Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Oct 14;71(Pt 11):m195–m196. doi: 10.1107/S2056989015019052

Crystal structure of tetra­kis­(μ-caproato-κ2 O:O′)bis­[(4-cyano­pyridine-κN 1)copper(II)]

Sukanya Baruah a, Zinnatara Islam a, Sanjib Karmakar b,*, Birinchi Kumar Das a,*
PMCID: PMC4645092  PMID: 26594530

Abstract

The title dinuclear complex, [Cu2(C6H11O2)4(C6H4N2)2], has a paddle-wheel structure. The two crystallographically independent CuII atoms are each in a distorted square-pyramidal environment, in which four O atoms from the four bridging caproate ligands form the basal plane and the pyridine N atom of the 4-cyano­pyridine ligand occupies the apical position. The Cu⋯Cu distance is 2.6055 (9) Å. One of the alkyl chains of the caproate ligands is disordered over two sets of sites, with occupancies of 0.725 (5) and 0.275 (5). In the crystal, two pairs of C—H⋯N hydrogen bonds connect the mol­ecules into chains along [11-1] and C—H⋯O hydrogen bonds link the chains into a three-dimensional network.

Keywords: crystal structure, dicopper complex, 4-cyano­pyridine, hexa­noic acid

Related literature  

For related structures of copper(II) complexes, see: Brown & Chidambaram (1973); Petrič et al. (1995); Lomer & Perera (1974); Kozlevčar et al. (2000); Catterick & Thornton (1977). For applications as catalysts of dicopper(II) tetra­carboxyl­ates, see: Abied et al. (1987); Kozlevčar et al. (1999); Bora et al. (2007); Das et al. (2007); Sarmah et al. (2010).graphic file with name e-71-0m195-scheme1.jpg

Experimental  

Crystal data  

  • [Cu2(C6H11O2)4(C6H4N2)2]

  • M r = 795.92

  • Monoclinic, Inline graphic

  • a = 8.7740 (4) Å

  • b = 25.3083 (11) Å

  • c = 17.7893 (8) Å

  • β = 101.321 (2)°

  • V = 3873.3 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.15 mm−1

  • T = 100 K

  • 0.42 × 0.18 × 0.14 mm

Data collection  

  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.780, T max = 0.851

  • 29777 measured reflections

  • 11382 independent reflections

  • 8952 reflections with I > 2σ(I)

  • R int = 0.032

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.035

  • wR(F 2) = 0.084

  • S = 1.03

  • 11382 reflections

  • 502 parameters

  • 155 restraints

  • H-atom parameters constrained

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.40 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2012/9 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2012/9.

Supplementary Material

Crystal structure: contains datablock(s) I, Global. DOI: 10.1107/S2056989015019052/is5420sup1.cif

e-71-0m195-sup1.cif (906.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015019052/is5420Isup2.hkl

e-71-0m195-Isup2.hkl (616.7KB, hkl)

. DOI: 10.1107/S2056989015019052/is5420fig1.tif

Mol­ecular structure of the title compound drawn with 30% probability ellipsoid. H-atoms are shown as circles of arbitrary radius. Only one component of the disordered alkyl chain is shown.

. DOI: 10.1107/S2056989015019052/is5420fig2.tif

A packing diagram of the title compound. Hydrogen bonds are shown by dotted lines.

CCDC reference: 1430487

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
C2H2O4i 0.95 2.55 3.301(2) 137
C4H4N3ii 0.95 2.58 3.444(2) 151
C8H8N4iii 0.95 2.48 3.422(2) 169
C10H10O5iv 0.95 2.59 3.432(2) 148
C20H20BO6v 0.99 2.66 3.479(2) 141
C26H26AO3vi 0.99 2.56 3.532(2) 167

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic.

Acknowledgments

The authors thank the SAIF, Department of Instrumentation & USIC, Gauhati University, Guwahati, India, for the data collection. SB thanks the UGC, India, for a scholarship awarded under its BSR Fellowship scheme.

supplementary crystallographic information

S1. Comment

A few members of the family of dicopper(II) tetracarboxylates of the type Cu2(µ-O2CR)4L2, where R is either an alkyl or aryl group and L is pyridine or a pyridyl ligand, have been demonstrated as homogeneous catalysts in the oxidation of various alcohols (Abied et al., 1987; Kozlevčar et al., 1999; Bora et al., 2007; Das et al., 2007; Sarmah et al., 2010). In view of this it was found instructive to prepare other members of the above general formula having R = a long-chain alkyl group because the presence such alkyl groups could make the resultant dimeric carboxylates more soluble in organic solvents, and hence more effective as catalysts.

We aimed to prepare complexes of long chain carboxylic acids as only a few crystal structures of such complexes of copper(II) have been reported (Petrič et al., 1995; Lomer & Perera, 1974). The structure of the title compound, [Cu2(µ-O2CC5H11)4(4-CNpy)2], (I), is similar to that of copper(II) acetate hydrate (Brown & Chidambaram, 1973). The Cu—Cu distance of 2.6055 (9) Å is shorter than the corresponding distance in [Cu2(µ-O2CCH3)4(H2O)2] (2.614 Å) as well as that in [Cu2(OOCC5H11)4(OCN2H4)2] [2.644 (2) Å] (Kozlevčar et al., 2000). The average Cu—O bond length of 1.9731 (12) Å and the longer average Cu—N distance of 2.1837 (13) Å in the title complex are considered to be normal for [Cu2(µ-O2CR)4L2] (L = axial ligand, R = alkyl group) type of structures (Catterick & Thornton, 1977). In (I), one pair of hydrocarbon chains has the common zigzag conformation while the other pair is distorted, which facilitates efficient packing.

S2. Experimental

CuSO4·5H2O (0.749 g, 3 mmol) was dissolved in methanol (25 ml). To this solution, sodium caproate (C5H11COONa; 0.882 g, 6 mmol) and 4-cyanopyridine (0.321 g, 3 mmol) were added and the mixture was stirred for 2 h. The resulting green product was filtered off, washed with small volumes of methanol and dried in a vacuum desiccator over fused CaCl2 (yield 80%). The product was dissolved in acetonitrile to get a greenish homogeneous solution which was allowed to concentrate by evaporation at room temperature. Single crystals suitable for X-ray diffraction were obtained from this solution after one day and collected by filtration.

S3. Refinement

H atoms were located in a difference Fourier map and were subsequently treated as riding with C—H = 0.95–0.99 Å, and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C). One of the alkyl chains of caproato ligands is disordered over two sites with refined occupancies of 0.725 (5) and 0.275 (5). Restraints of same displacement parameters (SIMU) and same distances (SADI) were applied for the disordered C atoms, C32–C36 and C32'–C36'.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound drawn with 30% probability ellipsoid. H-atoms are shown as circles of arbitrary radius. Only one component of the disordered alkyl chain is shown.

Fig. 2.

Fig. 2.

A packing diagram of the title compound. Hydrogen bonds are shown by dotted lines.

Crystal data

[Cu2(C6H11O2)4(C6H4N2)2] F(000) = 1672
Mr = 795.92 Dx = 1.365 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 8.7740 (4) Å Cell parameters from 6882 reflections
b = 25.3083 (11) Å θ = 2.6–28.2°
c = 17.7893 (8) Å µ = 1.15 mm1
β = 101.321 (2)° T = 100 K
V = 3873.3 (3) Å3 Plate, green
Z = 4 0.42 × 0.18 × 0.14 mm

Data collection

Bruker SMART APEXII CCD diffractometer 8952 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.032
ω and φ scan θmax = 30.1°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −12→12
Tmin = 0.780, Tmax = 0.851 k = −35→27
29777 measured reflections l = −25→20
11382 independent reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.084 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0362P)2 + 1.043P] where P = (Fo2 + 2Fc2)/3
11382 reflections (Δ/σ)max = 0.002
502 parameters Δρmax = 0.47 e Å3
155 restraints Δρmin = −0.40 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. One of the four pentane side chains was found to be two fold disordered·The components of disorder could be completed through successive difference fourier·The two components were refined with sum of their occupancies restrained as 1. Also the bond distances and thermal parameters of the disordered components were restrained to be with in chemically meaningful range. Finally when the refinement converged the relative occupancies were 0.725 and 0.275. The alkyl and aromatic H atoms were allowed to ride at a distance of 0.99 Å and 0.95 Å respectively during refinement.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
C1 0.60748 (19) 0.30675 (7) 0.58958 (9) 0.0163 (3)
H1 0.6381 0.2711 0.5851 0.020*
C2 0.6355 (2) 0.34294 (7) 0.53544 (10) 0.0177 (3)
H2 0.6834 0.3324 0.4943 0.021*
C3 0.59136 (19) 0.39498 (7) 0.54309 (9) 0.0164 (3)
C4 0.52020 (19) 0.40919 (7) 0.60344 (9) 0.0166 (3)
H4 0.4885 0.4446 0.6094 0.020*
C5 0.49707 (19) 0.37039 (7) 0.65427 (9) 0.0155 (3)
H5 0.4490 0.3798 0.6958 0.019*
C6 0.6159 (2) 0.43498 (8) 0.48848 (10) 0.0223 (4)
C7 0.24481 (19) 0.10600 (7) 0.89762 (9) 0.0157 (3)
H7 0.2710 0.0899 0.8536 0.019*
C8 0.16697 (19) 0.07593 (7) 0.94337 (9) 0.0172 (3)
H8 0.1395 0.0402 0.9312 0.021*
C9 0.13064 (19) 0.10037 (7) 1.00806 (9) 0.0157 (3)
C10 0.17279 (19) 0.15263 (7) 1.02468 (9) 0.0152 (3)
H10 0.1501 0.1696 1.0688 0.018*
C11 0.24889 (18) 0.17907 (7) 0.97479 (9) 0.0143 (3)
H11 0.2771 0.2150 0.9852 0.017*
C12 0.0483 (2) 0.07087 (7) 1.05751 (10) 0.0202 (4)
C13 0.48541 (19) 0.30546 (7) 0.88176 (10) 0.0165 (3)
C14 0.5101 (2) 0.34881 (7) 0.94087 (10) 0.0217 (4)
H14A 0.5642 0.3336 0.9902 0.026*
H14B 0.4069 0.3612 0.9482 0.026*
C15 0.6021 (2) 0.39649 (7) 0.92292 (10) 0.0223 (4)
H15A 0.6977 0.3843 0.9065 0.027*
H15B 0.5392 0.4165 0.8800 0.027*
C16 0.6459 (2) 0.43256 (7) 0.99196 (10) 0.0220 (4)
H16A 0.5497 0.4435 1.0090 0.026*
H16B 0.7098 0.4122 1.0343 0.026*
C17 0.7348 (3) 0.48173 (8) 0.97790 (11) 0.0295 (4)
H17A 0.8284 0.4712 0.9582 0.035*
H17B 0.6688 0.5035 0.9381 0.035*
C18 0.7842 (3) 0.51469 (8) 1.04962 (11) 0.0332 (5)
H18A 0.6923 0.5244 1.0703 0.050*
H18B 0.8363 0.5468 1.0370 0.050*
H18C 0.8558 0.4942 1.0880 0.050*
C19 0.70285 (19) 0.19658 (7) 0.81562 (9) 0.0154 (3)
C20 0.86267 (19) 0.17169 (7) 0.82889 (10) 0.0176 (3)
H20A 0.8726 0.1458 0.8713 0.021*
H20B 0.9427 0.1993 0.8439 0.021*
C21 0.8892 (2) 0.14391 (8) 0.75616 (10) 0.0226 (4)
H21A 0.8788 0.1702 0.7143 0.027*
H21B 0.9969 0.1302 0.7653 0.027*
C22 0.7773 (2) 0.09835 (8) 0.73012 (11) 0.0253 (4)
H22A 0.6694 0.1113 0.7254 0.030*
H22B 0.7903 0.0867 0.6786 0.030*
C23 0.8004 (2) 0.05124 (8) 0.78378 (12) 0.0297 (4)
H23A 0.7936 0.0633 0.8360 0.036*
H23B 0.9061 0.0368 0.7860 0.036*
C24 0.6826 (3) 0.00750 (10) 0.75984 (13) 0.0411 (6)
H24A 0.5784 0.0204 0.7624 0.062*
H24B 0.7083 −0.0227 0.7944 0.062*
H24C 0.6849 −0.0034 0.7072 0.062*
C25 0.15800 (19) 0.27344 (7) 0.74169 (9) 0.0150 (3)
C26 0.00487 (19) 0.30213 (7) 0.72607 (10) 0.0174 (3)
H26A −0.0743 0.2813 0.7458 0.021*
H26B −0.0310 0.3069 0.6702 0.021*
C27 0.0260 (2) 0.35598 (7) 0.76576 (10) 0.0198 (4)
H27A 0.0592 0.3505 0.8217 0.024*
H27B 0.1097 0.3755 0.7477 0.024*
C28 −0.12088 (19) 0.38928 (7) 0.75090 (10) 0.0184 (3)
H28A −0.2024 0.3710 0.7725 0.022*
H28B −0.1586 0.3926 0.6949 0.022*
C29 −0.0954 (2) 0.44412 (8) 0.78583 (11) 0.0252 (4)
H29A −0.0742 0.4409 0.8424 0.030*
H29B −0.0025 0.4600 0.7710 0.030*
C30 −0.2329 (2) 0.48086 (8) 0.76122 (12) 0.0325 (5)
H30A −0.2500 0.4863 0.7056 0.049*
H30B −0.2114 0.5149 0.7874 0.049*
H30C −0.3260 0.4651 0.7747 0.049*
C31 0.36022 (19) 0.16115 (7) 0.68197 (10) 0.0166 (3)
C32 0.2997 (7) 0.1186 (4) 0.6233 (6) 0.0184 (13) 0.725 (5)
H32A 0.3523 0.0848 0.6405 0.022* 0.725 (5)
H32B 0.3279 0.1282 0.5739 0.022* 0.725 (5)
C33 0.1248 (4) 0.11020 (16) 0.6104 (2) 0.0188 (7) 0.725 (5)
H33A 0.0965 0.1005 0.6598 0.023* 0.725 (5)
H33B 0.0966 0.0802 0.5748 0.023* 0.725 (5)
C34 0.0300 (3) 0.15831 (11) 0.57799 (15) 0.0245 (7) 0.725 (5)
H34A −0.0800 0.1524 0.5814 0.029* 0.725 (5)
H34B 0.0675 0.1894 0.6101 0.029* 0.725 (5)
C35 0.0382 (4) 0.17068 (13) 0.49539 (17) 0.0380 (9) 0.725 (5)
H35A 0.0119 0.1384 0.4642 0.046* 0.725 (5)
H35B 0.1462 0.1806 0.4929 0.046* 0.725 (5)
C36 −0.0707 (9) 0.2152 (2) 0.4604 (3) 0.0436 (13) 0.725 (5)
H36A −0.1766 0.2074 0.4671 0.065* 0.725 (5)
H36B −0.0695 0.2181 0.4055 0.065* 0.725 (5)
H36C −0.0358 0.2486 0.4859 0.065* 0.725 (5)
C32' 0.3276 (19) 0.1158 (10) 0.6250 (17) 0.014 (3) 0.275 (5)
H32C 0.3859 0.1200 0.5830 0.016* 0.275 (5)
H32D 0.3537 0.0813 0.6504 0.016* 0.275 (5)
C33' 0.1558 (13) 0.1214 (4) 0.5961 (6) 0.026 (2) 0.275 (5)
H33C 0.1033 0.1199 0.6405 0.031* 0.275 (5)
H33D 0.1193 0.0907 0.5629 0.031* 0.275 (5)
C34' 0.1052 (8) 0.1717 (3) 0.5512 (4) 0.0249 (17) 0.275 (5)
H34C 0.1350 0.2023 0.5856 0.030* 0.275 (5)
H34D 0.1632 0.1744 0.5089 0.030* 0.275 (5)
C35' −0.0658 (9) 0.1753 (3) 0.5179 (5) 0.040 (2) 0.275 (5)
H35C −0.0963 0.1461 0.4810 0.049* 0.275 (5)
H35D −0.1257 0.1717 0.5593 0.049* 0.275 (5)
C36' −0.103 (2) 0.2273 (5) 0.4779 (9) 0.048 (4) 0.275 (5)
H36D −0.0707 0.2562 0.5143 0.073* 0.275 (5)
H36E −0.2153 0.2296 0.4581 0.073* 0.275 (5)
H36F −0.0477 0.2300 0.4353 0.073* 0.275 (5)
N1 0.53919 (15) 0.31990 (6) 0.64800 (8) 0.0139 (3)
N2 0.28465 (15) 0.15633 (5) 0.91233 (8) 0.0139 (3)
N3 0.6346 (2) 0.46784 (7) 0.44711 (10) 0.0327 (4)
N4 −0.0195 (2) 0.04841 (7) 1.09612 (9) 0.0286 (4)
O1 0.49867 (14) 0.31614 (5) 0.81437 (7) 0.0187 (3)
O2 0.45038 (14) 0.26065 (5) 0.90499 (7) 0.0188 (3)
O3 0.67962 (13) 0.23458 (5) 0.76840 (7) 0.0201 (3)
O4 0.60184 (13) 0.17736 (5) 0.84962 (7) 0.0174 (2)
O5 0.25478 (13) 0.28500 (5) 0.69930 (7) 0.0179 (2)
O6 0.18508 (13) 0.24217 (5) 0.79778 (7) 0.0189 (3)
O7 0.42718 (15) 0.20116 (5) 0.66123 (7) 0.0204 (3)
O8 0.32866 (14) 0.15394 (5) 0.74747 (7) 0.0183 (3)
Cu1 0.47349 (2) 0.26351 (2) 0.72892 (2) 0.01245 (5)
Cu2 0.38502 (2) 0.20385 (2) 0.83178 (2) 0.01225 (5)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0175 (8) 0.0161 (8) 0.0153 (8) 0.0002 (6) 0.0037 (6) 0.0009 (6)
C2 0.0192 (8) 0.0212 (9) 0.0132 (8) −0.0029 (7) 0.0045 (7) 0.0000 (7)
C3 0.0146 (8) 0.0197 (9) 0.0137 (8) −0.0047 (6) −0.0004 (6) 0.0043 (7)
C4 0.0174 (8) 0.0132 (8) 0.0181 (8) −0.0003 (6) 0.0006 (7) 0.0021 (6)
C5 0.0143 (8) 0.0169 (8) 0.0151 (8) −0.0002 (6) 0.0024 (6) 0.0006 (6)
C6 0.0249 (9) 0.0231 (9) 0.0187 (9) −0.0010 (7) 0.0040 (7) 0.0039 (7)
C7 0.0185 (8) 0.0143 (8) 0.0137 (8) 0.0000 (6) 0.0023 (6) 0.0012 (6)
C8 0.0191 (8) 0.0148 (8) 0.0162 (8) −0.0038 (6) −0.0001 (7) 0.0010 (6)
C9 0.0141 (8) 0.0186 (8) 0.0140 (8) −0.0020 (6) 0.0019 (6) 0.0038 (6)
C10 0.0153 (8) 0.0172 (8) 0.0132 (7) 0.0017 (6) 0.0029 (6) 0.0019 (6)
C11 0.0141 (7) 0.0127 (8) 0.0158 (8) −0.0009 (6) 0.0023 (6) 0.0010 (6)
C12 0.0227 (9) 0.0199 (9) 0.0182 (8) −0.0042 (7) 0.0046 (7) 0.0013 (7)
C13 0.0169 (8) 0.0165 (8) 0.0164 (8) −0.0008 (6) 0.0043 (7) −0.0003 (6)
C14 0.0322 (10) 0.0165 (9) 0.0179 (8) −0.0068 (7) 0.0087 (8) −0.0037 (7)
C15 0.0325 (10) 0.0156 (8) 0.0204 (9) −0.0055 (7) 0.0090 (8) −0.0035 (7)
C16 0.0308 (10) 0.0172 (9) 0.0183 (9) −0.0037 (7) 0.0055 (8) −0.0011 (7)
C17 0.0466 (12) 0.0206 (10) 0.0233 (10) −0.0119 (9) 0.0113 (9) −0.0036 (8)
C18 0.0511 (13) 0.0228 (10) 0.0262 (10) −0.0143 (9) 0.0086 (10) −0.0058 (8)
C19 0.0150 (8) 0.0144 (8) 0.0158 (8) −0.0002 (6) 0.0007 (6) −0.0014 (6)
C20 0.0140 (8) 0.0195 (9) 0.0184 (8) 0.0017 (6) 0.0007 (7) 0.0008 (7)
C21 0.0223 (9) 0.0238 (9) 0.0226 (9) 0.0058 (7) 0.0064 (7) 0.0019 (8)
C22 0.0250 (10) 0.0291 (10) 0.0209 (9) 0.0052 (8) 0.0023 (8) −0.0044 (8)
C23 0.0316 (11) 0.0275 (11) 0.0303 (11) −0.0058 (9) 0.0067 (9) −0.0024 (9)
C24 0.0443 (13) 0.0426 (14) 0.0389 (13) −0.0172 (11) 0.0144 (11) −0.0106 (11)
C25 0.0139 (8) 0.0133 (8) 0.0176 (8) −0.0014 (6) 0.0026 (6) −0.0003 (6)
C26 0.0135 (8) 0.0180 (8) 0.0208 (8) 0.0018 (6) 0.0033 (7) 0.0031 (7)
C27 0.0164 (8) 0.0202 (9) 0.0217 (9) 0.0028 (7) 0.0012 (7) 0.0003 (7)
C28 0.0164 (8) 0.0200 (9) 0.0183 (8) 0.0030 (7) 0.0024 (7) 0.0000 (7)
C29 0.0246 (9) 0.0238 (10) 0.0269 (10) 0.0030 (8) 0.0040 (8) −0.0046 (8)
C30 0.0368 (12) 0.0248 (10) 0.0359 (11) 0.0094 (9) 0.0077 (9) −0.0070 (9)
C31 0.0176 (8) 0.0152 (8) 0.0176 (8) 0.0013 (6) 0.0048 (7) −0.0020 (7)
C32 0.021 (3) 0.018 (2) 0.0169 (19) 0.002 (2) 0.007 (2) −0.0019 (15)
C33 0.0200 (16) 0.0190 (17) 0.0170 (16) −0.0056 (12) 0.0023 (12) −0.0026 (12)
C34 0.0205 (13) 0.0258 (14) 0.0264 (14) −0.0032 (11) 0.0025 (11) −0.0049 (11)
C35 0.052 (2) 0.0336 (17) 0.0294 (17) 0.0076 (15) 0.0090 (15) 0.0086 (13)
C36 0.060 (3) 0.027 (3) 0.040 (3) −0.001 (2) 0.001 (2) 0.003 (2)
C32' 0.012 (5) 0.012 (5) 0.020 (5) 0.002 (4) 0.009 (4) −0.005 (4)
C33' 0.037 (5) 0.020 (4) 0.024 (4) −0.015 (3) 0.013 (4) −0.010 (3)
C34' 0.027 (4) 0.024 (3) 0.021 (3) −0.004 (3) −0.004 (3) −0.002 (3)
C35' 0.032 (4) 0.038 (4) 0.042 (5) −0.010 (4) −0.015 (4) 0.004 (4)
C36' 0.066 (10) 0.031 (7) 0.037 (7) −0.003 (6) −0.017 (6) 0.008 (6)
N1 0.0129 (6) 0.0150 (7) 0.0133 (6) −0.0012 (5) 0.0011 (5) 0.0029 (5)
N2 0.0129 (6) 0.0142 (7) 0.0139 (6) 0.0001 (5) 0.0011 (5) 0.0024 (5)
N3 0.0436 (11) 0.0296 (10) 0.0278 (9) 0.0016 (8) 0.0139 (8) 0.0109 (8)
N4 0.0367 (9) 0.0242 (9) 0.0283 (9) −0.0082 (7) 0.0144 (8) −0.0001 (7)
O1 0.0262 (7) 0.0158 (6) 0.0146 (6) −0.0024 (5) 0.0053 (5) 0.0003 (5)
O2 0.0260 (6) 0.0155 (6) 0.0160 (6) −0.0053 (5) 0.0066 (5) −0.0012 (5)
O3 0.0140 (6) 0.0200 (6) 0.0270 (7) 0.0019 (5) 0.0055 (5) 0.0093 (5)
O4 0.0161 (6) 0.0194 (6) 0.0170 (6) 0.0019 (5) 0.0044 (5) 0.0040 (5)
O5 0.0145 (6) 0.0217 (6) 0.0184 (6) 0.0020 (5) 0.0050 (5) 0.0052 (5)
O6 0.0156 (6) 0.0184 (6) 0.0238 (6) 0.0021 (5) 0.0066 (5) 0.0076 (5)
O7 0.0284 (7) 0.0164 (6) 0.0188 (6) −0.0026 (5) 0.0103 (5) −0.0018 (5)
O8 0.0236 (6) 0.0170 (6) 0.0144 (6) −0.0035 (5) 0.0039 (5) −0.0006 (5)
Cu1 0.01285 (10) 0.01172 (10) 0.01342 (10) 0.00012 (7) 0.00414 (7) 0.00229 (7)
Cu2 0.01339 (10) 0.01170 (10) 0.01211 (10) −0.00084 (7) 0.00359 (7) 0.00147 (7)

Geometric parameters (Å, º)

C1—N1 1.340 (2) C25—O5 1.2754 (18)
C1—C2 1.385 (2) C25—C26 1.504 (2)
C1—H1 0.9500 C26—C27 1.529 (2)
C2—C3 1.387 (2) C26—H26A 0.9900
C2—H2 0.9500 C26—H26B 0.9900
C3—C4 1.391 (2) C27—C28 1.519 (2)
C3—C6 1.448 (2) C27—H27A 0.9900
C4—C5 1.377 (2) C27—H27B 0.9900
C4—H4 0.9500 C28—C29 1.519 (3)
C5—N1 1.341 (2) C28—H28A 0.9900
C5—H5 0.9500 C28—H28B 0.9900
C6—N3 1.143 (2) C29—C30 1.518 (3)
C7—N2 1.333 (2) C29—H29A 0.9900
C7—C8 1.388 (2) C29—H29B 0.9900
C7—H7 0.9500 C30—H30A 0.9800
C8—C9 1.398 (2) C30—H30B 0.9800
C8—H8 0.9500 C30—H30C 0.9800
C9—C10 1.389 (2) C31—O7 1.262 (2)
C9—C12 1.450 (2) C31—O8 1.2627 (19)
C10—C11 1.383 (2) C31—C32' 1.520 (14)
C10—H10 0.9500 C31—C32 1.520 (6)
C11—N2 1.342 (2) C32—C33 1.521 (7)
C11—H11 0.9500 C32—H32A 0.9900
C12—N4 1.144 (2) C32—H32B 0.9900
C13—O1 1.2564 (19) C33—C34 1.523 (5)
C13—O2 1.265 (2) C33—H33A 0.9900
C13—C14 1.506 (2) C33—H33B 0.9900
C14—C15 1.520 (2) C34—C35 1.518 (4)
C14—H14A 0.9900 C34—H34A 0.9900
C14—H14B 0.9900 C34—H34B 0.9900
C15—C16 1.518 (2) C35—C36 1.529 (6)
C15—H15A 0.9900 C35—H35A 0.9900
C15—H15B 0.9900 C35—H35B 0.9900
C16—C17 1.516 (3) C36—H36A 0.9800
C16—H16A 0.9900 C36—H36B 0.9800
C16—H16B 0.9900 C36—H36C 0.9800
C17—C18 1.515 (3) C32'—C33' 1.500 (13)
C17—H17A 0.9900 C32'—H32C 0.9900
C17—H17B 0.9900 C32'—H32D 0.9900
C18—H18A 0.9800 C33'—C34' 1.521 (10)
C18—H18B 0.9800 C33'—H33C 0.9900
C18—H18C 0.9800 C33'—H33D 0.9900
C19—O4 1.2641 (19) C34'—C35' 1.504 (9)
C19—O3 1.267 (2) C34'—H34C 0.9900
C19—C20 1.513 (2) C34'—H34D 0.9900
C20—C21 1.530 (2) C35'—C36' 1.500 (12)
C20—H20A 0.9900 C35'—H35C 0.9900
C20—H20B 0.9900 C35'—H35D 0.9900
C21—C22 1.526 (3) C36'—H36D 0.9800
C21—H21A 0.9900 C36'—H36E 0.9800
C21—H21B 0.9900 C36'—H36F 0.9800
C22—C23 1.516 (3) N1—Cu1 2.1833 (13)
C22—H22A 0.9900 N2—Cu2 2.1841 (13)
C22—H22B 0.9900 O1—Cu1 2.0006 (12)
C23—C24 1.517 (3) O2—Cu2 1.9489 (12)
C23—H23A 0.9900 O3—Cu1 1.9497 (12)
C23—H23B 0.9900 O4—Cu2 1.9829 (12)
C24—H24A 0.9800 O5—Cu1 1.9643 (12)
C24—H24B 0.9800 O6—Cu2 1.9919 (12)
C24—H24C 0.9800 O7—Cu1 1.9781 (12)
C25—O6 1.259 (2) O8—Cu2 1.9489 (12)
N1—C1—C2 122.84 (16) C30—C29—H29A 108.9
N1—C1—H1 118.6 C28—C29—H29A 108.9
C2—C1—H1 118.6 C30—C29—H29B 108.9
C1—C2—C3 117.95 (15) C28—C29—H29B 108.9
C1—C2—H2 121.0 H29A—C29—H29B 107.7
C3—C2—H2 121.0 C29—C30—H30A 109.5
C2—C3—C4 119.83 (15) C29—C30—H30B 109.5
C2—C3—C6 121.12 (15) H30A—C30—H30B 109.5
C4—C3—C6 119.05 (16) C29—C30—H30C 109.5
C5—C4—C3 117.96 (16) H30A—C30—H30C 109.5
C5—C4—H4 121.0 H30B—C30—H30C 109.5
C3—C4—H4 121.0 O7—C31—O8 125.79 (16)
N1—C5—C4 123.13 (15) O7—C31—C32' 116.6 (14)
N1—C5—H5 118.4 O8—C31—C32' 117.4 (14)
C4—C5—H5 118.4 O7—C31—C32 119.2 (5)
N3—C6—C3 177.7 (2) O8—C31—C32 114.9 (5)
N2—C7—C8 123.30 (15) C31—C32—C33 114.1 (5)
N2—C7—H7 118.3 C31—C32—H32A 108.7
C8—C7—H7 118.3 C33—C32—H32A 108.7
C7—C8—C9 117.27 (16) C31—C32—H32B 108.7
C7—C8—H8 121.4 C33—C32—H32B 108.7
C9—C8—H8 121.4 H32A—C32—H32B 107.6
C10—C9—C8 120.16 (14) C32—C33—C34 113.9 (5)
C10—C9—C12 120.30 (15) C32—C33—H33A 108.8
C8—C9—C12 119.54 (16) C34—C33—H33A 108.8
C11—C10—C9 117.76 (15) C32—C33—H33B 108.8
C11—C10—H10 121.1 C34—C33—H33B 108.8
C9—C10—H10 121.1 H33A—C33—H33B 107.7
N2—C11—C10 122.99 (15) C35—C34—C33 114.0 (2)
N2—C11—H11 118.5 C35—C34—H34A 108.8
C10—C11—H11 118.5 C33—C34—H34A 108.8
N4—C12—C9 178.4 (2) C35—C34—H34B 108.8
O1—C13—O2 125.34 (16) C33—C34—H34B 108.8
O1—C13—C14 118.83 (15) H34A—C34—H34B 107.7
O2—C13—C14 115.83 (14) C34—C35—C36 113.7 (3)
C13—C14—C15 116.17 (14) C34—C35—H35A 108.8
C13—C14—H14A 108.2 C36—C35—H35A 108.8
C15—C14—H14A 108.2 C34—C35—H35B 108.8
C13—C14—H14B 108.2 C36—C35—H35B 108.8
C15—C14—H14B 108.2 H35A—C35—H35B 107.7
H14A—C14—H14B 107.4 C35—C36—H36A 109.5
C16—C15—C14 111.59 (14) C35—C36—H36B 109.5
C16—C15—H15A 109.3 H36A—C36—H36B 109.5
C14—C15—H15A 109.3 C35—C36—H36C 109.5
C16—C15—H15B 109.3 H36A—C36—H36C 109.5
C14—C15—H15B 109.3 H36B—C36—H36C 109.5
H15A—C15—H15B 108.0 C33'—C32'—C31 101.7 (11)
C17—C16—C15 114.64 (14) C33'—C32'—H32C 111.4
C17—C16—H16A 108.6 C31—C32'—H32C 111.4
C15—C16—H16A 108.6 C33'—C32'—H32D 111.4
C17—C16—H16B 108.6 C31—C32'—H32D 111.4
C15—C16—H16B 108.6 H32C—C32'—H32D 109.3
H16A—C16—H16B 107.6 C32'—C33'—C34' 115.3 (15)
C18—C17—C16 112.61 (15) C32'—C33'—H33C 108.4
C18—C17—H17A 109.1 C34'—C33'—H33C 108.4
C16—C17—H17A 109.1 C32'—C33'—H33D 108.4
C18—C17—H17B 109.1 C34'—C33'—H33D 108.4
C16—C17—H17B 109.1 H33C—C33'—H33D 107.5
H17A—C17—H17B 107.8 C35'—C34'—C33' 115.1 (7)
C17—C18—H18A 109.5 C35'—C34'—H34C 108.5
C17—C18—H18B 109.5 C33'—C34'—H34C 108.5
H18A—C18—H18B 109.5 C35'—C34'—H34D 108.5
C17—C18—H18C 109.5 C33'—C34'—H34D 108.5
H18A—C18—H18C 109.5 H34C—C34'—H34D 107.5
H18B—C18—H18C 109.5 C36'—C35'—C34' 110.4 (10)
O4—C19—O3 124.93 (15) C36'—C35'—H35C 109.6
O4—C19—C20 118.72 (15) C34'—C35'—H35C 109.6
O3—C19—C20 116.30 (14) C36'—C35'—H35D 109.6
C19—C20—C21 110.45 (14) C34'—C35'—H35D 109.6
C19—C20—H20A 109.6 H35C—C35'—H35D 108.1
C21—C20—H20A 109.6 C35'—C36'—H36D 109.5
C19—C20—H20B 109.6 C35'—C36'—H36E 109.5
C21—C20—H20B 109.6 H36D—C36'—H36E 109.5
H20A—C20—H20B 108.1 C35'—C36'—H36F 109.5
C22—C21—C20 114.11 (14) H36D—C36'—H36F 109.5
C22—C21—H21A 108.7 H36E—C36'—H36F 109.5
C20—C21—H21A 108.7 C1—N1—C5 118.29 (14)
C22—C21—H21B 108.7 C1—N1—Cu1 124.42 (11)
C20—C21—H21B 108.7 C5—N1—Cu1 117.09 (10)
H21A—C21—H21B 107.6 C7—N2—C11 118.51 (13)
C23—C22—C21 113.86 (16) C7—N2—Cu2 121.41 (10)
C23—C22—H22A 108.8 C11—N2—Cu2 119.80 (11)
C21—C22—H22A 108.8 C13—O1—Cu1 124.38 (11)
C23—C22—H22B 108.8 C13—O2—Cu2 120.09 (11)
C21—C22—H22B 108.8 C19—O3—Cu1 122.75 (10)
H22A—C22—H22B 107.7 C19—O4—Cu2 122.28 (11)
C22—C23—C24 113.41 (18) C25—O5—Cu1 120.44 (11)
C22—C23—H23A 108.9 C25—O6—Cu2 124.38 (10)
C24—C23—H23A 108.9 C31—O7—Cu1 120.94 (11)
C22—C23—H23B 108.9 C31—O8—Cu2 123.24 (11)
C24—C23—H23B 108.9 O3—Cu1—O5 171.42 (5)
H23A—C23—H23B 107.7 O3—Cu1—O7 89.14 (5)
C23—C24—H24A 109.5 O5—Cu1—O7 89.11 (5)
C23—C24—H24B 109.5 O3—Cu1—O1 91.14 (5)
H24A—C24—H24B 109.5 O5—Cu1—O1 88.61 (5)
C23—C24—H24C 109.5 O7—Cu1—O1 166.54 (5)
H24A—C24—H24C 109.5 O3—Cu1—N1 97.85 (5)
H24B—C24—H24C 109.5 O5—Cu1—N1 90.72 (5)
O6—C25—O5 124.66 (15) O7—Cu1—N1 99.76 (5)
O6—C25—C26 118.20 (14) O1—Cu1—N1 93.53 (5)
O5—C25—C26 117.01 (14) O3—Cu1—Cu2 84.98 (3)
C25—C26—C27 108.79 (14) O5—Cu1—Cu2 86.49 (3)
C25—C26—H26A 109.9 O7—Cu1—Cu2 84.91 (3)
C27—C26—H26A 109.9 O1—Cu1—Cu2 81.71 (3)
C25—C26—H26B 109.9 N1—Cu1—Cu2 174.54 (4)
C27—C26—H26B 109.9 O8—Cu2—O2 171.58 (5)
H26A—C26—H26B 108.3 O8—Cu2—O4 89.69 (5)
C28—C27—C26 113.11 (14) O2—Cu2—O4 89.73 (5)
C28—C27—H27A 109.0 O8—Cu2—O6 90.38 (5)
C26—C27—H27A 109.0 O2—Cu2—O6 88.27 (5)
C28—C27—H27B 109.0 O4—Cu2—O6 166.72 (5)
C26—C27—H27B 109.0 O8—Cu2—N2 94.24 (5)
H27A—C27—H27B 107.8 O2—Cu2—N2 94.09 (5)
C27—C28—C29 112.59 (15) O4—Cu2—N2 101.93 (5)
C27—C28—H28A 109.1 O6—Cu2—N2 91.31 (5)
C29—C28—H28A 109.1 O8—Cu2—Cu1 84.29 (3)
C27—C28—H28B 109.1 O2—Cu2—Cu1 87.29 (3)
C29—C28—H28B 109.1 O4—Cu2—Cu1 84.23 (3)
H28A—C28—H28B 107.8 O6—Cu2—Cu1 82.56 (3)
C30—C29—C28 113.38 (16) N2—Cu2—Cu1 173.68 (4)
N1—C1—C2—C3 0.5 (3) O7—C31—C32'—C33' −105.1 (16)
C1—C2—C3—C4 −0.6 (3) O8—C31—C32'—C33' 80 (2)
C1—C2—C3—C6 −179.60 (16) C32—C31—C32'—C33' 3 (10)
C2—C3—C4—C5 0.4 (3) C31—C32'—C33'—C34' 65 (2)
C6—C3—C4—C5 179.51 (16) C32'—C33'—C34'—C35' 176.0 (11)
C3—C4—C5—N1 −0.3 (3) C33'—C34'—C35'—C36' 177.6 (9)
N2—C7—C8—C9 −0.4 (3) C2—C1—N1—C5 −0.4 (3)
C7—C8—C9—C10 −0.3 (2) C2—C1—N1—Cu1 174.28 (13)
C7—C8—C9—C12 179.51 (16) C4—C5—N1—C1 0.2 (3)
C8—C9—C10—C11 0.8 (2) C4—C5—N1—Cu1 −174.79 (13)
C12—C9—C10—C11 −178.94 (16) C8—C7—N2—C11 0.5 (3)
C9—C10—C11—N2 −0.8 (3) C8—C7—N2—Cu2 −173.47 (13)
O1—C13—C14—C15 −20.5 (2) C10—C11—N2—C7 0.1 (2)
O2—C13—C14—C15 160.38 (17) C10—C11—N2—Cu2 174.20 (13)
C13—C14—C15—C16 −169.24 (16) O2—C13—O1—Cu1 −2.0 (2)
C14—C15—C16—C17 −178.66 (18) C14—C13—O1—Cu1 178.98 (12)
C15—C16—C17—C18 −176.55 (18) O1—C13—O2—Cu2 −8.2 (2)
O4—C19—C20—C21 111.20 (17) C14—C13—O2—Cu2 170.82 (12)
O3—C19—C20—C21 −66.5 (2) O4—C19—O3—Cu1 −9.1 (2)
C19—C20—C21—C22 −62.4 (2) C20—C19—O3—Cu1 168.42 (11)
C20—C21—C22—C23 −68.0 (2) O3—C19—O4—Cu2 1.3 (2)
C21—C22—C23—C24 176.61 (16) C20—C19—O4—Cu2 −176.17 (11)
O6—C25—C26—C27 93.78 (18) O6—C25—O5—Cu1 −10.5 (2)
O5—C25—C26—C27 −82.38 (18) C26—C25—O5—Cu1 165.34 (11)
C25—C26—C27—C28 177.65 (14) O5—C25—O6—Cu2 −0.3 (2)
C26—C27—C28—C29 −175.86 (15) C26—C25—O6—Cu2 −176.16 (11)
C27—C28—C29—C30 170.86 (16) O8—C31—O7—Cu1 −6.6 (2)
O7—C31—C32—C33 −118.7 (8) C32'—C31—O7—Cu1 178.9 (8)
O8—C31—C32—C33 57.1 (10) C32—C31—O7—Cu1 168.6 (3)
C32'—C31—C32—C33 165 (13) O7—C31—O8—Cu2 −2.0 (2)
C31—C32—C33—C34 62.9 (10) C32'—C31—O8—Cu2 172.4 (8)
C32—C33—C34—C35 70.1 (5) C32—C31—O8—Cu2 −177.4 (3)
C33—C34—C35—C36 173.7 (4)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C2—H2···O4i 0.95 2.55 3.301 (2) 137
C4—H4···N3ii 0.95 2.58 3.444 (2) 151
C8—H8···N4iii 0.95 2.48 3.422 (2) 169
C10—H10···O5iv 0.95 2.59 3.432 (2) 148
C20—H20B···O6v 0.99 2.66 3.479 (2) 141
C26—H26A···O3vi 0.99 2.56 3.532 (2) 167

Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) −x+1, −y+1, −z+1; (iii) −x, −y, −z+2; (iv) x, −y+1/2, z+1/2; (v) x+1, y, z; (vi) x−1, y, z.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: IS5420).

References

  1. Abied, H., Guillon, D., Skoulios, A., Weber, P., Giroud-godquin, A. M. & Marchon, J. C. (1987). Liq. Cryst. 2, 269–279.
  2. Bora, S. J., Sarmah, P., Phukan, P. & Das, B. K. (2007). Acta Cryst. C63, m392–m394. [DOI] [PubMed]
  3. Brown, G. M. & Chidambaram, R. (1973). Acta Cryst. B29, 2393–2403.
  4. Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Catterick, J. & Thornton, P. (1977). Adv. Inorg. Chem. Radiochem. 20, 291–362.
  6. Das, B. K., Bora, S. J. & Sarmah, P. (2007). Acta Cryst. E63, m251–m252. [DOI] [PubMed]
  7. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  8. Kozlevčar, B., Lah, N., Leban, I. & Turel, I. (1999). Croat. Chem. Acta, 72, 427–441.
  9. Kozlevčar, B., Lah, N., Makuc, S., Šegedin, P. & Pohleven, F. (2000). Acta Chim. Slov. 47, 421–434.
  10. Lomer, T. R. & Perera, K. (1974). Acta Cryst. B30, 2912–2913.
  11. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  12. Petrič, M., Leban, I. & Šegedin, P. (1995). Polyhedron, 14, 983–989.
  13. Sarmah, P., Das, B. K. & Phukan, P. (2010). Catal. Commun. 11, 932–935.
  14. Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
  15. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  16. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, Global. DOI: 10.1107/S2056989015019052/is5420sup1.cif

e-71-0m195-sup1.cif (906.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015019052/is5420Isup2.hkl

e-71-0m195-Isup2.hkl (616.7KB, hkl)

. DOI: 10.1107/S2056989015019052/is5420fig1.tif

Mol­ecular structure of the title compound drawn with 30% probability ellipsoid. H-atoms are shown as circles of arbitrary radius. Only one component of the disordered alkyl chain is shown.

. DOI: 10.1107/S2056989015019052/is5420fig2.tif

A packing diagram of the title compound. Hydrogen bonds are shown by dotted lines.

CCDC reference: 1430487

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES