Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Sep 30;71(Pt 10):1262–1265. doi: 10.1107/S2056989015017636

Crystal structure of an unknown tetra­hydro­furan solvate of tetra­kis­(μ 3-cyanato-κ3 N:N:N)tetra­kis­[(triphenyl­phosphane-κP)­silver(I)]

Peter Frenzel a, Dieter Schaarschmidt b, Alexander Jakob a, Heinrich Lang a,*
PMCID: PMC4647345  PMID: 26594421

In the title compound a distorted Ag4N4-heterocubane core is set up by AgI cations and N atoms of cyanate anions. The core is decorated by four tri­phenyl­phosphine ligands bonded to the AgI cations. Ag⋯Ag distances as short as 3.133 (9) Å suggest the presence of argentophilic (d 10d 10) inter­actions.

Keywords: crystal structure, silver(I), cyanate ligand, phosphine ligand, Ag4N4 heterocubane, SQUEEZE procedure

Abstract

In the title compound, [{[(C6H5)3P]Ag}4{NCO}4], a distorted Ag4N4-heterocubane core is set up by four AgI ions being coordinated by the N atoms of the cyanato anions in a μ 3-bridging mode. In addition, a tri­phenyl­phosphine ligand is datively bonded to each of the AgI ions. Intra­molecular Ag⋯Ag distances as short as 3.133 (9) Å suggest the presence of argentophilic (d 10d 10) inter­actions. Five moderate-to-weak C—H⋯O hydrogen-bonding inter­actions are observed in the crystal structure, spanning a three-dimensional network. A region of electron density was treated with the SQUEEZE procedure in PLATON [Spek (2015). Acta Cryst. C71, 9–18] following unsuccessful attempts to model it as being part of disordered tetra­hydro­furan solvent mol­ecules. The given chemical formula and other crystal data do not take into account these solvent mol­ecules.

Chemical context  

A large number of studies about silver precursors, for instance silver(I) carboxyl­ates, silver(I) di­thio­carbamates or silver(I) β-diketonates have been reported, due to their suitability in manifold application methods such as CCVD (combustion chemical vapour deposition) or CVD (chemical vapour deposition) processes (Struppert et al., 2010; Schmidt et al., 2005; Haase et al., 2005a ,b ; Lang & Buschbeck, 2009; Lang, 2011; Lang & Dietrich, 2013; Jakob et al., 2006; Chi et al., 1996; Chi & Lu, 2001), inkjet printing (Jahn et al., 2010), joining processes (Oestreicher et al., 2013), their use as single-source precursors for Ag2S formation (Mothes et al., 2015a ,b ), catalysis (Steffan et al., 2009) and self-assembly of silver nanoparticles (Bokhonov et al., 2014).graphic file with name e-71-01262-scheme1.jpg

In contrast, hardly any research has been done on compounds such as metal alkyl allophanates. Despite the inter­esting features of this type of compounds, only few research groups have so far been involved in the synthesis (Clusius & Endtinger, 1960; Becker & Eisenschmidt, 1973; Dains & Wertheim, 1920) and further modification of this family of compounds (Kawakubo et al., 2015; Potts et al., 1990; Bachmann & Maxwell, 1950; Murray & Dains, 1934; Biltz & Jeltsch, 1923). To the best of our knowledge, two synthetic approaches for the preparation of potassium and silver salts of ethyl allophanate have been described in the literature (Blair, 1926; Dains et al., 1919). The identity of metal allophanates has been confirmed by elemental analysis. For the application of these precursors, full characterization and the investigation of their thermal behaviour is required. In the context of precursor design for MOD (metal organic deposition) inks, we are inter­ested in the synthesis, characterization and application of such complexes for inkjet printing.

To get access to a large range of metal allophanates (e.g. Cu, Ni or Zn), a modified synthetic procedure with respect to the method reported by Dains et al. (1919) was applied for the synthesis of silver allophanates among others. The initial step involved conversion of ethyl allophanate with sodium ethano­late for use of the resulting solid in a further reaction to form the respective silver complex. To analyse the sparingly soluble compound, IR spectroscopy has been applied. A comparison of the measured spectrum with that of ethyl allophanate showed the absence of the carbonyl band at 1701 cm−1 and the appearance of a new band at 2170 cm−1 of high intensity, indicating the formation of silver iso­cyanate (Ellestad et al., 1972). To confirm the assumption of the formation of silver iso­cyanate, the respective solid was treated with tri­phenyl­phosphine (PPh3) in tetra­hydro­furan (THF) and subsequently crystallized. The characterization of the crystals obtained by X-ray diffraction, NMR and IR spectroscopy is in accordance with the formation of the title compound, [{((C6H5)3P)Ag}4{NCO}4], (I).

