Skip to main content
Thorax logoLink to Thorax
. 1993 May;48(5):537–541. doi: 10.1136/thx.48.5.537

Effects of posture on carbon dioxide responsiveness in patients with obstructive sleep apnoea.

M Satoh 1, W Hida 1, T Chonan 1, S Okabe 1, H Miki 1, O Taguchi 1, Y Kikuchi 1, T Takishima 1
PMCID: PMC464510  PMID: 8322243

Abstract

BACKGROUND--It is well known that upper airway resistance increases with postural change from a sitting to supine position in patients with obstructive sleep apnoea (OSA). It is not known, however, how the postural change affects the ventilatory and occlusion pressure response to hypercapnia in patients with OSA when awake. METHODS--The responses of minute ventilation (VE) and mouth pressure 0.1 seconds after the onset of occluded inspiration (P0.1) to progressive hypercapnia (delta VE/delta PCO2, delta P0.1/delta PCO2) both in sitting and supine positions were measured in 20 patients with OSA. The ratio of the two (delta VE/delta P0.1) was obtained as an index of breathing efficiency. The postural changes in response to carbon dioxide (CO2) after uvulopalatopharyngoplasty (UPPP) were also compared in seven patients with OSA. RESULTS--There were no significant changes in the resting values of end tidal PCO2, P0.1, or VE between the two positions. During CO2 rebreathing, delta VE/delta PCO2 did not differ between the two positions, but delta P0.1/delta PCO2 was significantly higher in the supine than in the sitting position (supine, mean 0.67 (SE 0.09) cm H2O/mm Hg; sitting, mean 0.57 (SE 0.08) cm H2O/mm Hg), and delta VE/delta P0.1 decreased significantly from the sitting to the supine position (sitting, 4.6 (0.4) l/min/cm H2O; supine, 3.9 (0.4) l/min/cm H2O). In seven patients with OSA who underwent UPPP, delta VE/delta P0.1 improved significantly in the supine position and postural change in delta VE/delta P0.1 was eliminated. CONCLUSIONS--These results suggest that in patients with OSA the inspiratory drive in the supine position increases to maintain the same level of ventilation as in the sitting position, and that the postural change from sitting to supine reduces breathing efficiency. Load compensation mechanisms of patients with OSA appear to be intact while awake in response to the rise in upper airway resistance.

Full text

PDF
537

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anch A. M., Remmers J. E., Bunce H., 3rd Supraglottic airway resistance in normal subjects and patients with occlusive sleep apnea. J Appl Physiol Respir Environ Exerc Physiol. 1982 Nov;53(5):1158–1163. doi: 10.1152/jappl.1982.53.5.1158. [DOI] [PubMed] [Google Scholar]
  2. Aronson R. M., Onal E., Carley D. W., Lopata M. Upper airway and respiratory muscle responses to continuous negative airway pressure. J Appl Physiol (1985) 1989 Mar;66(3):1373–1382. doi: 10.1152/jappl.1989.66.3.1373. [DOI] [PubMed] [Google Scholar]
  3. Braun N. M., Arora N. S., Rochester D. F. Force-length relationship of the normal human diaphragm. J Appl Physiol Respir Environ Exerc Physiol. 1982 Aug;53(2):405–412. doi: 10.1152/jappl.1982.53.2.405. [DOI] [PubMed] [Google Scholar]
  4. Brown I. B., McClean P. A., Boucher R., Zamel N., Hoffstein V. Changes in pharyngeal cross-sectional area with posture and application of continuous positive airway pressure in patients with obstructive sleep apnea. Am Rev Respir Dis. 1987 Sep;136(3):628–632. doi: 10.1164/ajrccm/136.3.628. [DOI] [PubMed] [Google Scholar]
  5. Burki N. K. The effects of changes in functional residual capacity with posture on mouth occlusion pressure and ventilatory pattern. Am Rev Respir Dis. 1977 Nov;116(5):895–900. doi: 10.1164/arrd.1977.116.5.895. [DOI] [PubMed] [Google Scholar]
  6. Chonan T., Hida W., Kikuchi Y., Shindoh C., Takishima T. Role of CO2 responsiveness and breathing efficiency in determining exercise capacity of patients with chronic airway obstruction. Am Rev Respir Dis. 1988 Dec;138(6):1488–1493. doi: 10.1164/ajrccm/138.6.1488. [DOI] [PubMed] [Google Scholar]
  7. Fouke J. M., Strohl K. P. Effect of position and lung volume on upper airway geometry. J Appl Physiol (1985) 1987 Jul;63(1):375–380. doi: 10.1152/jappl.1987.63.1.375. [DOI] [PubMed] [Google Scholar]
  8. Fujita S., Conway W., Zorick F., Roth T. Surgical correction of anatomic azbnormalities in obstructive sleep apnea syndrome: uvulopalatopharyngoplasty. Otolaryngol Head Neck Surg. 1981 Nov-Dec;89(6):923–934. doi: 10.1177/019459988108900609. [DOI] [PubMed] [Google Scholar]
  9. Grassino A. E., Derenne J. P., Almirall J., Milic-Emili J., Whitelaw W. Configuration of the chest wall and occlusion pressures in awake humans. J Appl Physiol Respir Environ Exerc Physiol. 1981 Jan;50(1):134–142. doi: 10.1152/jappl.1981.50.1.134. [DOI] [PubMed] [Google Scholar]
  10. Guilleminault C., Tilkian A., Dement W. C. The sleep apnea syndromes. Annu Rev Med. 1976;27:465–484. doi: 10.1146/annurev.me.27.020176.002341. [DOI] [PubMed] [Google Scholar]
  11. Hida W., Susuki R., Kikuchi Y., Shindoh C., Chonan T., Sasaki H., Takishima T. Effect of local vibration on ventilatory response to hypercapnia in normal subjects. Bull Eur Physiopathol Respir. 1987 May-Jun;23(3):227–232. [PubMed] [Google Scholar]
  12. Hutt D. A., Parisi R. A., Edelman N. H., Santiago T. V. Responses of diaphragm and external oblique muscles to flow-resistive loads during sleep. Am Rev Respir Dis. 1991 Nov;144(5):1107–1111. doi: 10.1164/ajrccm/144.5.1107. [DOI] [PubMed] [Google Scholar]
  13. Iber C., Berssenbrugge A., Skatrud J. B., Dempsey J. A. Ventilatory adaptations to resistive loading during wakefulness and non-REM sleep. J Appl Physiol Respir Environ Exerc Physiol. 1982 Mar;52(3):607–614. doi: 10.1152/jappl.1982.52.3.607. [DOI] [PubMed] [Google Scholar]
  14. Issa F. G., Sullivan C. E. Upper airway closing pressures in obstructive sleep apnea. J Appl Physiol Respir Environ Exerc Physiol. 1984 Aug;57(2):520–527. doi: 10.1152/jappl.1984.57.2.520. [DOI] [PubMed] [Google Scholar]
  15. Kryger M., Bode F., Antic R., Anthonisen N. Diagnosis of obstruction of the upper and central airways. Am J Med. 1976 Jul;61(1):85–93. doi: 10.1016/0002-9343(76)90048-6. [DOI] [PubMed] [Google Scholar]
  16. Lederer D. H., Altose M. D., Kelsen S. G., Cherniack N. S. Comparison of occlusion pressure and ventilatory responses. Thorax. 1977 Apr;32(2):212–220. doi: 10.1136/thx.32.2.212. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lopata M., O'Connor T. D., Onal E. Effects of position on respiratory muscle function during CO2 rebreathing. Respiration. 1985;47(2):98–106. doi: 10.1159/000194755. [DOI] [PubMed] [Google Scholar]
  18. MORENO F., LYONS H. A. Effect of body posture on lung volumes. J Appl Physiol. 1961 Jan;16:27–29. doi: 10.1152/jappl.1961.16.1.27. [DOI] [PubMed] [Google Scholar]
  19. Miller R. D., Hyatt R. E. Evaluation of obstructing lesions of the trachea and larynx by flow-volume loops. Am Rev Respir Dis. 1973 Sep;108(3):475–481. doi: 10.1164/arrd.1973.108.3.475. [DOI] [PubMed] [Google Scholar]
  20. Miura C., Hida W., Miki H., Kikuchi Y., Chonan T., Takishima T. Effects of posture on flow-volume curves during normocapnia and hypercapnia in patients with obstructive sleep apnoea. Thorax. 1992 Jul;47(7):524–528. doi: 10.1136/thx.47.7.524. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Rajagopal K. R., Abbrecht P. H., Tellis C. J. Control of breathing in obstructive sleep apnea. Chest. 1984 Feb;85(2):174–180. doi: 10.1378/chest.85.2.174. [DOI] [PubMed] [Google Scholar]
  22. Read D. J. A clinical method for assessing the ventilatory response to carbon dioxide. Australas Ann Med. 1967 Feb;16(1):20–32. doi: 10.1111/imj.1967.16.1.20. [DOI] [PubMed] [Google Scholar]
  23. Santiago T. V., Sinha A. K., Edelman N. H. Respiratory flow-resistive load compensation during sleep. Am Rev Respir Dis. 1981 Apr;123(4 Pt 1):382–387. doi: 10.1164/arrd.1981.123.4.382. [DOI] [PubMed] [Google Scholar]
  24. Stauffer J. L., Zwillich C. W., Cadieux R. J., Bixler E. O., Kales A., Varano L. A., White D. P. Pharyngeal size and resistance in obstructive sleep apnea. Am Rev Respir Dis. 1987 Sep;136(3):623–627. doi: 10.1164/ajrccm/136.3.623. [DOI] [PubMed] [Google Scholar]
  25. Takishima T., Sasaki T., Takahashi K., Sasaki H., Nakamura T. Direct-writing recorder of the flow-volume curve and its clinical application. Chest. 1972 Mar;61(3):262–266. doi: 10.1378/chest.61.3.262. [DOI] [PubMed] [Google Scholar]

Articles from Thorax are provided here courtesy of BMJ Publishing Group

RESOURCES