Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Oct 3;71(Pt 11):o814–o815. doi: 10.1107/S2056989015018034

Crystal structure of 5′′-(4-chloro­benzyl­idene)-4′-(4-chloro­phen­yl)-1′-methyltri­spiro[acenapthylene-1,2′-pyrrolidine-3′,1′′-cyclo­hexane-3′′,2′′′-[1,3]dioxane]-2(1H),6′′-dione

Kuppan Chandralekha a, Deivasigamani Gavaskar b, Adukamparai Rajukrishnan Sureshbabu b, Srinivasakannan Lakshmi a,*
PMCID: PMC4645075  PMID: 26594541

Abstract

In the title compound, C36H29Cl2NO4, two spiro links connect the methyl-substituted pyrrolidine ring to the ace­naphthyl­ene and cyclo­hexa­none rings. The cyclo­hexa­none ring is further connected to the dioxalane ring by a third spiro junction. The five-membered ring of the ace­naphthylen-1-one ring system adopts a flattened envelope conformation, with the ketonic C atom as the flap, whereas the dioxalane and pyrrolidine rings each have a twist conformation. The cyclo­hexenone ring assumes a boat conformation. An intra­molecular C—H⋯O hydrogen-bond inter­action is present. In the crystal, mol­ecules are linked by non-classical C—H⋯O hydrogen bonds, forming chains extending parallel to the a axis.

Keywords: crystal structure, spiro pyrrolidines, ace­naphthyl­ene, dioxalane, hydrogen bonding

Related literature  

For the pharmacological properties of spiro compounds, see: Cravotto et al. (2001); Raj et al. (2003); Stylianakis et al. (2003). For the activities of ace­naphthyl­ene derivatives, see: Selvanayagam et al. (2004); El-Ayaan et al. (2007); McDavid & Daniels (1951); El-Ayaan & Abdel-Aziz (2005); Smith et al. (1979); Chen et al. (2014). For the properties and pharmacological activities of dioxalane compounds, see: Narayanasamy et al. (2007); Küçük et al. (2011); Shirai et al. (1998); Bera et al. (2003); Aepkers & Wünsch (2005); Ozkanlı et al. (2003); Liang et al. (2006).graphic file with name e-71-0o814-scheme1.jpg

Experimental  

Crystal data  

  • C36H29Cl2NO4

  • M r = 610.50

  • Triclinic Inline graphic

  • a = 8.9791 (4) Å

  • b = 10.3080 (5) Å

  • c = 15.7653 (6) Å

  • α = 88.679 (2)°

  • β = 83.263 (2)°

  • γ = 87.408 (2)°

  • V = 1447.39 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 293 K

  • 0.35 × 0.30 × 0.25 mm

Data collection  

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004) T min = 0.708, T max = 0.746

  • 39174 measured reflections

  • 5104 independent reflections

  • 3981 reflections with I > 2σ(I)

  • R int = 0.027

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.041

  • wR(F 2) = 0.111

  • S = 1.06

  • 5104 reflections

  • 389 parameters

  • H-atom parameters constrained

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.33 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek,2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015018034/rz5168sup1.cif

e-71-0o814-sup1.cif (1.4MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015018034/rz5168Isup2.hkl

e-71-0o814-Isup2.hkl (406.1KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015018034/rz5168Isup3.cml

. DOI: 10.1107/S2056989015018034/rz5168fig1.tif

The mol­ecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level. H atoms are shown as small spheres of arbitary radius.

a via . DOI: 10.1107/S2056989015018034/rz5168fig2.tif

Partial crystal packing of the title compound showing the formation of a mol­ecular chain parallel to the a axis via C—H⋯O hydrogen bonds (dashed lines).

CCDC reference: 1427830

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
C12H12AO1 0.97 2.27 3.066 (3) 139
C22H24O2i 0.93 2.35 3.172 (3) 148

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors thank the single-crystal XRD facility, SAIF IIT Madras, Chennai, for the data collection.

supplementary crystallographic information

S1. Comment

Spiro compounds frequently form a part of pharmacologically relevant alkaloids (Cravatto et al., 2001). Spiro pyrrolidines are an important class of compounds having anti­bacterial and anti­fungal activities against human pathogenic bacteria and dermatophytic fungi (Amal Raj et al., 2003), and are active against anti-influenza virus A. (Styliankis et al., 2003). Ace­naphthyl­ene derivatives are found to have high κ-opiod receptor affinity and selectivity (Selvanayagam et al., 2004). These derivatives have anti­tumor (Ayaan et al., 2007), anti­fungal (McDavid & Daniels, 1951), anti­microbial (Ayaan & Abdel-Aziz, 2005), anti-inflammatory (Smith et al., 1979) and insecticidal activities (Chen et al., 2014). Dioxalane compounds exihibit anti-HIV (Narayanasamy et al., 2007), anti­bacterial and anti­fungal (Kucuk et al., 2011), anti­neoplastic (Shirai et al., 1998), anti­viral (Bera et al., 2003), anaesthetic (Aepkers & Wünsch, 2005) and anti­convulsant activities (Ozkanlı et al., 2003). Dioxalane moieties play also a significant role in stabilizing the binding between the mutant HIV-1 RT and nucleoside triphosphate and act as nucleoside reverse transcriptase inhibitors (NRTIs) (Liang et al., 2006).

In the title compound (Fig. 1), the methyl substituted pyrrolidine ring (C7/C8/N/C9/C10/C11), is in twist conformation with puckering parameters q2 = 0.454 (2) Å, φ = 127.8 (3)° .The dioxalane ring (C13/O3/C17/C18/O4) has also a twist conformation (q2 = 0.202 (3) Å, φ = -127.6 (7)°), while the five-membered ring (C10/C26/C27/C32/C33) of the ace­naphthylen-1-one ring system adopts a flattened envelope conformation (q2 = 0.112 (2) Å, φ = 26.8 (11)°). The six-membered cyclo­hexanone ring (C11—C16) adopts a boat conformation (QT = 0.690 (2) Å, Θ = 99.72 (16)°, φ = 9.84 (16)°). The least-squares mean plane through the pyrrolidine ring forms dihedral angles of 120 (18), 90.55 (7) and 97.57 (8)° with the mean planes of the attached benzene ring, cyclo­hexanone ring and cyclo­penta­none ring, respectively. The mean planes through the cyclo­hexanone and dioxalane rings form a dihedral angle of 92.61 (10)°. The sum of bond angles around the nitro­gen atom of the pyrrolidine ring (338.4°) is in agreement with an sp3 hybridization. The molecular conformation is stabilized by an intra­molecular C—H···O hydrogen bond (Table 1). In the crystal (Fig. 2), molecules are linked by weak inter­molecular C—H···O hydrogen inter­actions (Table 1) to form chains extending parallel to the a axis.

S2. Experimental

An equimolar mixture of 7,9-bis­[(E)-aryl­idene-1,4-dioxo-spiro­[4,5]decane-8-one (1 mmol), acenapthe­quinone (1 mmol) and sarcosine in methanol (25-30 ml) was refluxed for 4 hours. After completion of the reaction as indicated by TLC, the solid precipitate was filtered and washed with methanol to give the pure tri­spiro­pyrrolidine derivative. Single crystals suitable for the X-ray diffraction analysis were obtained by slow evaporation of the solvent at room temperature.

S3. Refinement

All H atoms were placed in calculated positions, with C—H = 0.93–0.98 Å and refined using a riding-model approximation, with Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(C) for methyl H atoms. A rotating model was applied to the methyl groups.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level. H atoms are shown as small spheres of arbitrary radius.

Fig. 2.

Fig. 2.

Partial crystal packing of the title compound showing the formation of a molecular chain parallel to the a axis via C—H···O hydrogen bonds (dashed lines).

Crystal data

C36H29Cl2NO4 V = 1447.39 (11) Å3
Mr = 610.50 Z = 2
Triclinic, P1 F(000) = 636
Hall symbol: -P 1 Dx = 1.401 Mg m3
a = 8.9791 (4) Å Mo Kα radiation, λ = 0.71073 Å
b = 10.3080 (5) Å θ = 1.3–25.0°
c = 15.7653 (6) Å µ = 0.27 mm1
α = 88.679 (2)° T = 293 K
β = 83.263 (2)° Block, colourless
γ = 87.408 (2)° 0.35 × 0.30 × 0.25 mm

Data collection

Bruker Kappa APEXII CCD diffractometer 5104 independent reflections
Radiation source: fine-focus sealed tube 3981 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.027
bruker axs kappa apex2 CCD Diffractometer scans θmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Bruker, 2004) h = −10→10
Tmin = 0.708, Tmax = 0.746 k = −12→12
39174 measured reflections l = −18→18

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041 H-atom parameters constrained
wR(F2) = 0.111 w = 1/[σ2(Fo2) + (0.0381P)2 + 1.0322P] where P = (Fo2 + 2Fc2)/3
S = 1.06 (Δ/σ)max < 0.001
5104 reflections Δρmax = 0.47 e Å3
389 parameters Δρmin = −0.33 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.45365 (8) 0.89061 (6) 0.09442 (5) 0.0637 (2)
Cl2 1.57635 (8) 0.32960 (7) 0.57298 (5) 0.0672 (2)
O1 1.1573 (2) 0.16684 (18) 0.11243 (12) 0.0626 (5)
O2 0.75080 (16) 0.36814 (16) 0.33228 (9) 0.0459 (4)
O3 0.93988 (18) 0.60388 (15) 0.22420 (10) 0.0488 (4)
O4 1.14319 (18) 0.59140 (16) 0.12382 (10) 0.0513 (4)
N1 0.8362 (2) 0.16901 (18) 0.09369 (12) 0.0424 (4)
C3 0.5243 (3) 0.7341 (2) 0.11282 (16) 0.0455 (6)
C4 0.5993 (3) 0.6655 (2) 0.04656 (15) 0.0503 (6)
H2 0.6140 0.7031 −0.0078 0.060*
C5 0.6531 (3) 0.5403 (2) 0.06081 (15) 0.0473 (6)
H3 0.7022 0.4934 0.0154 0.057*
C2 0.5025 (3) 0.6802 (2) 0.19309 (16) 0.0507 (6)
H4 0.4508 0.7269 0.2379 0.061*
C1 0.5579 (3) 0.5557 (2) 0.20679 (15) 0.0454 (5)
H5 0.5431 0.5192 0.2615 0.055*
C6 0.6351 (2) 0.4832 (2) 0.14162 (14) 0.0400 (5)
C7 0.6956 (2) 0.3479 (2) 0.16184 (14) 0.0393 (5)
H7 0.6299 0.3155 0.2111 0.047*
C8 0.6974 (3) 0.2474 (2) 0.09179 (16) 0.0508 (6)
H8A 0.6112 0.1935 0.1027 0.061*
H8B 0.6950 0.2901 0.0365 0.061*
C9 0.8264 (3) 0.0346 (2) 0.06982 (17) 0.0550 (6)
H9A 0.9222 −0.0101 0.0717 0.082*
H9B 0.7983 0.0318 0.0130 0.082*
H9C 0.7524 −0.0066 0.1090 0.082*
C10 0.8921 (2) 0.1864 (2) 0.17486 (13) 0.0375 (5)
C11 0.8580 (2) 0.3381 (2) 0.18748 (13) 0.0353 (5)
C12 0.9679 (2) 0.4220 (2) 0.12925 (13) 0.0384 (5)
H12A 1.0427 0.3656 0.0973 0.046*
H12B 0.9131 0.4705 0.0886 0.046*
C13 1.0458 (2) 0.5155 (2) 0.17975 (14) 0.0396 (5)
C17 0.9409 (4) 0.7206 (3) 0.1776 (2) 0.0748 (9)
H14A 0.9291 0.7940 0.2156 0.090*
H14B 0.8603 0.7256 0.1416 0.090*
C18 1.0865 (4) 0.7201 (3) 0.1258 (2) 0.0809 (10)
H15A 1.0755 0.7521 0.0685 0.097*
H15B 1.1539 0.7751 0.1508 0.097*
C14 1.1287 (2) 0.4436 (2) 0.24586 (14) 0.0413 (5)
H16A 1.1970 0.3772 0.2188 0.050*
H16B 1.1867 0.5033 0.2739 0.050*
C15 1.0139 (2) 0.3824 (2) 0.31022 (13) 0.0348 (5)
C16 0.8631 (2) 0.36672 (19) 0.28166 (13) 0.0350 (5)
C23 1.4171 (3) 0.3371 (2) 0.51992 (15) 0.0436 (5)
C20 1.1664 (2) 0.3461 (2) 0.43347 (13) 0.0367 (5)
C25 1.1547 (3) 0.3680 (2) 0.52061 (14) 0.0433 (5)
H21 1.0604 0.3854 0.5503 0.052*
C24 1.2791 (3) 0.3647 (2) 0.56416 (14) 0.0470 (6)
H22 1.2697 0.3807 0.6224 0.056*
C19 1.0309 (2) 0.3480 (2) 0.39060 (13) 0.0375 (5)
H23 0.9447 0.3217 0.4239 0.045*
C22 1.4334 (3) 0.3129 (2) 0.43433 (15) 0.0470 (6)
H24 1.5278 0.2929 0.4055 0.056*
C21 1.3083 (3) 0.3183 (2) 0.39151 (14) 0.0447 (5)
H25 1.3192 0.3031 0.3332 0.054*
C26 1.0622 (3) 0.1453 (2) 0.17153 (15) 0.0446 (5)
C27 1.0841 (3) 0.0720 (2) 0.25048 (16) 0.0470 (6)
C28 1.2105 (3) 0.0226 (3) 0.2827 (2) 0.0642 (7)
H28 1.3058 0.0357 0.2547 0.077*
C29 1.1902 (4) −0.0486 (3) 0.3599 (2) 0.0792 (10)
H29 1.2747 −0.0815 0.3834 0.095*
C30 1.0535 (4) −0.0715 (3) 0.4015 (2) 0.0762 (9)
H30 1.0464 −0.1198 0.4523 0.091*
C31 0.9216 (3) −0.0235 (2) 0.36937 (17) 0.0576 (7)
C32 0.9431 (3) 0.0500 (2) 0.29316 (15) 0.0453 (6)
C33 0.8251 (3) 0.1058 (2) 0.25144 (14) 0.0421 (5)
C34 0.6825 (3) 0.0812 (2) 0.28446 (18) 0.0566 (7)
H34 0.6013 0.1125 0.2573 0.068*
C35 0.6596 (4) 0.0064 (3) 0.3614 (2) 0.0721 (8)
H35 0.5617 −0.0099 0.3842 0.086*
C36 0.7742 (4) −0.0422 (3) 0.40321 (19) 0.0705 (8)
H36 0.7540 −0.0881 0.4545 0.085*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0657 (4) 0.0445 (4) 0.0836 (5) 0.0004 (3) −0.0236 (4) 0.0104 (3)
Cl2 0.0661 (4) 0.0741 (5) 0.0669 (4) −0.0023 (4) −0.0323 (3) 0.0069 (3)
O1 0.0480 (10) 0.0648 (12) 0.0705 (12) 0.0030 (9) 0.0100 (9) −0.0047 (9)
O2 0.0358 (9) 0.0582 (10) 0.0420 (9) −0.0058 (7) 0.0034 (7) 0.0005 (7)
O3 0.0541 (10) 0.0360 (8) 0.0530 (10) −0.0022 (7) 0.0066 (8) 0.0032 (7)
O4 0.0497 (10) 0.0475 (10) 0.0544 (10) −0.0141 (8) 0.0064 (8) 0.0109 (8)
N1 0.0462 (11) 0.0384 (10) 0.0442 (10) −0.0019 (8) −0.0114 (8) −0.0042 (8)
C3 0.0378 (12) 0.0440 (13) 0.0563 (14) −0.0015 (10) −0.0132 (11) 0.0049 (11)
C4 0.0476 (14) 0.0594 (15) 0.0446 (13) −0.0017 (12) −0.0111 (11) 0.0145 (12)
C5 0.0461 (13) 0.0559 (15) 0.0391 (12) 0.0047 (11) −0.0057 (10) 0.0017 (11)
C2 0.0523 (15) 0.0515 (14) 0.0471 (14) 0.0076 (11) −0.0053 (11) −0.0009 (11)
C1 0.0447 (13) 0.0499 (14) 0.0408 (12) 0.0022 (11) −0.0042 (10) 0.0068 (10)
C6 0.0339 (11) 0.0451 (13) 0.0421 (12) −0.0023 (9) −0.0095 (9) 0.0018 (10)
C7 0.0347 (11) 0.0410 (12) 0.0429 (12) −0.0040 (9) −0.0074 (9) 0.0033 (10)
C8 0.0517 (14) 0.0466 (14) 0.0576 (15) −0.0014 (11) −0.0205 (12) −0.0053 (11)
C9 0.0609 (16) 0.0458 (14) 0.0605 (16) −0.0031 (12) −0.0145 (13) −0.0113 (12)
C10 0.0365 (11) 0.0355 (11) 0.0409 (12) −0.0018 (9) −0.0058 (9) −0.0004 (9)
C11 0.0344 (11) 0.0356 (11) 0.0357 (11) −0.0033 (9) −0.0035 (9) 0.0012 (9)
C12 0.0387 (12) 0.0406 (12) 0.0353 (11) −0.0027 (9) −0.0023 (9) 0.0048 (9)
C13 0.0370 (12) 0.0391 (12) 0.0409 (12) −0.0065 (9) 0.0035 (9) 0.0036 (9)
C17 0.088 (2) 0.0403 (15) 0.090 (2) −0.0014 (14) 0.0106 (17) 0.0142 (14)
C18 0.088 (2) 0.0489 (17) 0.099 (2) −0.0113 (15) 0.0167 (19) 0.0204 (16)
C14 0.0362 (12) 0.0484 (13) 0.0398 (12) −0.0099 (10) −0.0041 (9) 0.0014 (10)
C15 0.0344 (11) 0.0324 (11) 0.0374 (11) −0.0025 (9) −0.0022 (9) −0.0037 (9)
C16 0.0356 (12) 0.0300 (11) 0.0389 (11) −0.0037 (9) −0.0019 (9) 0.0039 (9)
C23 0.0511 (14) 0.0352 (12) 0.0470 (13) −0.0038 (10) −0.0159 (11) 0.0054 (10)
C20 0.0424 (12) 0.0326 (11) 0.0353 (11) −0.0032 (9) −0.0049 (9) 0.0021 (9)
C25 0.0494 (14) 0.0416 (13) 0.0373 (12) 0.0056 (10) −0.0010 (10) −0.0001 (10)
C24 0.0655 (16) 0.0419 (13) 0.0341 (12) 0.0033 (11) −0.0102 (11) −0.0022 (10)
C19 0.0376 (12) 0.0375 (12) 0.0359 (11) −0.0014 (9) 0.0014 (9) −0.0016 (9)
C22 0.0406 (13) 0.0551 (15) 0.0444 (13) −0.0027 (11) −0.0019 (10) 0.0046 (11)
C21 0.0441 (13) 0.0570 (15) 0.0329 (11) −0.0014 (11) −0.0037 (10) −0.0014 (10)
C26 0.0425 (13) 0.0394 (13) 0.0519 (14) 0.0008 (10) −0.0051 (11) −0.0094 (10)
C27 0.0523 (15) 0.0344 (12) 0.0560 (14) 0.0063 (10) −0.0149 (12) −0.0091 (10)
C28 0.0631 (18) 0.0515 (16) 0.081 (2) 0.0129 (13) −0.0268 (15) −0.0117 (14)
C29 0.091 (3) 0.0611 (19) 0.091 (2) 0.0178 (17) −0.046 (2) 0.0050 (17)
C30 0.110 (3) 0.0517 (17) 0.072 (2) 0.0041 (17) −0.037 (2) 0.0113 (14)
C31 0.085 (2) 0.0345 (13) 0.0558 (15) −0.0017 (13) −0.0175 (14) 0.0042 (11)
C32 0.0600 (15) 0.0276 (11) 0.0503 (13) 0.0005 (10) −0.0154 (11) −0.0041 (10)
C33 0.0483 (13) 0.0315 (11) 0.0467 (13) −0.0038 (10) −0.0060 (10) −0.0002 (9)
C34 0.0519 (15) 0.0457 (14) 0.0708 (17) −0.0119 (12) 0.0000 (13) 0.0096 (12)
C35 0.072 (2) 0.0567 (17) 0.083 (2) −0.0164 (15) 0.0100 (16) 0.0156 (15)
C36 0.101 (2) 0.0453 (16) 0.0631 (18) −0.0112 (16) −0.0022 (17) 0.0142 (13)

Geometric parameters (Å, º)

Cl1—C3 1.738 (2) C17—H14A 0.9700
Cl2—C23 1.737 (2) C17—H14B 0.9700
O1—C26 1.211 (3) C18—H15A 0.9700
O2—C16 1.210 (2) C18—H15B 0.9700
O3—C17 1.395 (3) C14—C15 1.508 (3)
O3—C13 1.421 (3) C14—H16A 0.9700
O4—C18 1.399 (3) C14—H16B 0.9700
O4—C13 1.415 (2) C15—C19 1.332 (3)
N1—C10 1.446 (3) C15—C16 1.493 (3)
N1—C9 1.453 (3) C23—C22 1.368 (3)
N1—C8 1.457 (3) C23—C24 1.370 (3)
C3—C2 1.367 (3) C20—C21 1.386 (3)
C3—C4 1.367 (3) C20—C25 1.388 (3)
C4—C5 1.380 (3) C20—C19 1.459 (3)
C4—H2 0.9300 C25—C24 1.377 (3)
C5—C6 1.386 (3) C25—H21 0.9300
C5—H3 0.9300 C24—H22 0.9300
C2—C1 1.377 (3) C19—H23 0.9300
C2—H4 0.9300 C22—C21 1.375 (3)
C1—C6 1.384 (3) C22—H24 0.9300
C1—H5 0.9300 C21—H25 0.9300
C6—C7 1.515 (3) C26—C27 1.469 (3)
C7—C8 1.529 (3) C27—C28 1.370 (3)
C7—C11 1.556 (3) C27—C32 1.388 (3)
C7—H7 0.9800 C28—C29 1.404 (4)
C8—H8A 0.9700 C28—H28 0.9300
C8—H8B 0.9700 C29—C30 1.350 (5)
C9—H9A 0.9600 C29—H29 0.9300
C9—H9B 0.9600 C30—C31 1.407 (4)
C9—H9C 0.9600 C30—H30 0.9300
C10—C33 1.529 (3) C31—C36 1.388 (4)
C10—C26 1.562 (3) C31—C32 1.404 (3)
C10—C11 1.592 (3) C32—C33 1.406 (3)
C11—C16 1.527 (3) C33—C34 1.358 (3)
C11—C12 1.547 (3) C34—C35 1.422 (4)
C12—C13 1.510 (3) C34—H34 0.9300
C12—H12A 0.9700 C35—C36 1.357 (4)
C12—H12B 0.9700 C35—H35 0.9300
C13—C14 1.512 (3) C36—H36 0.9300
C17—C18 1.457 (4)
C17—O3—C13 107.85 (18) O4—C18—H15A 110.3
C18—O4—C13 108.50 (19) C17—C18—H15A 110.3
C10—N1—C9 114.85 (18) O4—C18—H15B 110.3
C10—N1—C8 108.72 (17) C17—C18—H15B 110.3
C9—N1—C8 114.42 (19) H15A—C18—H15B 108.6
C2—C3—C4 120.7 (2) C15—C14—C13 107.91 (17)
C2—C3—Cl1 119.65 (19) C15—C14—H16A 110.1
C4—C3—Cl1 119.61 (18) C13—C14—H16A 110.1
C3—C4—C5 119.6 (2) C15—C14—H16B 110.1
C3—C4—H2 120.2 C13—C14—H16B 110.1
C5—C4—H2 120.2 H16A—C14—H16B 108.4
C4—C5—C6 121.2 (2) C19—C15—C16 117.20 (18)
C4—C5—H3 119.4 C19—C15—C14 126.80 (19)
C6—C5—H3 119.4 C16—C15—C14 115.89 (17)
C3—C2—C1 119.1 (2) O2—C16—C15 121.13 (19)
C3—C2—H4 120.4 O2—C16—C11 121.43 (19)
C1—C2—H4 120.4 C15—C16—C11 117.25 (17)
C2—C1—C6 122.0 (2) C22—C23—C24 121.6 (2)
C2—C1—H5 119.0 C22—C23—Cl2 118.41 (19)
C6—C1—H5 119.0 C24—C23—Cl2 119.95 (18)
C1—C6—C5 117.3 (2) C21—C20—C25 117.6 (2)
C1—C6—C7 119.03 (19) C21—C20—C19 122.78 (19)
C5—C6—C7 123.7 (2) C25—C20—C19 119.6 (2)
C6—C7—C8 116.47 (19) C24—C25—C20 121.6 (2)
C6—C7—C11 116.03 (17) C24—C25—H21 119.2
C8—C7—C11 104.16 (18) C20—C25—H21 119.2
C6—C7—H7 106.5 C23—C24—C25 118.6 (2)
C8—C7—H7 106.5 C23—C24—H22 120.7
C11—C7—H7 106.5 C25—C24—H22 120.7
N1—C8—C7 106.23 (18) C15—C19—C20 128.7 (2)
N1—C8—H8A 110.5 C15—C19—H23 115.6
C7—C8—H8A 110.5 C20—C19—H23 115.6
N1—C8—H8B 110.5 C23—C22—C21 119.1 (2)
C7—C8—H8B 110.5 C23—C22—H24 120.5
H8A—C8—H8B 108.7 C21—C22—H24 120.5
N1—C9—H9A 109.5 C22—C21—C20 121.4 (2)
N1—C9—H9B 109.5 C22—C21—H25 119.3
H9A—C9—H9B 109.5 C20—C21—H25 119.3
N1—C9—H9C 109.5 O1—C26—C27 126.6 (2)
H9A—C9—H9C 109.5 O1—C26—C10 125.3 (2)
H9B—C9—H9C 109.5 C27—C26—C10 108.02 (19)
N1—C10—C33 117.84 (18) C28—C27—C32 120.2 (2)
N1—C10—C26 111.85 (17) C28—C27—C26 132.2 (3)
C33—C10—C26 101.27 (17) C32—C27—C26 107.5 (2)
N1—C10—C11 100.67 (16) C27—C28—C29 117.2 (3)
C33—C10—C11 112.28 (17) C27—C28—H28 121.4
C26—C10—C11 113.53 (17) C29—C28—H28 121.4
C16—C11—C12 111.26 (17) C30—C29—C28 123.0 (3)
C16—C11—C7 112.58 (17) C30—C29—H29 118.5
C12—C11—C7 112.80 (17) C28—C29—H29 118.5
C16—C11—C10 107.85 (16) C29—C30—C31 121.1 (3)
C12—C11—C10 112.76 (17) C29—C30—H30 119.4
C7—C11—C10 98.95 (16) C31—C30—H30 119.4
C13—C12—C11 112.03 (17) C36—C31—C32 116.7 (3)
C13—C12—H12A 109.2 C36—C31—C30 127.7 (3)
C11—C12—H12A 109.2 C32—C31—C30 115.6 (3)
C13—C12—H12B 109.2 C27—C32—C31 122.9 (2)
C11—C12—H12B 109.2 C27—C32—C33 113.3 (2)
H12A—C12—H12B 107.9 C31—C32—C33 123.8 (2)
O4—C13—O3 106.47 (17) C34—C33—C32 117.9 (2)
O4—C13—C12 109.99 (17) C34—C33—C10 133.5 (2)
O3—C13—C12 110.72 (18) C32—C33—C10 108.6 (2)
O4—C13—C14 111.57 (18) C33—C34—C35 118.7 (3)
O3—C13—C14 107.20 (17) C33—C34—H34 120.7
C12—C13—C14 110.77 (18) C35—C34—H34 120.7
O3—C17—C18 105.4 (2) C36—C35—C34 122.9 (3)
O3—C17—H14A 110.7 C36—C35—H35 118.6
C18—C17—H14A 110.7 C34—C35—H35 118.6
O3—C17—H14B 110.7 C35—C36—C31 119.9 (3)
C18—C17—H14B 110.7 C35—C36—H36 120.0
H14A—C17—H14B 108.8 C31—C36—H36 120.0
O4—C18—C17 106.9 (2)
C2—C3—C4—C5 0.2 (4) C14—C15—C16—C11 33.9 (3)
Cl1—C3—C4—C5 −178.79 (18) C12—C11—C16—O2 142.6 (2)
C3—C4—C5—C6 −1.3 (4) C7—C11—C16—O2 14.9 (3)
C4—C3—C2—C1 0.4 (4) C10—C11—C16—O2 −93.2 (2)
Cl1—C3—C2—C1 179.47 (19) C12—C11—C16—C15 −42.2 (2)
C3—C2—C1—C6 −0.1 (4) C7—C11—C16—C15 −169.89 (17)
C2—C1—C6—C5 −0.9 (3) C10—C11—C16—C15 82.0 (2)
C2—C1—C6—C7 178.8 (2) C21—C20—C25—C24 1.0 (3)
C4—C5—C6—C1 1.6 (3) C19—C20—C25—C24 178.7 (2)
C4—C5—C6—C7 −178.0 (2) C22—C23—C24—C25 −0.2 (3)
C1—C6—C7—C8 146.4 (2) Cl2—C23—C24—C25 −179.04 (17)
C5—C6—C7—C8 −34.0 (3) C20—C25—C24—C23 −0.9 (3)
C1—C6—C7—C11 −90.4 (2) C16—C15—C19—C20 176.2 (2)
C5—C6—C7—C11 89.2 (3) C14—C15—C19—C20 −7.9 (4)
C10—N1—C8—C7 18.2 (2) C21—C20—C19—C15 −33.0 (4)
C9—N1—C8—C7 148.1 (2) C25—C20—C19—C15 149.5 (2)
C6—C7—C8—N1 141.39 (19) C24—C23—C22—C21 1.1 (4)
C11—C7—C8—N1 12.3 (2) Cl2—C23—C22—C21 179.93 (18)
C9—N1—C10—C33 −47.3 (3) C23—C22—C21—C20 −0.9 (4)
C8—N1—C10—C33 82.3 (2) C25—C20—C21—C22 −0.1 (3)
C9—N1—C10—C26 69.4 (2) C19—C20—C21—C22 −177.7 (2)
C8—N1—C10—C26 −160.95 (18) N1—C10—C26—O1 40.2 (3)
C9—N1—C10—C11 −169.71 (18) C33—C10—C26—O1 166.5 (2)
C8—N1—C10—C11 −40.1 (2) C11—C10—C26—O1 −72.9 (3)
C6—C7—C11—C16 82.6 (2) N1—C10—C26—C27 −137.47 (19)
C8—C7—C11—C16 −148.03 (18) C33—C10—C26—C27 −11.1 (2)
C6—C7—C11—C12 −44.4 (3) C11—C10—C26—C27 109.4 (2)
C8—C7—C11—C12 85.0 (2) O1—C26—C27—C28 7.9 (4)
C6—C7—C11—C10 −163.76 (18) C10—C26—C27—C28 −174.5 (2)
C8—C7—C11—C10 −34.4 (2) O1—C26—C27—C32 −169.1 (2)
N1—C10—C11—C16 162.25 (16) C10—C26—C27—C32 8.5 (2)
C33—C10—C11—C16 36.0 (2) C32—C27—C28—C29 −0.6 (4)
C26—C10—C11—C16 −78.1 (2) C26—C27—C28—C29 −177.3 (3)
N1—C10—C11—C12 −74.5 (2) C27—C28—C29—C30 1.2 (5)
C33—C10—C11—C12 159.28 (18) C28—C29—C30—C31 −0.4 (5)
C26—C10—C11—C12 45.2 (2) C29—C30—C31—C36 177.8 (3)
N1—C10—C11—C7 44.92 (18) C29—C30—C31—C32 −0.9 (4)
C33—C10—C11—C7 −81.3 (2) C28—C27—C32—C31 −0.8 (4)
C26—C10—C11—C7 164.59 (17) C26—C27—C32—C31 176.7 (2)
C16—C11—C12—C13 −3.0 (2) C28—C27—C32—C33 −179.3 (2)
C7—C11—C12—C13 124.57 (19) C26—C27—C32—C33 −1.9 (3)
C10—C11—C12—C13 −124.37 (19) C36—C31—C32—C27 −177.4 (2)
C18—O4—C13—O3 −7.6 (3) C30—C31—C32—C27 1.5 (4)
C18—O4—C13—C12 112.5 (2) C36—C31—C32—C33 1.1 (4)
C18—O4—C13—C14 −124.2 (2) C30—C31—C32—C33 180.0 (2)
C17—O3—C13—O4 19.2 (3) C27—C32—C33—C34 174.9 (2)
C17—O3—C13—C12 −100.4 (2) C31—C32—C33—C34 −3.7 (4)
C17—O3—C13—C14 138.7 (2) C27—C32—C33—C10 −5.6 (3)
C11—C12—C13—O4 −179.10 (17) C31—C32—C33—C10 175.8 (2)
C11—C12—C13—O3 −61.7 (2) N1—C10—C33—C34 −48.3 (4)
C11—C12—C13—C14 57.1 (2) C26—C10—C33—C34 −170.6 (3)
C13—O3—C17—C18 −22.7 (3) C11—C10—C33—C34 67.9 (3)
C13—O4—C18—C17 −6.3 (3) N1—C10—C33—C32 132.3 (2)
O3—C17—C18—O4 17.9 (4) C26—C10—C33—C32 10.0 (2)
O4—C13—C14—C15 171.50 (17) C11—C10—C33—C32 −111.4 (2)
O3—C13—C14—C15 55.3 (2) C32—C33—C34—C35 3.2 (4)
C12—C13—C14—C15 −65.6 (2) C10—C33—C34—C35 −176.1 (2)
C13—C14—C15—C19 −156.5 (2) C33—C34—C35—C36 −0.4 (4)
C13—C14—C15—C16 19.5 (3) C34—C35—C36—C31 −2.2 (5)
C19—C15—C16—O2 25.5 (3) C32—C31—C36—C35 1.9 (4)
C14—C15—C16—O2 −150.9 (2) C30—C31—C36—C35 −176.9 (3)
C19—C15—C16—C11 −149.76 (19)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C12—H12A···O1 0.97 2.27 3.066 (3) 139
C22—H24···O2i 0.93 2.35 3.172 (3) 148

Symmetry code: (i) x+1, y, z.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: RZ5168).

References

  1. Aepkers, M. & Wünsch, B. (2005). Bioorg. Med. Chem. 13, 6836–6849. [DOI] [PubMed]
  2. Bera, S., Malik, L., Bhat, B., Carroll, S. S., MacCoss, M., Olsen, D. B., Tomassini, J. E. & Eldrup, A. B. (2003). Bioorg. Med. Chem. Lett. 13, 4455–4458. [DOI] [PubMed]
  3. Bruker (2004). APEX, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Chen, N. Y., Ren, L. P., Zou, M. M., Xu, Z. P., Shao, X. S., Xu, X. Y. & Li, Z. (2014). Chin. Chem. Lett. 25, 197–200.
  5. Cravotto, G., Giovenzana, G. B., Pilati, T., Sisti, M. & Palmisano, G. (2001). J. Org. Chem. 66, 8447–8453. [DOI] [PubMed]
  6. El-Ayaan, U. & Abdel-Aziz, A. A.-M. (2005). Eur. J. Med. Chem. 40, 1214–1221. [DOI] [PubMed]
  7. El-Ayaan, U., Abdel-Aziz, A. A.-M. & Al-Shihry, S. (2007). Eur. J. Med. Chem. 42, 1325–1333. [DOI] [PubMed]
  8. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  9. Küçük, H., Yusufoğlu, A., Mataracı, E. & Döşler, S. (2011). Molecules, 16, 6806–6815. [DOI] [PMC free article] [PubMed]
  10. Liang, Y., Narayanasamy, J., Schinazi, R. F. & Chu, C. K. (2006). Bioorg. Med. Chem. 14, 2178–2189. [DOI] [PubMed]
  11. McDavids, J. E. & Daniels, T. C. (1951). J. Pharm. Sci. 40, 325–326. [DOI] [PubMed]
  12. Narayanasamy, J., Pullagurla, M. R., Sharon, A., Wang, J., Schinazi, F. & Chu, C. K. (2007). Antiviral Res. 75, 198–209. [DOI] [PMC free article] [PubMed]
  13. Ozkanlı, F., Güney, A., Calıs, U. & Uzbay, T. (2003). Drug Res. 53, 758–762. [PubMed]
  14. Raj, A. A., Raghunathan, R., SrideviKumari, M. R. & Raman, N. (2003). Bioorg. Med. Chem. 11, 407–419. [DOI] [PubMed]
  15. Selvanayagam, S., Velmurugan, D., Ravikumar, K., Jayashankaran, J., Durga, R. R. & Raghunathan, R. (2004). Acta Cryst. E60, o2216–o2218.
  16. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  17. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  18. Shirai, R., Takayama, H., Nishikawa, A., Koiso, Y. & Hashimoto, Y. (1998). Bioorg. Med. Chem. Lett. 8, 1997–2000. [DOI] [PubMed]
  19. Smith, C. E., Williamson, W. R. N., Cashin, C. N. & Kitchen, E. A. (1979). J. Med. Chem. 22, 1464–1469. [DOI] [PubMed]
  20. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  21. Stylianakis, I., Kolocouris, A., Kolocouris, N., Fytas, G., Foscolos, G. B., Padalko, E., Neyts, J. & De Clercq, E. (2003). Bioorg. Med. Chem. Lett. 13, 1699–1703. [DOI] [PubMed]
  22. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015018034/rz5168sup1.cif

e-71-0o814-sup1.cif (1.4MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015018034/rz5168Isup2.hkl

e-71-0o814-Isup2.hkl (406.1KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015018034/rz5168Isup3.cml

. DOI: 10.1107/S2056989015018034/rz5168fig1.tif

The mol­ecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level. H atoms are shown as small spheres of arbitary radius.

a via . DOI: 10.1107/S2056989015018034/rz5168fig2.tif

Partial crystal packing of the title compound showing the formation of a mol­ecular chain parallel to the a axis via C—H⋯O hydrogen bonds (dashed lines).

CCDC reference: 1427830

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES