Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Oct 3;71(Pt 11):o807–o808. doi: 10.1107/S2056989015018022

Crystal structure of 2-amino-N-(2-fluoro­phen­yl)-4,5,6,7-tetra­hydro-1-benzo­thio­phene-3-carboxamide

K Chandra Kumar a, V Umesh b, T K Madhura c, B M Rajesh a, Chandra d,*
PMCID: PMC4645083  PMID: 26594537

Abstract

In the title compound, C15H15FN2OS, the dihedral angle between the planes of the benzo­thio­phene ring system and the fluoro­benzene ring is 3.74 (14)°. The six-membered ring of the benzo­thio­phene moiety adopts a half-chair conformation. The mol­ecular conformation is consolidated by intra­molecular N—H⋯F and N—H⋯O hydrogen bonds. In the crystal, mol­ecules are linked by N—H⋯O hydrogen bonds, generating C(6) [001] chains.

Keywords: crystal structure, benzo­thio­phene derivative, biological properties, hydrogen bonding

Related literature  

For background to thio­phene derivatives, see: Bonini et al. (2005); Brault et al. (2005); Isloor et al. (2010). For inter­molecular inter­actions involving F atoms, see: Choudhury et al. (2004).graphic file with name e-71-0o807-scheme1.jpg

Experimental  

Crystal data  

  • C15H15FN2OS

  • M r = 290.36

  • Monoclinic Inline graphic

  • a = 11.213 (13) Å

  • b = 14.231 (17) Å

  • c = 9.582 (15) Å

  • β = 116.76 (3)°

  • V = 1365 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 293 K

  • 0.30 × 0.25 × 0.20 mm

Data collection  

  • Bruker APEXII CCD area-detector diffractometer

  • 5264 measured reflections

  • 2577 independent reflections

  • 2363 reflections with I > 2σ(I)

  • R int = 0.029

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.038

  • wR(F 2) = 0.081

  • S = 1.84

  • 2577 reflections

  • 182 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.29 e Å−3

  • Absolute structure: Flack (1983)

  • Absolute structure parameter: 0.06 (7)

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989015018022/hb7493sup1.cif

e-71-0o807-sup1.cif (18.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015018022/hb7493Isup2.hkl

e-71-0o807-Isup2.hkl (126.6KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015018022/hb7493Isup3.cml

. DOI: 10.1107/S2056989015018022/hb7493fig1.tif

Perspective diagram of the mol­ecule with 50% probability displacement ellipsoids.

. DOI: 10.1107/S2056989015018022/hb7493fig2.tif

Packing diagram of the mol­ecule viewed down the ’a′ axis.

CCDC reference: 1045467

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
N8H9AF7 0.86 2.26 2.643(5) 107
N16H15CO10 0.86 2.16 2.733(5) 124
N16H15DO10i 0.86 2.25 2.986(6) 143

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors thank the University of Mysore and HKBK College of Engineering for support.

supplementary crystallographic information

S1. Comment

Thiophene nucleus has been established as a potential entity in the largely growing chemical world of heterocyclic compounds possessing promising pharmacological characteristics such as anti-HIV PR inhibitors (Bonini et al., 2005) and anti-breast cancer (Brault et al., 2005) activities. Particularly, benzothiophene derivative shows significant antimicrobial and anti- inflammatory activities (Isloora et al., 2010). In addition structures containing fluorine atoms plays a major role in intermolecular interactions (Choudhury et al., 2004). The title compound was prepared and characterized by single-crystal X-ray diffraction studies.

In the molecular structure of the title compound (Fig. 1), the dihedral angle between the flurobenzene (C1–C2–C3–C4–C5–C6) and benzothiophene (C11–C12–C13–S14–C15–C17–C18–C19–C20) ring is 3.74 (14)°. The benzothiophene moiety adopts a half chair conformation conformation with puckering parameter Q = 0.475 (3) Å and φ = 215.4 (5)°, and the maximum deviation found on the puckered atom at C18 is 0.372 (4) Å. The carboximidamide unit is in anti-periplanar conformation with respect to the benzothiophene moiety, as indicated by the torsion angle value of 161.9 (3)° (N8–C9–C11–C15). The crystal structure features intermolecular N—H···O hydrogen bonds. The packing diagram of the molecule viewed down the a axis as shown in Fig. 2.

S2. Experimental

Cyclohexanone (1 equiv.), 2-cyano-N-(2-fluorophenyl) acetamide (1.1 equiv.), elemental sulfur (1.2 equiv.), diethylamine (0.8 equiv.) was taken in ethanol and mixed thoroughly in a microwave tube. The tube was sealed and irradiated at 325 K for 15 min. After cooling ethyl acetate was added to the reaction mixture and solid residue was removed by filtration. The filtrate was concentrated under reduced pressure and purified by column chromatography to obtain yellow block shaped crystals.

S3. Refinement

H atoms were placed at idealized positions and allowed to ride on their parent atoms with N–H distance is equal to 0.86 and C–H distances in the range of 0.93 to 0.97 Å; Uiso(H) = 1.2–1.5Ueq(carrier atom) for all H atoms.

Figures

Fig. 1.

Fig. 1.

Perspective diagram of the molecule with 50% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

Packing diagram of the molecule viewed down the 'a' axis.

Crystal data

C15H15FN2OS F(000) = 608
Mr = 290.36 Dx = 1.413 Mg m3
Monoclinic, Cc Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2yc Cell parameters from 2577 reflections
a = 11.213 (13) Å θ = 2.5–26.4°
b = 14.231 (17) Å µ = 0.25 mm1
c = 9.582 (15) Å T = 293 K
β = 116.76 (3)° Bolck, yellow
V = 1365 (3) Å3 0.30 × 0.25 × 0.20 mm
Z = 4

Data collection

Bruker APEXII CCD area-detector diffractometer Rint = 0.029
ω and φ scans θmax = 26.4°, θmin = 2.5°
5264 measured reflections h = −13→14
2577 independent reflections k = −17→17
2363 reflections with I > 2σ(I) l = −11→11

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038 H-atom parameters constrained
wR(F2) = 0.081 w = 1/[σ2(Fo2) + (0.010P)2] where P = (Fo2 + 2Fc2)/3
S = 1.84 (Δ/σ)max < 0.001
2577 reflections Δρmax = 0.20 e Å3
182 parameters Δρmin = −0.28 e Å3
2 restraints Absolute structure: Flack (1983), ??? Friedel pairs
Primary atom site location: structure-invariant direct methods Absolute structure parameter: 0.06 (7)

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S14 0.42139 (7) 0.13494 (4) 1.08277 (7) 0.0586 (3)
F7 0.17969 (19) 0.42740 (10) 0.4264 (2) 0.0746 (6)
O10 0.2917 (2) 0.10081 (11) 0.56571 (19) 0.0568 (7)
N8 0.2299 (2) 0.25423 (14) 0.5376 (2) 0.0503 (7)
N16 0.3503 (2) 0.01559 (15) 0.8447 (3) 0.0674 (9)
C1 0.1812 (2) 0.26650 (18) 0.3762 (3) 0.0466 (9)
C2 0.1530 (3) 0.1953 (2) 0.2671 (3) 0.0588 (10)
C3 0.1087 (4) 0.2175 (3) 0.1106 (3) 0.0727 (11)
C4 0.0865 (3) 0.3097 (3) 0.0601 (4) 0.0735 (13)
C5 0.1109 (3) 0.3807 (2) 0.1661 (3) 0.0643 (11)
C6 0.1566 (3) 0.35800 (18) 0.3201 (3) 0.0519 (9)
C9 0.2880 (3) 0.17625 (17) 0.6279 (3) 0.0444 (9)
C11 0.3397 (2) 0.18699 (17) 0.7955 (3) 0.0423 (8)
C12 0.3705 (3) 0.27223 (17) 0.8901 (3) 0.0422 (8)
C13 0.4142 (3) 0.25543 (17) 1.0436 (3) 0.0478 (8)
C15 0.3637 (3) 0.10698 (17) 0.8869 (3) 0.0483 (9)
C17 0.3638 (3) 0.37266 (16) 0.8342 (3) 0.0497 (9)
C18 0.4470 (3) 0.43925 (17) 0.9684 (3) 0.0575 (10)
C19 0.4211 (4) 0.42420 (18) 1.1078 (3) 0.0665 (11)
C20 0.4583 (3) 0.32519 (19) 1.1743 (3) 0.0583 (10)
H2A 0.16370 0.13280 0.29880 0.0710*
H3A 0.09370 0.16960 0.03860 0.0870*
H4A 0.05520 0.32350 −0.04550 0.0880*
H5A 0.09670 0.44300 0.13370 0.0770*
H9A 0.22220 0.30220 0.58740 0.0600*
H15C 0.32330 0.00050 0.74820 0.0810*
H15D 0.36900 −0.02760 0.91420 0.0810*
H18A 0.55430 0.32090 1.23760 0.0700*
H18B 0.41570 0.31140 1.24040 0.0700*
H20A 0.32720 0.43510 1.07740 0.0800*
H20B 0.47240 0.46950 1.18820 0.0800*
H21A 0.54110 0.42920 0.99880 0.0690*
H21B 0.42570 0.50370 0.93290 0.0690*
H22A 0.27150 0.39340 0.78560 0.0600*
H22B 0.39610 0.37500 0.75590 0.0600*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S14 0.0914 (6) 0.0458 (4) 0.0421 (4) 0.0089 (4) 0.0332 (4) 0.0085 (3)
F7 0.1052 (14) 0.0470 (9) 0.0552 (10) −0.0004 (8) 0.0217 (9) −0.0020 (7)
O10 0.0853 (14) 0.0416 (10) 0.0432 (10) 0.0028 (9) 0.0286 (10) −0.0026 (8)
N8 0.0726 (15) 0.0413 (11) 0.0362 (11) 0.0066 (10) 0.0239 (11) −0.0015 (8)
N16 0.116 (2) 0.0397 (13) 0.0496 (13) 0.0007 (12) 0.0400 (13) 0.0038 (10)
C1 0.0467 (15) 0.0481 (16) 0.0397 (15) 0.0014 (11) 0.0147 (13) 0.0030 (11)
C2 0.073 (2) 0.0556 (17) 0.0419 (15) 0.0064 (14) 0.0206 (15) 0.0020 (12)
C3 0.087 (2) 0.080 (2) 0.0370 (15) 0.0112 (17) 0.0154 (15) −0.0070 (15)
C4 0.095 (3) 0.083 (2) 0.0342 (15) 0.0095 (19) 0.0217 (16) 0.0113 (14)
C5 0.070 (2) 0.0614 (18) 0.0486 (18) 0.0004 (14) 0.0153 (15) 0.0137 (13)
C6 0.0546 (17) 0.0487 (16) 0.0459 (16) −0.0034 (12) 0.0170 (13) −0.0001 (12)
C9 0.0539 (17) 0.0385 (13) 0.0445 (14) −0.0016 (12) 0.0255 (13) 0.0000 (11)
C11 0.0541 (17) 0.0391 (13) 0.0377 (13) 0.0027 (11) 0.0241 (13) 0.0029 (10)
C12 0.0534 (16) 0.0389 (13) 0.0379 (15) 0.0012 (11) 0.0238 (13) 0.0015 (10)
C13 0.0616 (16) 0.0414 (13) 0.0426 (15) 0.0068 (12) 0.0255 (14) 0.0037 (10)
C15 0.0671 (19) 0.0425 (14) 0.0408 (15) 0.0012 (12) 0.0293 (14) 0.0005 (11)
C17 0.0697 (17) 0.0404 (14) 0.0431 (13) 0.0014 (12) 0.0291 (12) 0.0014 (10)
C18 0.075 (2) 0.0433 (14) 0.0542 (16) −0.0033 (13) 0.0292 (15) −0.0045 (12)
C19 0.100 (2) 0.0474 (15) 0.059 (2) 0.0027 (16) 0.0418 (19) −0.0082 (14)
C20 0.079 (2) 0.0536 (16) 0.0434 (16) 0.0055 (14) 0.0286 (15) −0.0018 (12)

Geometric parameters (Å, º)

S14—C13 1.749 (4) C12—C17 1.516 (4)
S14—C15 1.734 (4) C12—C13 1.346 (4)
F7—C6 1.357 (4) C13—C20 1.497 (4)
O10—C9 1.238 (4) C17—C18 1.530 (4)
N8—C1 1.400 (4) C18—C19 1.505 (5)
N8—C9 1.377 (4) C19—C20 1.525 (4)
N16—C15 1.350 (4) C2—H2A 0.9300
N8—H9A 0.8600 C3—H3A 0.9300
N16—H15C 0.8600 C4—H4A 0.9300
N16—H15D 0.8600 C5—H5A 0.9300
C1—C6 1.388 (4) C17—H22A 0.9700
C1—C2 1.386 (4) C17—H22B 0.9700
C2—C3 1.387 (4) C18—H21A 0.9700
C3—C4 1.382 (6) C18—H21B 0.9700
C4—C5 1.370 (5) C19—H20A 0.9700
C5—C6 1.365 (4) C19—H20B 0.9700
C9—C11 1.449 (4) C20—H18A 0.9700
C11—C12 1.460 (4) C20—H18B 0.9700
C11—C15 1.387 (4)
C13—S14—C15 91.95 (12) C12—C17—C18 111.9 (2)
C1—N8—C9 129.3 (2) C17—C18—C19 111.7 (3)
C9—N8—H9A 115.00 C18—C19—C20 112.1 (3)
C1—N8—H9A 115.00 C13—C20—C19 109.8 (2)
H15C—N16—H15D 120.00 C1—C2—H2A 120.00
C15—N16—H15D 120.00 C3—C2—H2A 120.00
C15—N16—H15C 120.00 C2—C3—H3A 119.00
C2—C1—C6 117.1 (2) C4—C3—H3A 120.00
N8—C1—C2 125.8 (2) C3—C4—H4A 120.00
N8—C1—C6 117.1 (2) C5—C4—H4A 120.00
C1—C2—C3 119.9 (3) C4—C5—H5A 121.00
C2—C3—C4 121.0 (3) C6—C5—H5A 121.00
C3—C4—C5 119.8 (3) C12—C17—H22A 109.00
C4—C5—C6 118.6 (3) C12—C17—H22B 109.00
F7—C6—C5 119.4 (2) C18—C17—H22A 109.00
C1—C6—C5 123.6 (2) C18—C17—H22B 109.00
F7—C6—C1 117.0 (2) H22A—C17—H22B 108.00
N8—C9—C11 116.8 (2) C17—C18—H21A 109.00
O10—C9—N8 120.4 (2) C17—C18—H21B 109.00
O10—C9—C11 122.8 (2) C19—C18—H21A 109.00
C9—C11—C12 129.8 (2) C19—C18—H21B 109.00
C9—C11—C15 118.7 (2) H21A—C18—H21B 108.00
C12—C11—C15 111.5 (2) C18—C19—H20A 109.00
C11—C12—C13 113.5 (2) C18—C19—H20B 109.00
C13—C12—C17 119.3 (2) C20—C19—H20A 109.00
C11—C12—C17 127.1 (2) C20—C19—H20B 109.00
S14—C13—C20 120.30 (19) H20A—C19—H20B 108.00
C12—C13—C20 128.1 (2) C13—C20—H18A 110.00
S14—C13—C12 111.56 (19) C13—C20—H18B 110.00
S14—C15—C11 111.52 (19) C19—C20—H18A 110.00
N16—C15—C11 129.6 (2) C19—C20—H18B 110.00
S14—C15—N16 118.8 (2) H18A—C20—H18B 108.00
C15—S14—C13—C12 −0.1 (3) N8—C9—C11—C12 −16.9 (5)
C15—S14—C13—C20 −178.1 (3) N8—C9—C11—C15 161.9 (3)
C13—S14—C15—N16 178.9 (3) C9—C11—C12—C13 178.4 (3)
C13—S14—C15—C11 −0.1 (3) C9—C11—C12—C17 −4.5 (6)
C9—N8—C1—C2 16.1 (5) C15—C11—C12—C13 −0.4 (4)
C9—N8—C1—C6 −165.1 (3) C15—C11—C12—C17 176.8 (3)
C1—N8—C9—O10 −7.0 (5) C9—C11—C15—S14 −178.6 (2)
C1—N8—C9—C11 174.7 (3) C9—C11—C15—N16 2.4 (5)
N8—C1—C2—C3 −178.1 (3) C12—C11—C15—S14 0.3 (4)
C6—C1—C2—C3 3.2 (5) C12—C11—C15—N16 −178.6 (3)
N8—C1—C6—F7 −1.1 (4) C11—C12—C13—S14 0.3 (4)
N8—C1—C6—C5 179.0 (3) C11—C12—C13—C20 178.1 (3)
C2—C1—C6—F7 177.7 (3) C17—C12—C13—S14 −177.1 (3)
C2—C1—C6—C5 −2.1 (5) C17—C12—C13—C20 0.7 (6)
C1—C2—C3—C4 −2.8 (6) C11—C12—C17—C18 −160.2 (3)
C2—C3—C4—C5 1.3 (6) C13—C12—C17—C18 16.8 (5)
C3—C4—C5—C6 −0.2 (6) S14—C13—C20—C19 −170.8 (3)
C4—C5—C6—F7 −179.2 (3) C12—C13—C20—C19 11.5 (5)
C4—C5—C6—C1 0.6 (6) C12—C17—C18—C19 −47.1 (4)
O10—C9—C11—C12 164.9 (3) C17—C18—C19—C20 61.4 (4)
O10—C9—C11—C15 −16.4 (5) C18—C19—C20—C13 −41.6 (4)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N8—H9A···F7 0.86 2.26 2.643 (5) 107
N16—H15C···O10 0.86 2.16 2.733 (5) 124
N16—H15D···O10i 0.86 2.25 2.986 (6) 143

Symmetry code: (i) x, −y, z+1/2.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: HB7493).

References

  1. Bonini, C., Chiummiento, L., Bonis, M. D., Funicello, M., Lupattelli, P., Suanno, G., Berti, F. & Campaner, P. (2005). Tetrahedron, 61, 6580–6589.
  2. Brault, L., Migianu, E., Néguesque, A., Battaglia, E., Bagrel, D. & Kirsch, G. (2005). Eur. J. Med. Chem. 40, 757–763. [DOI] [PubMed]
  3. Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Choudhury, A. R., Nagarajan, K. & Guru Row, T. N. (2004). Acta Cryst. C60, o644–o647. [DOI] [PubMed]
  5. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  6. Isloor, A. M., Kalluraya, B. & Sridhar Pai, K. (2010). Eur. J. Med. Chem. 45, 825–830. [DOI] [PubMed]
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989015018022/hb7493sup1.cif

e-71-0o807-sup1.cif (18.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015018022/hb7493Isup2.hkl

e-71-0o807-Isup2.hkl (126.6KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015018022/hb7493Isup3.cml

. DOI: 10.1107/S2056989015018022/hb7493fig1.tif

Perspective diagram of the mol­ecule with 50% probability displacement ellipsoids.

. DOI: 10.1107/S2056989015018022/hb7493fig2.tif

Packing diagram of the mol­ecule viewed down the ’a′ axis.

CCDC reference: 1045467

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES