Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Oct 14;71(Pt 11):1328–1331. doi: 10.1107/S2056989015018782

Crystal structure of 2,4,6-tris­(cyclo­hex­yloxy)-1,3,5-triazine

Ravish Sankolli a, Jürg Hauser a, T N Guru Row b, Jürg Hulliger a,*
PMCID: PMC4645094  PMID: 26594503

The title compound, is the first tri-substituted cyclo­hex­yloxy triazine to be described. In the crystal, the triazine rings form (C3i-PU) Piedfort units and the mol­ecules are linked by C—H⋯O hydrogen bonds, forming ribbons propagating along [1-10].

Keywords: crystal structure, triazine, cyclo­hexa­nol, channel inclusion, Piedfort units, hydrogen bonding

Abstract

The title compound, C21H33N3O3, is a tri-substituted cyclo­hex­yloxy triazine. In the crystal, the triazine rings form (C3i-PU) Piedfort units. The inter-centroid distance of the π–π inter­action involving the triazine rings is 3.3914 (10) Å. In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds, forming ribbons propagating along [1-10]. There are also weak C—H⋯N and C—H⋯O contacts present, linking inversion-related ribbons, forming a three-dimensional structure.

Chemical content  

Cyclo­hexyl derivatives are known to have applications in various fields of chemistry. The mono- and di-substituted derivatives of triazine with cyclo­hexa­nol show anti­viral activity (Mibu et al., 2013), wherein cyclo­hexyl esters show the properties of traction fluids (Baldwin et al., 1997). Partially substituted menth­oxy triazines can be used as enantio-differentiating reagents in organic synthesis (Kamiński et al., 1998). The cyclo­hexyl trimer, perhydro­triphenelene (PHTP) can form inclusion compounds showing non-linear optical properties (Hoss et al., 1996). In particular, PHTP as a renowned host in the literature, forms variable inclusions with functional mol­ecules (Allegra et al., 1967; König et al., 1997; Couderc & Hulliger, 2010). Most triazines also exhibit various types of inclusion properties (Süss et al., 2002, 2005; Reichenbächer et al., 2004). Thus, the title compound was synthesized to study the supra­molecular features in comparison to PHTP. Symmetrically substituted triazines with three cyclo­hexa­nol units through an oxygen linkage shows a trigonal symmetry in its trans racemic form and a planar geometry in its crystal structure. So far, the crystallization of the title compound with conventional solvents did not form any inclusions. To the best of our knowledge, this is the first tri-substituted cyclo­hex­yloxy triazine to be described.graphic file with name e-71-01328-scheme1.jpg

Structural commentary  

The mol­ecular structure of the title compound is illustrated in Fig. 1. The mol­ecule has threefold rotation symmetry, but there are small variation in the C—O—C=N torsion angles; C4—O1—C1—N1 = 3.6 (2), C10—O2—C2—N2 = −1.2 (2) and C16—O3—C3—N3 = −3.1 (2)°.

Figure 1.

Figure 1

The mol­ecular structure of the title compound, with atom labelling. Displacement ellipsoids drawn at the 50% probability level. The C—O—C=N torsion angles are C4—O1—C1—N1 = 3.6 (2), C10—O2—C2—N2 = −1.2 (2) and C16—O3—C3—N3 = −3.1 (2)°.

Supra­molecular features  

In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds, forming ribbons propagating along [1Inline graphic0] (Fig. 2 and Table 1). Inversion-related ribbons are linked by weak C—H⋯N and C—H⋯O contacts, forming a three-dimensional structure (Table 1). There are Piedfort units (C3i-PU) present (Jessiman et al., 1990), as shown in Fig. 3. The inter-centroid distance of the slightly slipped parallel π–π inter­action involving inversion-related triazine rings is 3.3914 (10) Å. The inter-planar distance is 3.3315 (7) Å, while the slippage is 0.634 Å. There are three C—H⋯H—C van der Waals contacts, 2.28, 2.28 and 2.37 Å (Fig. 4), which are longer than those in the crystal structure of PHTP (measured 2.13, 2.14 and 2.16 Å; Harlow & Desiraju, 1990).

Figure 2.

Figure 2

A view along the c axis of the crystal packing of the title compound. The most significant C—H⋯O hydrogen bonds (see Table 1) are shown as dashed lines, and the only H atoms shown are H12A and H9A (grey balls) for clarity.

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
C12H12AO1i 0.99 2.45 3.413(2) 164
C9H9AO3ii 0.99 2.60 3.528(2) 156
C10H10O1ii 1.00 2.95 3.787(2) 142
C5H5BN1iii 0.99 2.77 3.684(2) 154

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Figure 3.

Figure 3

A view of the Piedfort unit (C3i-PU), with the two triazine rings stacking one above the other, forming an hexa­gonal symmetry unit. The N atoms are shown as red and blue balls.

Figure 4.

Figure 4

A view of the short C—H⋯H⋯C contacts (orange dashed lines) and some C—H⋯O hydrogen bonds (green dashed lines; see Table 1) in the crystal structure of the title compound.

The perhydrogenated outer wall resembles the structural features of PHTP (pe­hydro­tri­phenyl­ene) in its crystal structure with C—H⋯H—C short contacts (Harlow & Desiraju, 1990). In comparison, PHTP is a highly symmetrical chiral mol­ecule, which is used for inclusions in its all-trans racemic form (König et al., 1997). Thus, the title compound is a perhydrogenated triazine analogue of PHTP. However, the triazine rings which form Piedfort units (Jessiman et al., 1990) and the C—H⋯O and C—H⋯N hydrogen bonds (Table 1) contribute to the stabilization of the structure as compared to PHTP.

Synthesis and crystallization  

Cyclo­hexa­nol (10.4 ml, 10.02 g, 100 mmol) and sodium hydride (2.88 g, 120 mmol) were taken in a round bottom flask containing 50 ml of THF at 273 K. The mixture was stirred at room temperature for 30 min, then cyanuric chloride (4.6 g, 25 mmol) was carefully added in one portion. The mixture was stirred overnight at 323 K. The solvent was then removed under reduced pressure and the oily mixture was transferred in to a separating funnel and extracted with CH2Cl2 (3 × 100 ml). Again, the solvent was removed under reduced pressure and the crude product was further purified through column chromatography (SiO2 60, eluent: diethyl ether/pentane 1:1) to yield the pure product as a white powder. Colourless prismatic crystals were obtained by isothermal evaporation of a solution in THF.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. The C-bound H atoms were included in calculated positions and treated as riding atoms: C—H = 0.99–1.00 Å with U iso(H) = 1.2U eq(C).

Table 2. Experimental details.

Crystal data
Chemical formula C21H33N3O3
M r 375.50
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 100
a, b, c () 9.7020(2), 10.1456(3), 11.2064(3)
, , () 96.528(2), 95.982(2), 112.110(2)
V (3) 1002.30(5)
Z 2
Radiation type Mo K
(mm1) 0.08
Crystal size (mm) 0.47 0.24 0.10
 
Data collection
Diffractometer Agilent SuperNova, Eos
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2014)
T min, T max 0.657, 1
No. of measured, independent and observed [I > 2(I)] reflections 24791, 4106, 3603
R int 0.027
(sin /)max (1) 0.625
 
Refinement
R[F 2 > 2(F 2)], wR(F 2), S 0.052, 0.142, 1.04
No. of reflections 4106
No. of parameters 244
H-atom treatment H-atom parameters constrained
max, min (e 3) 0.61, 0.21

Computer programs: CrysAlis PRO (Agilent, 2014), SHELXS2014/7 (Sheldrick, 2008), SHELXL2014/7 (Sheldrick, 2015), POV-RAY (POV-RAY Team, 2004), Mercury (Macrae et al., 2008), and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015018782/su5213sup1.cif

e-71-01328-sup1.cif (828.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015018782/su5213Isup2.hkl

e-71-01328-Isup2.hkl (327.2KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015018782/su5213Isup3.cml

CCDC reference: 1430153

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Swiss National Science Foundation through the Indo-Swiss Joint Research Program (project number ISJRP 138 860).

supplementary crystallographic information

Crystal data

C21H33N3O3 Z = 2
Mr = 375.50 F(000) = 408
Triclinic, P1 Dx = 1.244 Mg m3
a = 9.7020 (2) Å Mo Kα radiation, λ = 0.71073 Å
b = 10.1456 (3) Å Cell parameters from 9471 reflections
c = 11.2064 (3) Å θ = 2.2–27.7°
α = 96.528 (2)° µ = 0.08 mm1
β = 95.982 (2)° T = 100 K
γ = 112.110 (2)° Prism, colourless
V = 1002.30 (5) Å3 0.47 × 0.24 × 0.10 mm

Data collection

Agilent SuperNova, Eos diffractometer 4106 independent reflections
Radiation source: Mo X-ray Source 3603 reflections with I > 2σ(I)
Detector resolution: 16.0965 pixels mm-1 Rint = 0.027
ω scans θmax = 26.4°, θmin = 1.9°
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014) h = −12→12
Tmin = 0.657, Tmax = 1 k = −12→12
24791 measured reflections l = −13→13

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.052 H-atom parameters constrained
wR(F2) = 0.142 w = 1/[σ2(Fo2) + (0.0651P)2 + 0.7913P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max < 0.001
4106 reflections Δρmax = 0.61 e Å3
244 parameters Δρmin = −0.21 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 1.24843 (18) 1.05014 (17) 0.49190 (14) 0.0195 (3)
C2 1.05411 (17) 0.83773 (16) 0.45059 (14) 0.0188 (3)
C3 1.07636 (18) 1.00085 (17) 0.32811 (14) 0.0194 (3)
C4 1.44642 (19) 1.10652 (17) 0.66284 (14) 0.0225 (4)
H4 1.4372 1.0047 0.6426 0.027*
C5 1.61162 (19) 1.20826 (19) 0.68357 (16) 0.0256 (4)
H5A 1.6204 1.3094 0.6976 0.031*
H5B 1.6569 1.1941 0.6105 0.031*
C6 1.6957 (2) 1.1792 (2) 0.79337 (17) 0.0295 (4)
H6A 1.6956 1.0813 0.7755 0.035*
H6B 1.8018 1.2495 0.8091 0.035*
C7 1.6240 (2) 1.19059 (19) 0.90564 (16) 0.0284 (4)
H7A 1.6353 1.2916 0.9295 0.034*
H7B 1.6765 1.1642 0.9737 0.034*
C8 1.4568 (2) 1.0913 (2) 0.88254 (16) 0.0277 (4)
H8A 1.4459 0.9896 0.8677 0.033*
H8B 1.4114 1.1055 0.9556 0.033*
C9 1.3732 (2) 1.1221 (2) 0.77312 (16) 0.0271 (4)
H9A 1.2663 1.0536 0.7574 0.033*
H9B 1.3763 1.2212 0.7902 0.033*
C10 0.83931 (18) 0.61278 (17) 0.40889 (15) 0.0220 (3)
H10 0.7850 0.6696 0.3740 0.026*
C11 0.7472 (2) 0.5209 (2) 0.49280 (16) 0.0293 (4)
H11A 0.7268 0.5829 0.5575 0.035*
H11B 0.8038 0.4697 0.5319 0.035*
C12 0.5979 (2) 0.4112 (2) 0.41799 (17) 0.0330 (4)
H12A 0.5375 0.3498 0.4718 0.040*
H12B 0.5395 0.4630 0.3826 0.040*
C13 0.6271 (2) 0.31714 (19) 0.31667 (17) 0.0317 (4)
H13A 0.5300 0.2477 0.2689 0.038*
H13B 0.6814 0.2618 0.3520 0.038*
C14 0.7213 (2) 0.4114 (2) 0.23329 (16) 0.0297 (4)
H14A 0.6643 0.4622 0.1941 0.036*
H14B 0.7422 0.3498 0.1685 0.036*
C15 0.87075 (19) 0.52219 (18) 0.30727 (15) 0.0243 (4)
H15A 0.9311 0.4715 0.3417 0.029*
H15B 0.9295 0.5851 0.2535 0.029*
C16 1.09447 (19) 1.17766 (17) 0.19788 (15) 0.0219 (3)
H16 1.1439 1.2490 0.2743 0.026*
C17 0.9714 (2) 1.2129 (2) 0.13237 (19) 0.0314 (4)
H17A 0.8992 1.2163 0.1877 0.038*
H17B 0.9159 1.1367 0.0612 0.038*
C18 1.0407 (2) 1.3590 (2) 0.09008 (19) 0.0338 (4)
H18A 0.9602 1.3788 0.0434 0.041*
H18B 1.0872 1.4361 0.1620 0.041*
C19 1.1586 (2) 1.36119 (19) 0.01149 (16) 0.0310 (4)
H19A 1.2046 1.4582 −0.0110 0.037*
H19B 1.1103 1.2906 −0.0643 0.037*
C20 1.2807 (2) 1.3241 (2) 0.07840 (19) 0.0350 (4)
H20A 1.3352 1.3995 0.1503 0.042*
H20B 1.3542 1.3216 0.0241 0.042*
C21 1.2106 (2) 1.17700 (19) 0.11921 (17) 0.0292 (4)
H21A 1.1629 1.1006 0.0469 0.035*
H21B 1.2903 1.1557 0.1653 0.035*
N1 1.18158 (15) 0.92270 (14) 0.52567 (12) 0.0202 (3)
N2 0.99553 (15) 0.86893 (14) 0.35006 (12) 0.0203 (3)
N3 1.20286 (15) 1.09706 (14) 0.39485 (12) 0.0208 (3)
O1 1.37668 (13) 1.14586 (12) 0.55837 (10) 0.0244 (3)
O2 0.98237 (13) 0.71122 (12) 0.48406 (10) 0.0227 (3)
O3 1.01921 (13) 1.03331 (12) 0.22770 (10) 0.0230 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0179 (7) 0.0191 (8) 0.0164 (7) 0.0030 (6) 0.0012 (6) −0.0001 (6)
C2 0.0186 (7) 0.0166 (7) 0.0189 (7) 0.0042 (6) 0.0042 (6) 0.0024 (6)
C3 0.0224 (8) 0.0219 (8) 0.0154 (7) 0.0098 (6) 0.0041 (6) 0.0042 (6)
C4 0.0239 (8) 0.0199 (8) 0.0180 (8) 0.0039 (7) −0.0038 (6) 0.0036 (6)
C5 0.0223 (8) 0.0265 (9) 0.0236 (8) 0.0046 (7) 0.0038 (7) 0.0047 (7)
C6 0.0204 (8) 0.0332 (10) 0.0304 (9) 0.0062 (7) −0.0004 (7) 0.0063 (7)
C7 0.0308 (9) 0.0273 (9) 0.0211 (8) 0.0080 (7) −0.0067 (7) 0.0020 (7)
C8 0.0290 (9) 0.0344 (10) 0.0206 (8) 0.0120 (8) 0.0051 (7) 0.0091 (7)
C9 0.0220 (8) 0.0340 (9) 0.0238 (9) 0.0089 (7) 0.0023 (7) 0.0075 (7)
C10 0.0201 (8) 0.0168 (8) 0.0218 (8) 0.0004 (6) 0.0006 (6) 0.0019 (6)
C11 0.0282 (9) 0.0278 (9) 0.0198 (8) −0.0018 (7) 0.0013 (7) 0.0032 (7)
C12 0.0284 (9) 0.0279 (9) 0.0286 (9) −0.0044 (7) 0.0026 (7) 0.0056 (7)
C13 0.0323 (10) 0.0191 (8) 0.0309 (9) −0.0001 (7) −0.0077 (8) 0.0008 (7)
C14 0.0334 (10) 0.0279 (9) 0.0226 (8) 0.0104 (8) −0.0032 (7) −0.0032 (7)
C15 0.0238 (8) 0.0244 (8) 0.0208 (8) 0.0066 (7) 0.0006 (6) 0.0014 (6)
C16 0.0260 (8) 0.0182 (8) 0.0186 (8) 0.0055 (6) 0.0007 (6) 0.0054 (6)
C17 0.0253 (9) 0.0287 (9) 0.0407 (11) 0.0093 (7) 0.0038 (8) 0.0138 (8)
C18 0.0337 (10) 0.0292 (10) 0.0416 (11) 0.0135 (8) 0.0046 (8) 0.0152 (8)
C19 0.0426 (11) 0.0223 (8) 0.0223 (8) 0.0061 (8) 0.0024 (8) 0.0076 (7)
C20 0.0330 (10) 0.0318 (10) 0.0415 (11) 0.0098 (8) 0.0145 (8) 0.0143 (8)
C21 0.0306 (9) 0.0261 (9) 0.0344 (10) 0.0122 (7) 0.0099 (8) 0.0110 (7)
N1 0.0195 (7) 0.0196 (7) 0.0167 (6) 0.0031 (5) −0.0001 (5) 0.0030 (5)
N2 0.0191 (7) 0.0202 (7) 0.0177 (6) 0.0046 (5) 0.0003 (5) 0.0018 (5)
N3 0.0228 (7) 0.0183 (7) 0.0175 (7) 0.0041 (6) 0.0019 (5) 0.0038 (5)
O1 0.0228 (6) 0.0209 (6) 0.0204 (6) −0.0001 (5) −0.0041 (5) 0.0056 (5)
O2 0.0220 (6) 0.0188 (6) 0.0202 (6) 0.0009 (5) −0.0012 (4) 0.0041 (4)
O3 0.0233 (6) 0.0203 (6) 0.0202 (6) 0.0037 (5) −0.0025 (5) 0.0051 (4)

Geometric parameters (Å, º)

C1—N1 1.329 (2) C11—H11A 0.9900
C1—O1 1.3338 (19) C11—H11B 0.9900
C1—N3 1.334 (2) C12—C13 1.518 (3)
C2—O2 1.3281 (19) C12—H12A 0.9900
C2—N2 1.333 (2) C12—H12B 0.9900
C2—N1 1.340 (2) C13—C14 1.532 (3)
C3—N3 1.326 (2) C13—H13A 0.9900
C3—O3 1.3318 (19) C13—H13B 0.9900
C3—N2 1.339 (2) C14—C15 1.537 (2)
C4—O1 1.4601 (19) C14—H14A 0.9900
C4—C9 1.510 (2) C14—H14B 0.9900
C4—C5 1.520 (2) C15—H15A 0.9900
C4—H4 1.0000 C15—H15B 0.9900
C5—C6 1.524 (2) C16—O3 1.4652 (19)
C5—H5A 0.9900 C16—C21 1.502 (2)
C5—H5B 0.9900 C16—C17 1.514 (2)
C6—C7 1.513 (3) C16—H16 1.0000
C6—H6A 0.9900 C17—C18 1.533 (2)
C6—H6B 0.9900 C17—H17A 0.9900
C7—C8 1.529 (2) C17—H17B 0.9900
C7—H7A 0.9900 C18—C19 1.510 (3)
C7—H7B 0.9900 C18—H18A 0.9900
C8—C9 1.526 (2) C18—H18B 0.9900
C8—H8A 0.9900 C19—C20 1.524 (3)
C8—H8B 0.9900 C19—H19A 0.9900
C9—H9A 0.9900 C19—H19B 0.9900
C9—H9B 0.9900 C20—C21 1.535 (2)
C10—O2 1.4680 (18) C20—H20A 0.9900
C10—C15 1.510 (2) C20—H20B 0.9900
C10—C11 1.516 (2) C21—H21A 0.9900
C10—H10 1.0000 C21—H21B 0.9900
C11—C12 1.536 (2)
N1—C1—O1 119.36 (14) H12A—C12—H12B 108.1
N1—C1—N3 127.33 (14) C12—C13—C14 109.90 (15)
O1—C1—N3 113.31 (14) C12—C13—H13A 109.7
O2—C2—N2 119.16 (14) C14—C13—H13A 109.7
O2—C2—N1 114.21 (14) C12—C13—H13B 109.7
N2—C2—N1 126.63 (14) C14—C13—H13B 109.7
N3—C3—O3 119.32 (14) H13A—C13—H13B 108.2
N3—C3—N2 126.75 (14) C13—C14—C15 110.08 (14)
O3—C3—N2 113.93 (14) C13—C14—H14A 109.6
O1—C4—C9 111.01 (14) C15—C14—H14A 109.6
O1—C4—C5 105.24 (13) C13—C14—H14B 109.6
C9—C4—C5 111.64 (14) C15—C14—H14B 109.6
O1—C4—H4 109.6 H14A—C14—H14B 108.2
C9—C4—H4 109.6 C10—C15—C14 109.76 (14)
C5—C4—H4 109.6 C10—C15—H15A 109.7
C4—C5—C6 109.90 (14) C14—C15—H15A 109.7
C4—C5—H5A 109.7 C10—C15—H15B 109.7
C6—C5—H5A 109.7 C14—C15—H15B 109.7
C4—C5—H5B 109.7 H15A—C15—H15B 108.2
C6—C5—H5B 109.7 O3—C16—C21 109.68 (13)
H5A—C5—H5B 108.2 O3—C16—C17 105.89 (13)
C7—C6—C5 111.39 (15) C21—C16—C17 111.75 (14)
C7—C6—H6A 109.3 O3—C16—H16 109.8
C5—C6—H6A 109.3 C21—C16—H16 109.8
C7—C6—H6B 109.3 C17—C16—H16 109.8
C5—C6—H6B 109.3 C16—C17—C18 109.82 (15)
H6A—C6—H6B 108.0 C16—C17—H17A 109.7
C6—C7—C8 111.16 (14) C18—C17—H17A 109.7
C6—C7—H7A 109.4 C16—C17—H17B 109.7
C8—C7—H7A 109.4 C18—C17—H17B 109.7
C6—C7—H7B 109.4 H17A—C17—H17B 108.2
C8—C7—H7B 109.4 C19—C18—C17 111.37 (16)
H7A—C7—H7B 108.0 C19—C18—H18A 109.4
C9—C8—C7 111.15 (14) C17—C18—H18A 109.4
C9—C8—H8A 109.4 C19—C18—H18B 109.4
C7—C8—H8A 109.4 C17—C18—H18B 109.4
C9—C8—H8B 109.4 H18A—C18—H18B 108.0
C7—C8—H8B 109.4 C18—C19—C20 110.83 (15)
H8A—C8—H8B 108.0 C18—C19—H19A 109.5
C4—C9—C8 109.41 (14) C20—C19—H19A 109.5
C4—C9—H9A 109.8 C18—C19—H19B 109.5
C8—C9—H9A 109.8 C20—C19—H19B 109.5
C4—C9—H9B 109.8 H19A—C19—H19B 108.1
C8—C9—H9B 109.8 C19—C20—C21 110.28 (16)
H9A—C9—H9B 108.2 C19—C20—H20A 109.6
O2—C10—C15 109.31 (13) C21—C20—H20A 109.6
O2—C10—C11 106.48 (13) C19—C20—H20B 109.6
C15—C10—C11 111.73 (14) C21—C20—H20B 109.6
O2—C10—H10 109.8 H20A—C20—H20B 108.1
C15—C10—H10 109.8 C16—C21—C20 110.14 (15)
C11—C10—H10 109.8 C16—C21—H21A 109.6
C10—C11—C12 108.91 (14) C20—C21—H21A 109.6
C10—C11—H11A 109.9 C16—C21—H21B 109.6
C12—C11—H11A 109.9 C20—C21—H21B 109.6
C10—C11—H11B 109.9 H21A—C21—H21B 108.1
C12—C11—H11B 109.9 C1—N1—C2 112.84 (13)
H11A—C11—H11B 108.3 C2—N2—C3 113.31 (14)
C13—C12—C11 110.63 (16) C3—N3—C1 113.12 (13)
C13—C12—H12A 109.5 C1—O1—C4 119.74 (12)
C11—C12—H12A 109.5 C2—O2—C10 117.91 (12)
C13—C12—H12B 109.5 C3—O3—C16 118.62 (12)
C11—C12—H12B 109.5
C4—O1—C1—N1 3.6 (2) O1—C4—C5—C6 178.67 (14)
C4—O1—C1—N3 −175.80 (14) C9—C4—C5—C6 58.2 (2)
C1—O1—C4—C5 157.44 (15) O1—C4—C9—C8 −175.68 (14)
C1—O1—C4—C9 −81.64 (18) C5—C4—C9—C8 −58.60 (19)
C2—O2—C10—C15 87.08 (17) C4—C5—C6—C7 −55.8 (2)
C10—O2—C2—N1 178.32 (14) C5—C6—C7—C8 55.0 (2)
C10—O2—C2—N2 −1.2 (2) C6—C7—C8—C9 −55.5 (2)
C2—O2—C10—C11 −152.09 (15) C7—C8—C9—C4 56.8 (2)
C3—O3—C16—C17 −148.75 (15) O2—C10—C11—C12 −177.83 (14)
C16—O3—C3—N2 177.09 (15) C11—C10—C15—C14 58.48 (19)
C16—O3—C3—N3 −3.1 (2) C15—C10—C11—C12 −58.6 (2)
C3—O3—C16—C21 90.51 (18) O2—C10—C15—C14 176.06 (13)
C2—N1—C1—O1 −179.98 (15) C10—C11—C12—C13 58.4 (2)
C1—N1—C2—O2 −178.09 (15) C11—C12—C13—C14 −58.9 (2)
C2—N1—C1—N3 −0.7 (3) C12—C13—C14—C15 58.0 (2)
C1—N1—C2—N2 1.4 (3) C13—C14—C15—C10 −57.36 (19)
C2—N2—C3—N3 0.1 (3) O3—C16—C17—C18 −176.46 (14)
C3—N2—C2—O2 178.35 (15) C21—C16—C17—C18 −57.1 (2)
C3—N2—C2—N1 −1.1 (3) O3—C16—C21—C20 175.18 (14)
C2—N2—C3—O3 179.86 (14) C17—C16—C21—C20 58.1 (2)
C1—N3—C3—O3 −179.28 (15) C16—C17—C18—C19 55.9 (2)
C3—N3—C1—N1 −0.2 (3) C17—C18—C19—C20 −56.4 (2)
C3—N3—C1—O1 179.16 (15) C18—C19—C20—C21 56.6 (2)
C1—N3—C3—N2 0.5 (3) C19—C20—C21—C16 −57.1 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C12—H12A···O1i 0.99 2.45 3.413 (2) 164
C9—H9A···O3ii 0.99 2.60 3.528 (2) 156
C10—H10···O1ii 1.00 2.95 3.787 (2) 142
C5—H5B···N1iii 0.99 2.77 3.684 (2) 154

Symmetry codes: (i) x−1, y−1, z; (ii) −x+2, −y+2, −z+1; (iii) −x+3, −y+2, −z+1.

References

  1. Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, UK.
  2. Allegra, G., Farina, M., Immirzi, A., Colombo, A., Rossi, U., Broggi, I. & Natta, G. (1967). J. Chem. Soc. B, pp. 1020–1028.
  3. Baldwin, C. R., Britton, M. M., Davies, S. C., Gillies, D. G., Hughes, D. L., Smith, G. W. & Sutcliffe, L. H. (1997). J. Mol. Struct. 403, 1–16.
  4. Couderc, G. & Hulliger, J. (2010). Chem. Soc. Rev. 39, 1545–1554. [DOI] [PubMed]
  5. Harlow, R. L. & Desiraju, G. R. (1990). Acta Cryst. C46, 1054–1055.
  6. Hoss, R., König, O., Kramer-Hoss, V., Berger, P., Rogin, P. & Hulliger, J. (1996). Angew. Chem. Int. Ed. Engl. 35, 1664–1666.
  7. Jessiman, A. S., MacNicol, D. D., Mallinson, P. R. & Vallance, I. (1990). J. Chem. Soc. Chem. Commun. pp. 1619–1621.
  8. Kamiński, Z. J., Markowicz, S. W., Kolesińska, B., Martynowski, D. & Główka, M. L. (1998). Synth. Commun. 28, 2689–2696.
  9. König, O., Bürgi, H. B., Armbruster, T., Hulliger, J. & Weber, T. (1997). J. Am. Chem. Soc. 119, 10632–10640.
  10. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  11. Mibu, N., Yokomizo, K., Takemura, S., Ueki, N., Itohara, S., Zhou, J., Miyata, T. & Sumoto, K. (2013). Chem. Pharm. Bull. 61, 823–833. [DOI] [PubMed]
  12. POV-RAY Team (2004). POV-RAY – The Persistance of Vision Raytracer. http://www.povray.org
  13. Reichenbächer, K., Süss, H. I., Stoeckli-Evans, H., Bracco, S., Sozzani, P., Weber, E. & Hulliger, J. (2004). New J. Chem. 28, 393–397.
  14. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  15. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  16. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  17. Süss, H. I., Lutz, M. & Hulliger, J. (2002). CrystEngComm, 4, 610–612.
  18. Süss, H. I., Neels, A. & Hulliger, J. (2005). CrystEngComm, 7, 370–373.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015018782/su5213sup1.cif

e-71-01328-sup1.cif (828.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015018782/su5213Isup2.hkl

e-71-01328-Isup2.hkl (327.2KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015018782/su5213Isup3.cml

CCDC reference: 1430153

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES