Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Oct 17;71(Pt 11):o854–o855. doi: 10.1107/S2056989015019167

Crystal structure of 2-cyano-1-methyl­pyridinium bromide

Vu D Nguyen a, Cameron A McCormick a, Robert A Pascal Jr b, Joel T Mague b,*, Lynn V Koplitz a
PMCID: PMC4645077  PMID: 26594562

Abstract

In the title mol­ecular salt, C7H7N2 +·Br, all the non-H atoms lie on crystallographic mirror planes. The packing consists of (010) cation–anion layers, with the cations forming dimeric units via very weak pairwise C—H⋯N inter­actions. Weak C—H⋯Br inter­actions link the cations to the anions.

Keywords: crystal structure, salt, 2-cyano-1-methyl­pyridinium bromide

Related literature  

For structures of other salts of the 2-cyano-1-methyl­pyridinium cation, see: Koplitz et al. (2012); Kammer et al. (2013); Vaccaro et al. (2015). For structures of salts of the isomeric 2-cyano­anilinium cation, see: Oueslati et al. (2005); Cui & Wen (2008); Zhang, L. (2009); Zhang, Y. (2009); Cui & Chen (2010); Vumbaco et al. (2013).graphic file with name e-71-0o854-scheme1.jpg

Experimental  

Crystal data  

  • C7H7N2 +·Br

  • M r = 199.06

  • Monoclinic, Inline graphic

  • a = 13.3039 (12) Å

  • b = 6.5892 (6) Å

  • c = 9.3753 (8) Å

  • β = 92.419 (1)°

  • V = 821.13 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.93 mm−1

  • T = 150 K

  • 0.20 × 0.15 × 0.06 mm

Data collection  

  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (TWINABS; Sheldrick, 2009) T min = 0.44, T max = 0.74

  • 22367 measured reflections

  • 1179 independent reflections

  • 1084 reflections with I > 2σ(I)

  • R int = 0.021

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.023

  • wR(F 2) = 0.048

  • S = 1.02

  • 1179 reflections

  • 62 parameters

  • H-atom parameters constrained

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.44 e Å−3

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT and CELL_NOW (Sheldrick, 2008a ); program(s) used to solve structure: SHELXT (Sheldrick, 2015a ); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b ); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008b ).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989015019167/hb7523sup1.cif

e-71-0o854-sup1.cif (78.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015019167/hb7523Isup2.hkl

e-71-0o854-Isup2.hkl (96.1KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015019167/hb7523Isup3.cml

. DOI: 10.1107/S2056989015019167/hb7523fig1.tif

The title compound with labeling scheme and 50% probability ellipsoids.

c . DOI: 10.1107/S2056989015019167/hb7523fig2.tif

Packing viewed down the c axis showing the layer structure.

b . DOI: 10.1107/S2056989015019167/hb7523fig3.tif

Packing viewed down the b axis showing the weak C—H⋯N (blue dotted lines) and C—H⋯Br (orange dotted lines) inter­actions.

CCDC reference: 1430625

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
C5H5N2i 0.95 2.66 3.549(3) 155
C1H1ABr1ii 0.98 2.96 3.876(2) 156
C2H2Br1ii 0.95 2.66 3.586(2) 166
C3H3Br1iii 0.95 2.77 3.711(2) 170

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

JTM thanks Tulane University for support of the Tulane Crystallography Laboratory.

supplementary crystallographic information

S1. Comment

The cation in the title compound has crystallographically imposed mirror symmetry with the methyl H atoms slightly disordered about the mirror. The packing thus consists of cation/anion layers (Fig. 2) with the cations forming dimeric units via weak, pairwise C5—H5···N2 interactions (Fig. 3 and Table 1). Within the layers weak C—H···Br interactions tie the cations and anions together (Fig. 3 and Table 1).

S2. Experimental

2-Cyanopyridine (4.04 g, 38.8 mmol) was first melted in a warm water bath and then dissolved in toluene (15 ml). Gaseous bromomethane was condensed (roughly 5 ml, 170 mmol) and added to this solution slowly. The reaction mixture was thoroughly mixed to yield a light amber homogenous solution and left to evaporate slowly. Light yellow shiny flakes of 2-cyano-1-methylpyridinium bromide (m.p. 196.4–197.4 C) were collected by vacuum filtration.

S3. Refinement

H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.98 Å). All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms. Trial refinements with the single-component reflection file extracted from the full dataset with TWINABS and with the full, 2-component reflection file indicated the former refinement to be superior.

Figures

Fig. 1.

Fig. 1.

The title compound with labeling scheme and 50% probability ellipsoids.

Fig. 2.

Fig. 2.

Packing viewed down the c axis showing the layer structure.

Fig. 3.

Fig. 3.

Packing viewed down the b axis showing the weak C—H···N (blue dotted lines) and C—H···Br (orange dotted lines) interactions.

Crystal data

C7H7N2+·Br F(000) = 392
Mr = 199.06 Dx = 1.610 Mg m3
Monoclinic, C2/m Mo Kα radiation, λ = 0.71073 Å
a = 13.3039 (12) Å Cell parameters from 9936 reflections
b = 6.5892 (6) Å θ = 2.2–29.1°
c = 9.3753 (8) Å µ = 4.93 mm1
β = 92.419 (1)° T = 150 K
V = 821.13 (13) Å3 Block, colourless
Z = 4 0.20 × 0.15 × 0.06 mm

Data collection

Bruker SMART APEX CCD diffractometer 1179 independent reflections
Radiation source: fine-focus sealed tube 1084 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.021
Detector resolution: 8.3660 pixels mm-1 θmax = 29.1°, θmin = 2.2°
φ and ω scans h = −18→18
Absorption correction: multi-scan (TWINABS; Sheldrick, 2009) k = −8→8
Tmin = 0.44, Tmax = 0.74 l = −12→12
22367 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.048 H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0234P)2] where P = (Fo2 + 2Fc2)/3
1179 reflections (Δ/σ)max = 0.001
62 parameters Δρmax = 0.51 e Å3
0 restraints Δρmin = −0.44 e Å3

Special details

Experimental. The diffraction data were obtained from 3 sets of 400 frames, each of width 0.5° in ω, colllected at φ = 0.00, 90.00 and 180.00° and 2 sets of 800 frames, each of width 0.45° in φ, collected at ω = -30.00 and 210.00°. The scan time was 20 sec/frame. Analysis of 1897 reflections having I/σ(I) > 13 and chosen from the full data set with CELL_NOW (Sheldrick, 2008a) showed the crystal to belong to the monoclinic system and to be twinned by a 180 ° rotation about a*. The raw data were processed using the multi-component version of SAINT under control of the two-component orientation file generated by CELL_NOW.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.98 Å). All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms. Trial refinements with the single-component reflection file extracted from the full dataset with TWINABS and with the full, 2-component reflection file indicated the former refinement to be superior.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
N1 0.29873 (14) 0.0000 0.32868 (18) 0.0177 (4)
N2 0.53530 (17) 0.0000 0.1900 (3) 0.0399 (6)
C1 0.36322 (18) 0.0000 0.4616 (2) 0.0239 (5)
H1A 0.3212 0.0177 0.5440 0.036* 0.5
H1B 0.4118 0.1116 0.4584 0.036* 0.5
H1C 0.3993 −0.1293 0.4701 0.036* 0.5
C2 0.19853 (17) 0.0000 0.3369 (2) 0.0218 (5)
H2 0.1698 0.0000 0.4280 0.026*
C3 0.13619 (18) 0.0000 0.2157 (2) 0.0269 (5)
H3 0.0652 0.0000 0.2229 0.032*
C4 0.17863 (19) 0.0000 0.0830 (3) 0.0273 (5)
H4 0.1368 0.0000 −0.0017 0.033*
C5 0.28191 (18) 0.0000 0.0749 (2) 0.0237 (5)
H5 0.3120 0.0000 −0.0152 0.028*
C6 0.34090 (17) 0.0000 0.1994 (2) 0.0198 (4)
C7 0.44985 (19) 0.0000 0.1969 (3) 0.0280 (5)
Br1 0.36532 (2) 0.5000 0.29528 (2) 0.02252 (9)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0207 (9) 0.0176 (8) 0.0152 (9) 0.000 0.0033 (7) 0.000
N2 0.0292 (12) 0.0484 (15) 0.0431 (14) 0.000 0.0139 (10) 0.000
C1 0.0261 (12) 0.0271 (12) 0.0182 (11) 0.000 −0.0025 (9) 0.000
C2 0.0220 (11) 0.0245 (11) 0.0196 (11) 0.000 0.0076 (8) 0.000
C3 0.0219 (11) 0.0337 (13) 0.0251 (12) 0.000 0.0018 (9) 0.000
C4 0.0300 (13) 0.0314 (13) 0.0203 (11) 0.000 −0.0022 (9) 0.000
C5 0.0315 (13) 0.0232 (11) 0.0170 (10) 0.000 0.0085 (9) 0.000
C6 0.0207 (11) 0.0178 (10) 0.0216 (11) 0.000 0.0080 (8) 0.000
C7 0.0274 (13) 0.0294 (13) 0.0280 (13) 0.000 0.0104 (10) 0.000
Br1 0.02982 (14) 0.02142 (12) 0.01687 (12) 0.000 0.00747 (8) 0.000

Geometric parameters (Å, º)

N1—C2 1.339 (3) C2—H2 0.9500
N1—C6 1.357 (3) C3—C4 1.388 (3)
N1—C1 1.482 (3) C3—H3 0.9500
N2—C7 1.141 (3) C4—C5 1.379 (3)
C1—H1A 0.9800 C4—H4 0.9500
C1—H1B 0.9800 C5—C6 1.379 (3)
C1—H1C 0.9800 C5—H5 0.9500
C2—C3 1.378 (3) C6—C7 1.451 (3)
C2—N1—C6 120.12 (19) C2—C3—H3 120.5
C2—N1—C1 119.61 (18) C4—C3—H3 120.5
C6—N1—C1 120.28 (18) C5—C4—C3 119.5 (2)
N1—C1—H1A 109.5 C5—C4—H4 120.2
N1—C1—H1B 109.5 C3—C4—H4 120.2
H1A—C1—H1B 109.5 C6—C5—C4 119.1 (2)
N1—C1—H1C 109.5 C6—C5—H5 120.4
H1A—C1—H1C 109.5 C4—C5—H5 120.4
H1B—C1—H1C 109.5 N1—C6—C5 120.9 (2)
N1—C2—C3 121.25 (19) N1—C6—C7 117.8 (2)
N1—C2—H2 119.4 C5—C6—C7 121.3 (2)
C3—C2—H2 119.4 N2—C7—C6 177.7 (3)
C2—C3—C4 119.1 (2)
C6—N1—C2—C3 0.000 (1) C1—N1—C6—C5 180.000 (1)
C1—N1—C2—C3 180.000 (1) C2—N1—C6—C7 180.000 (1)
N1—C2—C3—C4 0.000 (1) C1—N1—C6—C7 0.000 (1)
C2—C3—C4—C5 0.000 (1) C4—C5—C6—N1 0.000 (1)
C3—C4—C5—C6 0.000 (1) C4—C5—C6—C7 180.0
C2—N1—C6—C5 0.000 (1)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C5—H5···N2i 0.95 2.66 3.549 (3) 155
C1—H1A···Br1ii 0.98 2.96 3.876 (2) 156
C2—H2···Br1ii 0.95 2.66 3.586 (2) 166
C3—H3···Br1iii 0.95 2.77 3.711 (2) 170

Symmetry codes: (i) −x+1, −y, −z; (ii) −x+1/2, −y+1/2, −z+1; (iii) x−1/2, y−1/2, z.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: HB7523).

References

  1. Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  2. Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc, Madison, Wisconsin, USA.
  3. Cui, L.-J. & Chen, X.-Y. (2010). Acta Cryst. E66, o467. [DOI] [PMC free article] [PubMed]
  4. Cui, L.-J. & Wen, X.-C. (2008). Acta Cryst. E64, o1620. [DOI] [PMC free article] [PubMed]
  5. Kammer, M. N., Koplitz, L. V. & Mague, J. T. (2013). Acta Cryst. E69, o1281. [DOI] [PMC free article] [PubMed]
  6. Koplitz, L. V., Mague, J. T., Kammer, M. N., McCormick, C. A., Renfro, H. E. & Vumbaco, D. J. (2012). Acta Cryst. E68, o1653. [DOI] [PMC free article] [PubMed]
  7. Oueslati, A., Kefi, R., Akriche, S. & Ben Nasr, C. (2005). Z. Kristallogr. New Cryst. Struct. 220, 365–366.
  8. Sheldrick, G. M. (2008a). CELL_NOW. University of Göttingen, Germany.
  9. Sheldrick, G. M. (2008b). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Sheldrick, G. M. (2009). TWINABS. University of Göttingen, Germany.
  11. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  12. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  13. Vaccaro, F. A., Koplitz, L. V. & Mague, J. T. (2015). Acta Cryst. E71, o697–o698. [DOI] [PMC free article] [PubMed]
  14. Vumbaco, D. J., Kammer, M. N., Koplitz, L. V. & Mague, J. T. (2013). Acta Cryst. E69, o1288. [DOI] [PMC free article] [PubMed]
  15. Zhang, Y. (2009). Acta Cryst. E65, o2373. [DOI] [PMC free article] [PubMed]
  16. Zhang, L. (2009). Acta Cryst. E65, o2407. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989015019167/hb7523sup1.cif

e-71-0o854-sup1.cif (78.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015019167/hb7523Isup2.hkl

e-71-0o854-Isup2.hkl (96.1KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015019167/hb7523Isup3.cml

. DOI: 10.1107/S2056989015019167/hb7523fig1.tif

The title compound with labeling scheme and 50% probability ellipsoids.

c . DOI: 10.1107/S2056989015019167/hb7523fig2.tif

Packing viewed down the c axis showing the layer structure.

b . DOI: 10.1107/S2056989015019167/hb7523fig3.tif

Packing viewed down the b axis showing the weak C—H⋯N (blue dotted lines) and C—H⋯Br (orange dotted lines) inter­actions.

CCDC reference: 1430625

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES