (2008b). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Sheldrick, G. M. (2009). TWINABS. University of Göttingen, Göttingen, Germany.
  10. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  11. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  12. Vaccaro, F. A., Koplitz, L. V. & Mague, J. T. (2015). Acta Cryst. E71, o697–o698. [DOI] [PMC free article] [PubMed]
  13. Zhang, Y. (2009). Acta Cryst. E65, o2373. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989015019155/tk5395sup1.cif

e-71-0o852-sup1.cif (1MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015019155/tk5395Isup2.hkl

e-71-0o852-Isup2.hkl (1.8MB, hkl)

Supporting information file. DOI: 10.1107/S2056989015019155/tk5395Isup3.cml

. DOI: 10.1107/S2056989015019155/tk5395fig1.tif

Perspective view of the asymmetric unit with 50% probability ellipsoids. C—H⋯O inter­actions are shown by dotted lines.

a . DOI: 10.1107/S2056989015019155/tk5395fig2.tif

Packing viewed down the a axis showing an edge view of two corrugated layers and the C—H⋯O inter­action (dotted line) holding them together.

b . DOI: 10.1107/S2056989015019155/tk5395fig3.tif

Packing viewed down the b axis providing a plan view of the corrugated sheets with C—H⋯O inter­actions shown as dotted lines.

CCDC reference: 1430590

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES