Skip to main content
Thorax logoLink to Thorax
. 1993 May;48(5):554–557. doi: 10.1136/thx.48.5.554

Sensory neuropeptides and hypoxic pulmonary vasoconstriction in the rat.

D G McCormack 1, R G Rees 1, D Crawley 1, P J Barnes 1, T W Evans 1
PMCID: PMC464515  PMID: 7686691

Abstract

BACKGROUND--Endogenous vasodilators such as endothelially derived relaxant factor have been shown to modulate hypoxic pulmonary vasoconstriction. Sensory peptides such as substance P (SP) and calcitonin gene related peptide (CGRP) are also potent pulmonary vasodilators in both animals and humans. Their possible role in the modulation of the normal hypoxic pressor response has been examined in an isolated, ventilated, and blood perfused rat lung preparation. METHODS--Animals (n = 7) were pretreated with 50 mg/kg capsaicin administered subcutaneously to deplete nerve endings of sensory neuropeptides. A control group (n = 7) received a subcutaneous dose of capsaicin vehicle. One week later the rats were killed and the rise in pulmonary artery pressure was measured during four successive periods of hypoxic ventilation (FIO2 0.03), and after four injections of angiotensin II (1.0 microgram). RESULTS--A 60% depletion of SP levels was measured in the sciatic nerves of animals treated with capsaicin. The hypoxic pressor response was not significantly altered in capsaicin treated animals compared with controls, except during the fourth hypoxic episode when it was augmented. The angiotensin II pressor response was the same in both groups during each of the injections. CONCLUSION--The sensory neuropeptide SP (and possibly CGRP) does not have a major role in modulating the pulmonary vascular response to hypoxia.

Full text

PDF
554

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adnot S., Cigarini I., Herigault R., Harf A. Effects of substance P and calcitonin gene-related peptide on the pulmonary circulation. J Appl Physiol (1985) 1991 Apr;70(4):1707–1712. doi: 10.1152/jappl.1991.70.4.1707. [DOI] [PubMed] [Google Scholar]
  2. Archer S. L., Kulik T. J., Chesler E., Weir E. K. The effects of substance P on the preconstricted pulmonary vasculature of the anesthetized dog. Proc Soc Exp Biol Med. 1986 Oct;183(1):19–27. doi: 10.3181/00379727-183-42381. [DOI] [PubMed] [Google Scholar]
  3. Archer S. L., Tolins J. P., Raij L., Weir E. K. Hypoxic pulmonary vasoconstriction is enhanced by inhibition of the synthesis of an endothelium derived relaxing factor. Biochem Biophys Res Commun. 1989 Nov 15;164(3):1198–1205. doi: 10.1016/0006-291x(89)91796-8. [DOI] [PubMed] [Google Scholar]
  4. Barnes P. J. Neuropeptides and airway smooth muscle. Pharmacol Ther. 1988;36(1):119–129. doi: 10.1016/0163-7258(88)90114-3. [DOI] [PubMed] [Google Scholar]
  5. Carter D. A., Lightman S. L. Comparative distribution and cardiovascular actions of substance P and substance K within the nucleus tractus solitarius of rats. Neuropeptides. 1986 Nov-Dec;8(4):295–304. doi: 10.1016/0143-4179(86)90001-6. [DOI] [PubMed] [Google Scholar]
  6. Colpaert F. C., Donnerer J., Lembeck F. Effects of capsaicin on inflammation and on the substance P content of nervous tissues in rats with adjuvant arthritis. Life Sci. 1983 Apr 18;32(16):1827–1834. doi: 10.1016/0024-3205(83)90060-7. [DOI] [PubMed] [Google Scholar]
  7. D'Orléans-Juste P., Dion S., Drapeau G., Regoli D. Different receptors are involved in the endothelium-mediated relaxation and the smooth muscle contraction of the rabbit pulmonary artery in response to substance P and related neurokinins. Eur J Pharmacol. 1986 Jun 5;125(1):37–44. doi: 10.1016/0014-2999(86)90081-6. [DOI] [PubMed] [Google Scholar]
  8. Donnerer J., Schuligoi R., Lembeck F. Influence of capsaicin-induced denervation on neurogenic and humoral control of arterial pressure. Naunyn Schmiedebergs Arch Pharmacol. 1989 Dec;340(6 Pt 2):740–743. doi: 10.1007/BF00169683. [DOI] [PubMed] [Google Scholar]
  9. Duckles S. P. Neurogenic dilator and constrictor responses of pial arteries in vitro. Differences between dogs and sheep. Circ Res. 1979 Apr;44(4):482–490. doi: 10.1161/01.res.44.4.482. [DOI] [PubMed] [Google Scholar]
  10. Forsberg K., Karlsson J. A., Theodorsson E., Lundberg J. M., Persson C. G. Cough and bronchoconstriction mediated by capsaicin-sensitive sensory neurons in the guinea-pig. Pulm Pharmacol. 1988;1(1):33–39. doi: 10.1016/0952-0600(88)90008-7. [DOI] [PubMed] [Google Scholar]
  11. Franco-Cereceda A., Henke H., Lundberg J. M., Petermann J. B., Hökfelt T., Fischer J. A. Calcitonin gene-related peptide (CGRP) in capsaicin-sensitive substance P-immunoreactive sensory neurons in animals and man: distribution and release by capsaicin. Peptides. 1987 Mar-Apr;8(2):399–410. doi: 10.1016/0196-9781(87)90117-3. [DOI] [PubMed] [Google Scholar]
  12. Jancsó G., Kiraly E., Jancsó-Gábor A. Pharmacologically induced selective degeneration of chemosensitive primary sensory neurones. Nature. 1977 Dec 22;270(5639):741–743. doi: 10.1038/270741a0. [DOI] [PubMed] [Google Scholar]
  13. Liu S. F., Crawley D. E., Barnes P. J., Evans T. W. Endothelium-derived relaxing factor inhibits hypoxic pulmonary vasoconstriction in rats. Am Rev Respir Dis. 1991 Jan;143(1):32–37. doi: 10.1164/ajrccm/143.1.32. [DOI] [PubMed] [Google Scholar]
  14. Liu S. F., Crawley D. E., Evans T. W., Barnes P. J. Endothelium-dependent nonadrenergic, noncholinergic neural relaxation in guinea pig pulmonary artery. J Pharmacol Exp Ther. 1992 Feb;260(2):541–548. [PubMed] [Google Scholar]
  15. Lundberg J. M., Brodin E., Saria A. Effects and distribution of vagal capsaicin-sensitive substance P neurons with special reference to the trachea and lungs. Acta Physiol Scand. 1983 Nov;119(3):243–252. doi: 10.1111/j.1748-1716.1983.tb07334.x. [DOI] [PubMed] [Google Scholar]
  16. Lundberg J. M., Franco-Cereceda A., Hua X., Hökfelt T., Fischer J. A. Co-existence of substance P and calcitonin gene-related peptide-like immunoreactivities in sensory nerves in relation to cardiovascular and bronchoconstrictor effects of capsaicin. Eur J Pharmacol. 1985 Feb 5;108(3):315–319. doi: 10.1016/0014-2999(85)90456-x. [DOI] [PubMed] [Google Scholar]
  17. Lundberg J. M., Hökfelt T., Martling C. R., Saria A., Cuello C. Substance P-immunoreactive sensory nerves in the lower respiratory tract of various mammals including man. Cell Tissue Res. 1984;235(2):251–261. doi: 10.1007/BF00217848. [DOI] [PubMed] [Google Scholar]
  18. McCormack D. G., Barnes P. J., Evans T. W. Evidence against a role for platelet-activating factor in hypoxic pulmonary vasoconstriction in the rat. Clin Sci (Lond) 1989 Oct;77(4):439–443. doi: 10.1042/cs0770439. [DOI] [PubMed] [Google Scholar]
  19. McCormack D. G., Mak J. C., Coupe M. O., Barnes P. J. Calcitonin gene-related peptide vasodilation of human pulmonary vessels. J Appl Physiol (1985) 1989 Sep;67(3):1265–1270. doi: 10.1152/jappl.1989.67.3.1265. [DOI] [PubMed] [Google Scholar]
  20. McCormack D. G., Salonen R. O., Barnes P. J. Effect of sensory neuropeptides on canine bronchial and pulmonary vessels in vitro. Life Sci. 1989;45(25):2405–2412. doi: 10.1016/0024-3205(89)90004-0. [DOI] [PubMed] [Google Scholar]
  21. Polak J. M., Bloom S. R. Regulatory peptides and neuron-specific enolase in the respiratory tract of man and other mammals. Exp Lung Res. 1982 Nov;3(3-4):313–328. doi: 10.3109/01902148209069660. [DOI] [PubMed] [Google Scholar]
  22. Robin E. D., Theodore J., Burke C. M., Oesterle S. N., Fowler M. B., Jamieson S. W., Baldwin J. C., Morris A. J., Hunt S. A., Vankessel A. Hypoxic pulmonary vasoconstriction persists in the human transplanted lung. Clin Sci (Lond) 1987 Mar;72(3):283–287. doi: 10.1042/cs0720283. [DOI] [PubMed] [Google Scholar]
  23. Voelkel N. F. Mechanisms of hypoxic pulmonary vasoconstriction. Am Rev Respir Dis. 1986 Jun;133(6):1186–1195. doi: 10.1164/arrd.1986.133.6.1186. [DOI] [PubMed] [Google Scholar]
  24. Wharton J., Polak J. M., Bloom S. R., Will J. A., Brown M. R., Pearse A. G. Substance P-like immunoreactive nerves in mammalian lung. Invest Cell Pathol. 1979 Jan-Mar;2(1):3–10. [PubMed] [Google Scholar]

Articles from Thorax are provided here courtesy of BMJ Publishing Group

RESOURCES