Abstract
The influence of the rare initiation triplet AUU on mRNA translation was investigated by comparing the activity of two pairs of model mRNAs that differ in the length of Shine-Dalgarno and spacer sequences. Irrespective of the initiation triplet (AUG or AUU), all mRNAs had similar template activity in vitro, but translation of AUU mRNAs depended more on initiation factor (IF) 2 and less on IF3 than that of AUG mRNAs. Increasing the IF3/ribosome ratio from 2 to 10 progressively inhibited the AUU mRNAs and abolished their capacity to compete for translating ribosomes with other mRNAs but did not affect activity of the AUG mRNAs. The effects induced by IF3 are from its different influence on on- and off-rates of the transition 30S preinitiation complex<==>30S initiation complex; depending on the nature of the initiation triplet (AUG or AUU) of the mRNA, IF3 shifts the position of equilibrium toward binding or dissociation of fMet-tRNA, respectively. Stimulation of fMet-tRNA binding and dissociation yields superimposable IF3 titration curves that saturate at an IF3/30S ratio of approximately 1, indicating that the data are from the interaction of one molecule of IF3 with the same 30S binding site. Both effects are either lost or strongly reduced with 30S mutants defective in IF3 binding. Translational repression of AUU mRNAs by IF3 is from the factor-dependent dissociation of fMet-tRNA from 30S subunits, which becomes relevant when excess IF3 interferes with the formation of 70S initiation complex, presumably by interacting with 50S subunit.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Brombach M., Pon C. L. The unusual translational initiation codon AUU limits the expression of the infC (initiation factor IF3) gene of Escherichia coli. Mol Gen Genet. 1987 Jun;208(1-2):94–100. doi: 10.1007/BF00330428. [DOI] [PubMed] [Google Scholar]
- Butler J. S., Springer M., Grunberg-Manago M. AUU-to-AUG mutation in the initiator codon of the translation initiation factor IF3 abolishes translational autocontrol of its own gene (infC) in vivo. Proc Natl Acad Sci U S A. 1987 Jun;84(12):4022–4025. doi: 10.1073/pnas.84.12.4022. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Calogero R. A., Pon C. L., Canonaco M. A., Gualerzi C. O. Selection of the mRNA translation initiation region by Escherichia coli ribosomes. Proc Natl Acad Sci U S A. 1988 Sep;85(17):6427–6431. doi: 10.1073/pnas.85.17.6427. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chaires J. B., Hawley D. A., Wahba A. J. Chain initiation factor 3 crosslinks to E. coli 30S and 50S ribosomal subunits and alters the UV absorbance spectrum of 70S ribosomes. Nucleic Acids Res. 1982 Sep 25;10(18):5681–5693. doi: 10.1093/nar/10.18.5681. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Falconi M., Brombach M., Gualerzi C. O., Pon C. L. In vivo transcriptional pattern in the infC operon of Bacillus stearothermophilus. Mol Gen Genet. 1991 May;227(1):60–64. doi: 10.1007/BF00260707. [DOI] [PubMed] [Google Scholar]
- Gold L. Posttranscriptional regulatory mechanisms in Escherichia coli. Annu Rev Biochem. 1988;57:199–233. doi: 10.1146/annurev.bi.57.070188.001215. [DOI] [PubMed] [Google Scholar]
- Gold L., Stormo G., Saunders R. Escherichia coli translational initiation factor IF3: a unique case of translational regulation. Proc Natl Acad Sci U S A. 1984 Nov;81(22):7061–7065. doi: 10.1073/pnas.81.22.7061. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gualerzi C. O., Pon C. L. Initiation of mRNA translation in prokaryotes. Biochemistry. 1990 Jun 26;29(25):5881–5889. doi: 10.1021/bi00477a001. [DOI] [PubMed] [Google Scholar]
- Gualerzi C. O., Severini M., Spurio R., La Teana A., Pon C. L. Molecular dissection of translation initiation factor IF2. Evidence for two structural and functional domains. J Biol Chem. 1991 Sep 5;266(25):16356–16362. [PubMed] [Google Scholar]
- Gualerzi C., Pon C. L., Kaji A. Initiation factor dependent release of aminoacyl-tRNAs from complexes of 30S ribosomal subunits, synthetic polynucleotide and aminoacyl tRNA. Biochem Biophys Res Commun. 1971 Dec 3;45(5):1312–1319. doi: 10.1016/0006-291x(71)90162-8. [DOI] [PubMed] [Google Scholar]
- Hartz D., Binkley J., Hollingsworth T., Gold L. Domains of initiator tRNA and initiation codon crucial for initiator tRNA selection by Escherichia coli IF3. Genes Dev. 1990 Oct;4(10):1790–1800. doi: 10.1101/gad.4.10.1790. [DOI] [PubMed] [Google Scholar]
- Hartz D., McPheeters D. S., Gold L. Selection of the initiator tRNA by Escherichia coli initiation factors. Genes Dev. 1989 Dec;3(12A):1899–1912. doi: 10.1101/gad.3.12a.1899. [DOI] [PubMed] [Google Scholar]
- Kano Y., Yoshino S., Wada M., Yokoyama K., Nobuhara M., Imamoto F. Molecular cloning and nucleotide sequence of the HU-1 gene of Escherichia coli. Mol Gen Genet. 1985;201(2):360–362. doi: 10.1007/BF00425687. [DOI] [PubMed] [Google Scholar]
- Khudyakov YuE, Neplyueva V. S., Kalinina T. I., Smirnov V. D. Effect of structure of the initiator codon on translation in E. coli. FEBS Lett. 1988 May 23;232(2):369–371. doi: 10.1016/0014-5793(88)80771-3. [DOI] [PubMed] [Google Scholar]
- Kirillov S. V., Makhno V. I., Semenkov Y. P. The mechanism of codon-anticodon interaction in ribosomes. Quantitative study of codon-dependent binding of tRNA to the 30-S ribosomal subunits of Escherichia coli. Eur J Biochem. 1978 Aug 15;89(1):297–304. doi: 10.1111/j.1432-1033.1978.tb20927.x. [DOI] [PubMed] [Google Scholar]
- Mackie G. A. Nucleotide sequence of the gene for ribosomal protein S20 and its flanking regions. J Biol Chem. 1981 Aug 10;256(15):8177–8182. [PubMed] [Google Scholar]
- McCarthy J. E., Gualerzi C. Translational control of prokaryotic gene expression. Trends Genet. 1990 Mar;6(3):78–85. doi: 10.1016/0168-9525(90)90098-q. [DOI] [PubMed] [Google Scholar]
- Nivinskas R., Vaiskunaite R., Raudonikiene A. An internal AUU codon initiates a smaller peptide encoded by bacteriophage T4 baseplate gene 26. Mol Gen Genet. 1992 Mar;232(2):257–261. doi: 10.1007/BF00280004. [DOI] [PubMed] [Google Scholar]
- Pon C. L., Brombach M., Thamm S., Gualerzi C. O. Cloning and characterization of a gene cluster from Bacillus stearothermophilus comprising infC, rpmI and rplT. Mol Gen Genet. 1989 Aug;218(2):355–357. doi: 10.1007/BF00331290. [DOI] [PubMed] [Google Scholar]
- Pon C. L., Gualerzi C. O. Mechanism of translational initiation in prokaryotes. IF3 is released from ribosomes during and not before 70 S initiation complex formation. FEBS Lett. 1986 Jan 20;195(1-2):215–219. doi: 10.1016/0014-5793(86)80163-6. [DOI] [PubMed] [Google Scholar]
- Pon C. L., Gualerzi C. Effect of initiation factor 3 binding on the 30S ribosomal subunits of Escherichia coli. Proc Natl Acad Sci U S A. 1974 Dec;71(12):4950–4954. doi: 10.1073/pnas.71.12.4950. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Post L. E., Arfsten A. E., Davis G. R., Nomura M. DNA sequence of the promoter region for the alpha ribosomal protein operon in Escherichia coli. J Biol Chem. 1980 May 25;255(10):4653–4659. [PubMed] [Google Scholar]
- Reddy P., Peterkofsky A., McKenney K. Translational efficiency of the Escherichia coli adenylate cyclase gene: mutating the UUG initiation codon to GUG or AUG results in increased gene expression. Proc Natl Acad Sci U S A. 1985 Sep;82(17):5656–5660. doi: 10.1073/pnas.82.17.5656. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Risuleo G., Gualerzi C., Pon C. Specificity and properties of the destabilization, induced by initiation factor IF-3, of ternary complexes of the 30-S ribosomal subunit, aminoacyl-tRNA and polynucleotides. Eur J Biochem. 1976 Aug 16;67(2):603–613. doi: 10.1111/j.1432-1033.1976.tb10726.x. [DOI] [PubMed] [Google Scholar]
- Sacerdot C., Fayat G., Dessen P., Springer M., Plumbridge J. A., Grunberg-Manago M., Blanquet S. Sequence of a 1.26-kb DNA fragment containing the structural gene for E.coli initiation factor IF3: presence of an AUU initiator codon. EMBO J. 1982;1(3):311–315. doi: 10.1002/j.1460-2075.1982.tb01166.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Scherer G. F., Walkinshaw M. D., Arnott S., Morré D. J. The ribosome binding sites recognized by E. coli ribosomes have regions with signal character in both the leader and protein coding segments. Nucleic Acids Res. 1980 Sep 11;8(17):3895–3907. doi: 10.1093/nar/8.17.3895. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Spedding G., Gluick T. C., Draper D. E. Ribosome initiation complex formation with the pseudoknotted alpha operon messenger RNA. J Mol Biol. 1993 Feb 5;229(3):609–622. doi: 10.1006/jmbi.1993.1067. [DOI] [PubMed] [Google Scholar]
- Tapprich W. E., Goss D. J., Dahlberg A. E. Mutation at position 791 in Escherichia coli 16S ribosomal RNA affects processes involved in the initiation of protein synthesis. Proc Natl Acad Sci U S A. 1989 Jul;86(13):4927–4931. doi: 10.1073/pnas.86.13.4927. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yokota T., Sugisaki H., Takanami M., Kaziro Y. The nucleotide sequence of the cloned tufA gene of Escherichia coli. Gene. 1980 Dec;12(1-2):25–31. doi: 10.1016/0378-1119(80)90012-8. [DOI] [PubMed] [Google Scholar]