Structural commentary  

The title compound consists of a Ag4N4-heterocubane core formed by κN-coordination of four cyanate anions towards four AgI cations in a μ 3-bridging mode (Fig. 1). Each AgI cation is additionally coordinated by a PPh3 ligand. Disorder is observed in the crystal structure of (I) affecting the Ag3 and Ag4 sites, together with their bonded PPh3 moieties. However, the respective components of both disordered Ag(PPh3) units share one phenyl ring (C41–C46 and C59–C64). The Ag4N4-heterocubane is distorted which is reflected by the variation of the Ag—N distances in the range 2.273 (13)–2.605 (12) Å. Likewise, the Ag—N—Ag [78.7 (3) – 98.5 (3)°] and N—Ag—N [80.9 (3) – 98.5 (3)°] angles significantly deviate from 90°. The Ag2N2-faces of the Ag4N4-core are not planar [r.m.s. deviations in the range 0.0293 (Ag1, Ag4, N2, N3) to 0.1947 Å (Ag3, Ag4′, N3, N4)], however, the opposing least-squares planes are almost parallel [angles between planes: 0.40 (3) and 3.2 (3)°]. Opposing planes are twisted by some degrees relative to each other, which is reflected by the Ag—N—Ag—N and N—Ag—N—Ag torsion angles ranging from 2.8 (3)–19.4 (3)°. As a result of the distortion of the Ag4N4-core, the Ag⋯Ag and N⋯N separations differ significantly. The shortest distances are observed between Ag1 and Ag2 as well as Ag3/Ag3′ and Ag4/Ag4′ (Table 1). Considering the contact radius of silver (1.72 Å; Bondi, 1964) a weak argentophilic inter­action between these pairs of atoms is most likely (Schmidbaur & Schier, 2015). The Ag—P separations [2.336 (15)–2.39 (2) Å] are characteristic for an AgI(PPh3) fragment. The scattering contributions of two severely disordered THF solvent mol­ecules were treated with the SQUEEZE procedure in PLATON (Spek, 2015). The calculated electron count of 350 electrons per unit cell is in good agreement with the composition of (I)·2THF. In contrast, NMR analysis of the crystals after deca­ntation of the supernatant solvent and drying in vacuo reveals a composition of (I)·0.25THF. This discrepancy may be due to a facile evaporation of the co-crystallized solvent under reduced pressure.

Figure 1.

Figure 1

The mol­ecular structure of (I) with displacement ellipsoids drawn at the 30% probability level. Hydrogen atoms and the minor parts of the disordered atoms are omitted for clarity.

Table 1. AgAg and NN separations ().

Ag3Ag4 3.133(9) Ag1Ag3 3.605(8)
Ag3Ag4 3.156(8) Ag2Ag4 3.615(8)
Ag1Ag2 3.1906(10) Ag1Ag4 3.616(9)
Ag3Ag4 3.215(8) N1N3 3.210(10)
Ag3Ag4 3.250(9) N2N3 3.213(9)
Ag2Ag4 3.428(10) N1N4 3.220(9)
Ag1Ag4 3.461(8) N2N4 3.247(10)
Ag1Ag3 3.494(8) N1N2 3.572(11)
Ag2Ag3 3.523(6) N3N4 3.599(14)
Ag2Ag3 3.545(5)    

Supra­molecular features  

Five moderate-to-weak C—H⋯O hydrogen bonds (Steiner, 2002) are observed in the crystal structure of (I) (Table 2). Four of those participate in the formation of a three-dimensional network. No obvious π–π-stacking inter­actions between the phenyl rings are present.

Table 2. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
C9H9O2i 0.93 2.37 3.177(12) 145
C16H16O2 0.93 2.59 3.324(17) 136
C25H25O1ii 0.93 2.48 3.358(12) 157
C51H51O4iii 0.93 2.22 3.07(2) 151
C67H67O3iv 0.93 2.19 3.01(2) 147

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Database survey  

There are 75 structures of Ag4 E 4-heterocubanes (E = N, O, Cl, Br, I) in the CSD database (Groom & Allen, 2014; CSD Version 5.36); in 35 of these complexes, silver is coordinated by phospho­rus. Ag4N4-heterocubanes are relatively rare as there are only three examples known so far (Bowmaker et al., 1998; Partyka & Deligonul, 2009). These include the tri­cyclo­hexyl­arsine analogue of (I) as well as its pyridine solvate (Bowmaker et al., 1998). All reported Ag4N4-heterocubanes are less distorted than (I), which is reflected in a much less pronounced deviation of the Ag⋯Ag distances in the heterocubane. A μ 3N coordination of the cyanate anions towards AgI has been described for five compounds only (Bowmaker et al., 1998; Di Nicola et al., 2005, 2006). The average Ag—N distance in these compounds (2.433 Å) is in good agreement with the corresponding value of 2.408 Å in (I).

Synthesis and crystallization  

To a solution of sodium ethano­late in ethanol, generated in situ by dissolving sodium (349 mg, 15.2 mmol) in anhydrous ethanol (40 ml), was added at 273 K ethyl allophanate (1.92 g, 14.5 mmol). The reaction was heated to reflux overnight. The colourless precipitate formed was filtered off, washed thrice with ethanol (each 20 ml) and dried under vacuum (yield: 850 mg). The resulting solid material (407 mg) was dissolved in water (20 ml) and was added dropwise to a solution of silver nitrate (449 mg, 2.64 mmol) in water (15 ml). The suspension obtained was stirred at ambient temperature overnight. Filtration afforded a colourless solid, which was washed with cold water (20 ml) and dried under vacuum (yield: 250 mg). A suspension of this solid (120 mg) in anhydrous THF (20 ml) was treated with PPh3 (265 mg, 1.01 mmol) at 273 K. After stirring overnight at this temperature, the reaction mixture was filtered through a pad of celite. Removal of all volatiles under reduced pressure afforded a pale purple solid (yield: 313 mg, 0.189 mmol, 95% based on [AgNCO]). Colourless crystals of (I) were obtained by slow diffusion of diethyl ether into a THF solution of (I) at ambient temperature.

M.p. 458 K (decomp.). 1H NMR (500 MHz, CDCl3, 298 K, ppm): δ = 7.40–7.28 (m, 60H, C6H5). 13C{1H} NMR (126 MHz, CDCl3, 298 K, p.p.m.): δ = 134.0 (d, 2C, 2 J PC = 16.5 Hz, C6H5), 132.1 (d, 1C, 1 J PC = 27.3 Hz, C6H5), 130.4 (d, 1C, 4 J PC = 1.5 Hz, C6H5), 129.1 (d, 2C, 3 J PC = 9.8 Hz, C6H5). The resonance signal of the cyanate carbon atom is not observed under the measurement conditions applied. 31P{1H} NMR (203 MHz, CDCl3, 298 K, p.p.m.): δ = 9.0 (s). IR (KBr, cm−1): ν = 3449 (w), 3356 (w), 2170 (vs, N=C=O), 1603 (w), 1429 (w), 1388 (w), 1300 (m), 1206 (m), 638 (m).

Refinement details  

Crystal data, data collection and structure refinement details are summarized in Table 3. In the final refinement of (I) thirteen reflections, viz. (240), (Inline graphic60), (040), (Inline graphic42), (032), (302), (Inline graphic40), (222), (250), (Inline graphic22), (Inline graphic11), (340), and (Inline graphic21), were omitted owing to poor agreements between observed and calculated intensities. C-bonded H atoms were placed in calculated positions and constrained to ride on their parent atoms, with U iso(H) = 1.2U eq(C) and a C—H distance of 0.93 Å. Atoms Ag3 and Ag4 and two of the four P atoms of the PPh3 moieties with attached phenyl rings are disordered over two sets of sites, with occupancy ratios of 0.54 (4):0.46 (4) and 0.55 (2):0.45 (2), respectively. A phenyl ring of another PPh3 moiety is likewise disordered over two sets of sites in a 0.67 (5):0.33 (5) ratio. The disordered phenyl rings were treated by rigid-group refinements. If necessary, the respective C—P distances were restrained to 1.85 (2) Å. Anisotropic displacement parameters of all atoms were restrained using enhanced rigid-bond restraints (RIGU command, esds 0.004 Å2; Thorn et al., 2012). Solvent contributions to the scattering have been removed using the SQUEEZE procedure (Spek, 2015) in PLATON (Spek, 2009). SQUEEZE calculated a void volume of approximately 2494 Å3 occupied by 350 electrons per unit cell which points to the presence of two THF mol­ecules per formula unit. Fig. 2 shows the positions of the voids within the unit cell.

Table 3. Experimental details.

Crystal data
Chemical formula [Ag4(CNO)4(C18H15P)4]
M r 1648.64
Crystal system, space group Tetragonal, P Inline graphic
Temperature (K) 110
a, c () 24.0846(3), 15.2037(3)
V (3) 8819.2(3)
Z 4
Radiation type Mo K
(mm1) 0.99
Crystal size (mm) 0.35 0.30 0.20
 
Data collection
Diffractometer Oxford Gemini S diffractometer
Absorption correction Multi-scan (CrysAlis RED; Oxford Diffraction, 2006)
T min, T max 0.912, 1.000
No. of measured, independent and observed [I > 2(I)] reflections 105239, 20082, 12667
R int 0.048
(sin /)max (1) 0.674
 
Refinement
R[F 2 > 2(F 2)], wR(F 2), S 0.045, 0.131, 1.01
No. of reflections 20082
No. of parameters 1018
No. of restraints 1206
H-atom treatment H-atom parameters constrained
max, min (e 3) 0.68, 1.88
Absolute structure Flack x determined using 5170 quotients [(I +)(I )]/[(I +)+(I )] (Parsons Flack, 2004)
Absolute structure parameter 0.023(9)

Computer programs: CrysAlis CCD and CrysAlis RED (Oxford Diffraction, 2006), SHELXS2013 and SHELXTL (Sheldrick, 2008), SHELXL2013 (Sheldrick, 2015), ORTEP-3 for Windows and WinGX (Farrugia, 2012), PLATON (Spek, 2009), SQUEEZE (Spek, 2015) and publCIF (Westrip, 2010).

Figure 2.

Figure 2

Packing diagram of (I) viewed along [001]. Voids in the structure are represented by red spheres (drawn using the CAVITYPLOT routine in PLATON; Spek, 2009). Hydrogen atoms were omitted for clarity. Dashed lines represent coordinative bonds. Colour code: black (C), red (O), yellow (P), green (Ag).

Supplementary Material

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S2056989015017636/wm5201sup1.cif

e-71-01262-sup1.cif (4.1MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015017636/wm5201Isup2.hkl

e-71-01262-Isup2.hkl (1.6MB, hkl)

CCDC reference: 1426238

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

Financial support from the Federal Cluster of Excellence EXC 1075 ‘MERGE Technologies for Multifunctional Lightweight Structures’ is gratefully acknowledged. DS thanks the Fonds der Chemischen Industrie for a FCI PhD fellowship.

supplementary crystallographic information

Crystal data

[Ag4(CNO)4(C18H15P)4] Dx = 1.242 Mg m3
Mr = 1648.64 Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P4 Cell parameters from 20599 reflections
a = 24.0846 (3) Å θ = 3.3–28.0°
c = 15.2037 (3) Å µ = 0.99 mm1
V = 8819.2 (3) Å3 T = 110 K
Z = 4 Block, colourless
F(000) = 3296 0.35 × 0.30 × 0.20 mm

Data collection

Oxford Gemini S diffractometer Rint = 0.048
ω scans θmax = 28.6°, θmin = 2.9°
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006) h = −30→31
Tmin = 0.912, Tmax = 1.000 k = −30→32
105239 measured reflections l = −19→18
20082 independent reflections 50 standard reflections every 10 reflections
12667 reflections with I > 2σ(I) intensity decay: none

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.045 w = 1/[σ2(Fo2) + (0.0659P)2 + 1.5343P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.131 (Δ/σ)max = 0.001
S = 1.01 Δρmax = 0.68 e Å3
20082 reflections Δρmin = −1.88 e Å3
1018 parameters Absolute structure: Flack x determined using 5170 quotients [(I+)–(I)]/[(I+)+(I)] (Parsons & Flack, 2004)
1206 restraints Absolute structure parameter: −0.023 (9)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
C1 0.8673 (3) 0.2938 (3) 0.8383 (5) 0.0409 (17)
C2 0.6448 (4) 0.2228 (4) 0.8500 (6) 0.048 (2)
C3 0.7169 (4) 0.3662 (5) 0.6559 (7) 0.061 (3)
C4 0.7899 (5) 0.1428 (4) 0.6584 (7) 0.065 (3)
C5 0.7782 (4) 0.4052 (3) 1.0092 (5) 0.0429 (19)
C6 0.8231 (4) 0.3700 (4) 1.0184 (6) 0.051 (2)
H6 0.8197 0.3332 1.0009 0.061*
C7 0.8731 (4) 0.3883 (4) 1.0532 (7) 0.068 (3)
H7 0.9033 0.3643 1.0575 0.081*
C8 0.8776 (4) 0.4425 (4) 1.0812 (7) 0.066 (3)
H8 0.9104 0.4548 1.1069 0.079*
C9 0.8330 (4) 0.4789 (4) 1.0712 (6) 0.062 (2)
H9 0.8365 0.5159 1.0882 0.074*
C10 0.7845 (4) 0.4604 (3) 1.0366 (6) 0.047 (2)
H10 0.7548 0.4848 1.0309 0.056*
C11 0.6863 (14) 0.3427 (13) 1.0519 (15) 0.051 (8) 0.33 (5)
C12 0.7139 (17) 0.3339 (14) 1.1310 (18) 0.069 (10) 0.33 (5)
H12 0.7490 0.3489 1.1399 0.082* 0.33 (5)
C13 0.689 (2) 0.3025 (19) 1.1968 (17) 0.091 (14) 0.33 (5)
H13 0.7073 0.2966 1.2498 0.109* 0.33 (5)
C14 0.636 (2) 0.2801 (14) 1.1835 (17) 0.082 (12) 0.33 (5)
H14 0.6197 0.2591 1.2275 0.098* 0.33 (5)
C15 0.6089 (13) 0.2889 (13) 1.104 (2) 0.061 (10) 0.33 (5)
H15 0.5738 0.2739 1.0954 0.073* 0.33 (5)
C16 0.6339 (14) 0.3202 (17) 1.0385 (19) 0.047 (8) 0.33 (5)
H16 0.6155 0.3262 0.9856 0.056* 0.33 (5)
C11' 0.6779 (6) 0.3423 (6) 1.0508 (6) 0.037 (4) 0.67 (5)
C12' 0.6908 (9) 0.3538 (9) 1.1381 (7) 0.071 (7) 0.67 (5)
H12' 0.7205 0.3769 1.1515 0.085* 0.67 (5)
C13' 0.6592 (11) 0.3306 (12) 1.2053 (6) 0.091 (9) 0.67 (5)
H13' 0.6678 0.3383 1.2636 0.109* 0.67 (5)
C14' 0.6148 (8) 0.2960 (8) 1.1852 (8) 0.077 (6) 0.67 (5)
H14' 0.5937 0.2805 1.2301 0.093* 0.67 (5)
C15' 0.6020 (5) 0.2845 (6) 1.0979 (9) 0.055 (5) 0.67 (5)
H15' 0.5723 0.2613 1.0844 0.066* 0.67 (5)
C16' 0.6336 (6) 0.3076 (7) 1.0307 (7) 0.033 (3) 0.67 (5)
H16' 0.6250 0.2999 0.9723 0.039* 0.67 (5)
C17 0.6705 (4) 0.4354 (3) 0.9358 (6) 0.0424 (19)
C18 0.6422 (4) 0.4652 (4) 1.0020 (7) 0.047 (2)
H18 0.6478 0.4570 1.0611 0.056*
C19 0.6053 (4) 0.5077 (4) 0.9767 (8) 0.055 (3)
H19 0.5858 0.5270 1.0197 0.066*
C20 0.5976 (5) 0.5213 (5) 0.8902 (8) 0.070 (3)
H20 0.5728 0.5493 0.8750 0.085*
C21 0.6264 (6) 0.4937 (5) 0.8258 (9) 0.082 (4)
H21 0.6219 0.5036 0.7671 0.098*
C22 0.6627 (5) 0.4504 (4) 0.8490 (7) 0.059 (3)
H22 0.6818 0.4314 0.8050 0.071*
C23 0.7351 (4) 0.1150 (3) 1.0213 (5) 0.0449 (19)
C24 0.7267 (4) 0.0618 (3) 1.0496 (5) 0.045 (2)
H24 0.7537 0.0347 1.0404 0.054*
C25 0.6774 (4) 0.0486 (4) 1.0922 (6) 0.059 (2)
H25 0.6715 0.0123 1.1110 0.071*
C26 0.6381 (4) 0.0873 (4) 1.1067 (6) 0.069 (3)
H26 0.6055 0.0777 1.1358 0.083*
C27 0.6461 (5) 0.1411 (4) 1.0785 (6) 0.077 (3)
H27 0.6192 0.1680 1.0889 0.092*
C28 0.6937 (4) 0.1545 (3) 1.0353 (6) 0.061 (3)
H28 0.6987 0.1906 1.0148 0.073*
C29 0.8381 (4) 0.1725 (3) 1.0490 (6) 0.049 (2)
C30 0.8807 (4) 0.2079 (3) 1.0226 (6) 0.0452 (19)
H30 0.8876 0.2128 0.9629 0.054*
C31 0.9129 (4) 0.2356 (4) 1.0827 (6) 0.053 (2)
H31 0.9411 0.2591 1.0638 0.063*
C32 0.9033 (5) 0.2286 (4) 1.1700 (6) 0.077 (3)
H32 0.9255 0.2467 1.2111 0.093*
C33 0.8608 (6) 0.1950 (7) 1.1974 (7) 0.118 (6)
H33 0.8530 0.1916 1.2571 0.141*
C34 0.8299 (5) 0.1662 (5) 1.1369 (6) 0.082 (3)
H34 0.8027 0.1417 1.1565 0.099*
C35 0.8372 (4) 0.0753 (3) 0.9380 (6) 0.044 (2)
C36 0.8414 (4) 0.0592 (4) 0.8511 (7) 0.055 (2)
H36 0.8241 0.0797 0.8072 0.066*
C37 0.8715 (5) 0.0124 (4) 0.8297 (8) 0.069 (3)
H37 0.8738 0.0014 0.7712 0.083*
C38 0.8979 (5) −0.0180 (4) 0.8922 (8) 0.061 (3)
H38 0.9192 −0.0487 0.8767 0.073*
C39 0.8925 (4) −0.0025 (4) 0.9785 (7) 0.049 (2)
H39 0.9098 −0.0233 1.0221 0.058*
C40 0.8621 (4) 0.0431 (4) 1.0013 (7) 0.046 (2)
H40 0.8582 0.0525 1.0603 0.055*
C41 0.9331 (4) 0.3342 (4) 0.5584 (5) 0.0397 (19)
C42 0.9634 (4) 0.3624 (4) 0.4946 (6) 0.044 (2)
H42 0.9531 0.3595 0.4358 0.053*
C43 1.0084 (4) 0.3948 (4) 0.5177 (6) 0.044 (2)
H43 1.0276 0.4141 0.4745 0.052*
C44 1.0250 (4) 0.3986 (4) 0.6035 (6) 0.050 (2)
H44 1.0551 0.4208 0.6188 0.060*
C45 0.9962 (3) 0.3688 (4) 0.6677 (6) 0.053 (2)
H45 1.0077 0.3700 0.7260 0.064*
C46 0.9502 (4) 0.3371 (4) 0.6440 (6) 0.049 (2)
H46 0.9308 0.3177 0.6870 0.058*
C47 0.9041 (9) 0.2240 (7) 0.4851 (14) 0.040 (4) 0.54 (4)
C48 0.8678 (8) 0.1797 (8) 0.4749 (13) 0.048 (5) 0.54 (4)
H48 0.8306 0.1836 0.4904 0.058* 0.54 (4)
C49 0.8870 (10) 0.1294 (7) 0.4417 (14) 0.058 (6) 0.54 (4)
H49 0.8626 0.0998 0.4349 0.070* 0.54 (4)
C50 0.9425 (11) 0.1236 (7) 0.4186 (15) 0.063 (6) 0.54 (4)
H50 0.9553 0.0900 0.3964 0.076* 0.54 (4)
C51 0.9788 (9) 0.1679 (8) 0.4288 (17) 0.074 (8) 0.54 (4)
H51 1.0160 0.1640 0.4133 0.089* 0.54 (4)
C52 0.9597 (9) 0.2182 (7) 0.4620 (17) 0.060 (7) 0.54 (4)
H52 0.9840 0.2479 0.4688 0.073* 0.54 (4)
C53 0.8431 (9) 0.3244 (9) 0.4421 (9) 0.043 (4) 0.54 (4)
C54 0.8090 (10) 0.3693 (8) 0.4617 (9) 0.049 (5) 0.54 (4)
H54 0.8013 0.3781 0.5200 0.059* 0.54 (4)
C55 0.7865 (9) 0.4011 (7) 0.3943 (11) 0.050 (5) 0.54 (4)
H55 0.7637 0.4312 0.4074 0.061* 0.54 (4)
C56 0.7981 (10) 0.3880 (9) 0.3071 (10) 0.056 (6) 0.54 (4)
H56 0.7830 0.4092 0.2620 0.067* 0.54 (4)
C57 0.8321 (9) 0.3430 (10) 0.2875 (8) 0.071 (7) 0.54 (4)
H57 0.8398 0.3342 0.2292 0.085* 0.54 (4)
C58 0.8546 (8) 0.3113 (10) 0.3550 (10) 0.061 (6) 0.54 (4)
H58 0.8774 0.2812 0.3418 0.073* 0.54 (4)
C47' 0.8901 (10) 0.2357 (9) 0.4762 (16) 0.042 (5) 0.46 (4)
C48' 0.8503 (10) 0.1945 (11) 0.4651 (17) 0.057 (7) 0.46 (4)
H48' 0.8141 0.2004 0.4843 0.069* 0.46 (4)
C49' 0.8645 (11) 0.1445 (10) 0.4255 (18) 0.065 (8) 0.46 (4)
H49' 0.8379 0.1169 0.4181 0.078* 0.46 (4)
C50' 0.9186 (12) 0.1357 (9) 0.3968 (17) 0.064 (8) 0.46 (4)
H50' 0.9282 0.1022 0.3703 0.077* 0.46 (4)
C51' 0.9584 (10) 0.1768 (9) 0.4079 (17) 0.058 (7) 0.46 (4)
H51' 0.9946 0.1709 0.3887 0.070* 0.46 (4)
C52' 0.9442 (10) 0.2268 (8) 0.4476 (17) 0.047 (6) 0.46 (4)
H52' 0.9708 0.2544 0.4550 0.056* 0.46 (4)
C53' 0.8337 (10) 0.3409 (11) 0.4448 (10) 0.038 (5) 0.46 (4)
C54' 0.7969 (11) 0.3816 (11) 0.4729 (10) 0.051 (6) 0.46 (4)
H54' 0.7908 0.3871 0.5327 0.061* 0.46 (4)
C55' 0.7692 (11) 0.4143 (10) 0.4116 (13) 0.050 (6) 0.46 (4)
H55' 0.7446 0.4416 0.4303 0.060* 0.46 (4)
C56' 0.7783 (11) 0.4062 (11) 0.3222 (12) 0.058 (6) 0.46 (4)
H56' 0.7598 0.4281 0.2812 0.070* 0.46 (4)
C57' 0.8151 (11) 0.3654 (12) 0.2942 (9) 0.068 (8) 0.46 (4)
H57' 0.8213 0.3600 0.2344 0.081* 0.46 (4)
C58' 0.8428 (9) 0.3328 (12) 0.3555 (11) 0.057 (6) 0.46 (4)
H58' 0.8675 0.3055 0.3367 0.068* 0.46 (4)
C59 0.5735 (4) 0.1679 (5) 0.5686 (7) 0.056 (2)
C60 0.5604 (4) 0.1575 (5) 0.6566 (7) 0.065 (3)
H60 0.5815 0.1739 0.7008 0.079*
C61 0.5168 (4) 0.1233 (5) 0.6788 (8) 0.074 (3)
H61 0.5079 0.1171 0.7375 0.089*
C62 0.4865 (4) 0.0984 (5) 0.6125 (9) 0.070 (3)
H62 0.4575 0.0745 0.6267 0.083*
C63 0.4990 (4) 0.1087 (4) 0.5248 (8) 0.057 (3)
H63 0.4780 0.0923 0.4806 0.069*
C64 0.5421 (4) 0.1430 (4) 0.5033 (8) 0.054 (2)
H64 0.5503 0.1497 0.4445 0.064*
C65 0.5990 (8) 0.2824 (7) 0.4929 (13) 0.060 (5) 0.55 (2)
C66 0.5440 (8) 0.2869 (7) 0.4663 (15) 0.075 (7) 0.55 (2)
H66 0.5201 0.2568 0.4723 0.090* 0.55 (2)
C67 0.5246 (8) 0.3364 (9) 0.4307 (15) 0.099 (9) 0.55 (2)
H67 0.4878 0.3394 0.4129 0.118* 0.55 (2)
C68 0.5603 (10) 0.3814 (8) 0.4218 (14) 0.098 (9) 0.55 (2)
H68 0.5474 0.4146 0.3980 0.117* 0.55 (2)
C69 0.6153 (9) 0.3769 (7) 0.4484 (14) 0.090 (8) 0.55 (2)
H69 0.6392 0.4070 0.4424 0.107* 0.55 (2)
C70 0.6347 (7) 0.3274 (8) 0.4840 (13) 0.077 (7) 0.55 (2)
H70 0.6715 0.3244 0.5018 0.093* 0.55 (2)
C71 0.6663 (6) 0.1856 (7) 0.4556 (8) 0.055 (4) 0.55 (2)
C72 0.6701 (7) 0.2088 (9) 0.3721 (9) 0.086 (7) 0.55 (2)
H72 0.6537 0.2431 0.3607 0.103* 0.55 (2)
C73 0.6984 (8) 0.1809 (10) 0.3058 (8) 0.132 (12) 0.55 (2)
H73 0.7010 0.1965 0.2500 0.158* 0.55 (2)
C74 0.7229 (8) 0.1298 (9) 0.3230 (9) 0.090 (7) 0.55 (2)
H74 0.7418 0.1111 0.2787 0.109* 0.55 (2)
C75 0.7190 (7) 0.1066 (7) 0.4065 (11) 0.058 (5) 0.55 (2)
H75 0.7354 0.0724 0.4180 0.070* 0.55 (2)
C76 0.6907 (7) 0.1345 (7) 0.4728 (8) 0.054 (5) 0.55 (2)
H76 0.6882 0.1189 0.5286 0.065* 0.55 (2)
C65' 0.6148 (8) 0.2653 (8) 0.4851 (14) 0.052 (5) 0.45 (2)
C66' 0.5606 (7) 0.2743 (7) 0.4572 (14) 0.045 (5) 0.45 (2)
H66' 0.5333 0.2481 0.4689 0.054* 0.45 (2)
C67' 0.5473 (7) 0.3226 (8) 0.4117 (13) 0.059 (6) 0.45 (2)
H67' 0.5110 0.3287 0.3930 0.070* 0.45 (2)
C68' 0.5882 (9) 0.3618 (8) 0.3942 (13) 0.079 (8) 0.45 (2)
H68' 0.5792 0.3941 0.3638 0.095* 0.45 (2)
C69' 0.6424 (9) 0.3528 (10) 0.4221 (14) 0.075 (8) 0.45 (2)
H69' 0.6697 0.3790 0.4104 0.090* 0.45 (2)
C70' 0.6557 (7) 0.3045 (10) 0.4675 (14) 0.085 (9) 0.45 (2)
H70' 0.6920 0.2984 0.4862 0.101* 0.45 (2)
C71' 0.6754 (7) 0.1621 (9) 0.4575 (9) 0.047 (5) 0.45 (2)
C72' 0.6701 (7) 0.1719 (11) 0.3677 (10) 0.085 (9) 0.45 (2)
H72' 0.6465 0.1997 0.3476 0.102* 0.45 (2)
C73' 0.7001 (8) 0.1401 (13) 0.3081 (8) 0.088 (10) 0.45 (2)
H73' 0.6966 0.1466 0.2480 0.106* 0.45 (2)
C74' 0.7354 (7) 0.0985 (10) 0.3381 (9) 0.067 (6) 0.45 (2)
H74' 0.7555 0.0773 0.2982 0.080* 0.45 (2)
C75' 0.7407 (8) 0.0888 (7) 0.4279 (10) 0.054 (5) 0.45 (2)
H75' 0.7642 0.0610 0.4480 0.065* 0.45 (2)
C76' 0.7106 (8) 0.1206 (8) 0.4875 (8) 0.043 (5) 0.45 (2)
H76' 0.7142 0.1141 0.5476 0.051* 0.45 (2)
N1 0.8257 (3) 0.2813 (3) 0.8112 (4) 0.0341 (14)
N2 0.6857 (3) 0.2327 (3) 0.8197 (4) 0.0393 (15)
N3 0.7290 (3) 0.3253 (3) 0.6838 (5) 0.0459 (17)
N4 0.7788 (3) 0.1844 (3) 0.6855 (5) 0.0451 (17)
O1 0.9122 (3) 0.3084 (3) 0.8681 (4) 0.0664 (19)
O2 0.5992 (3) 0.2124 (4) 0.8821 (5) 0.092 (3)
O3 0.7042 (5) 0.4113 (4) 0.6237 (6) 0.103 (3)
O4 0.8006 (5) 0.0971 (3) 0.6279 (6) 0.115 (4)
P1 0.71594 (10) 0.37703 (9) 0.96044 (15) 0.0383 (5)
P2 0.79767 (11) 0.13798 (9) 0.96362 (15) 0.0415 (6)
Ag1 0.73407 (3) 0.31900 (2) 0.83917 (5) 0.03668 (17)
Ag2 0.77858 (3) 0.19423 (2) 0.84006 (5) 0.03938 (19)
Ag3 0.8158 (2) 0.2743 (2) 0.6536 (4) 0.0437 (11) 0.54 (4)
P3 0.8762 (8) 0.2884 (8) 0.5344 (13) 0.040 (3) 0.54 (4)
P4 0.6275 (5) 0.2197 (6) 0.5440 (9) 0.053 (2) 0.55 (2)
Ag4 0.6860 (3) 0.2386 (3) 0.6666 (5) 0.0439 (9) 0.55 (2)
P3' 0.8671 (9) 0.2982 (10) 0.5300 (14) 0.037 (3) 0.46 (4)
Ag3' 0.8134 (2) 0.2778 (3) 0.6582 (5) 0.0420 (12) 0.46 (4)
P4' 0.6390 (6) 0.2041 (7) 0.5432 (10) 0.045 (2) 0.45 (2)
Ag4' 0.6947 (3) 0.2250 (4) 0.6646 (6) 0.0417 (11) 0.45 (2)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.048 (4) 0.049 (4) 0.026 (4) −0.005 (3) 0.006 (3) 0.002 (3)
C2 0.059 (4) 0.061 (5) 0.025 (4) −0.023 (4) 0.001 (3) −0.004 (4)
C3 0.072 (6) 0.070 (5) 0.041 (5) −0.002 (4) 0.009 (5) 0.014 (4)
C4 0.100 (7) 0.055 (4) 0.040 (5) −0.023 (4) 0.011 (5) −0.005 (4)
C5 0.059 (4) 0.032 (4) 0.037 (4) 0.001 (3) 0.006 (3) −0.002 (3)
C6 0.064 (5) 0.041 (4) 0.047 (5) 0.008 (3) −0.013 (4) −0.011 (4)
C7 0.071 (5) 0.052 (5) 0.080 (7) 0.017 (4) −0.016 (5) −0.026 (5)
C8 0.058 (5) 0.056 (5) 0.083 (7) 0.005 (4) −0.013 (5) −0.021 (5)
C9 0.065 (5) 0.040 (5) 0.079 (7) 0.002 (4) 0.001 (4) −0.015 (4)
C10 0.056 (5) 0.031 (4) 0.052 (5) 0.002 (3) 0.004 (4) −0.003 (3)
C11 0.075 (12) 0.040 (15) 0.037 (9) −0.005 (10) 0.002 (8) 0.000 (9)
C12 0.093 (16) 0.07 (2) 0.041 (10) −0.005 (15) −0.006 (11) 0.009 (11)
C13 0.11 (2) 0.11 (3) 0.057 (13) −0.02 (2) −0.003 (13) 0.026 (16)
C14 0.10 (2) 0.08 (2) 0.059 (14) −0.005 (17) 0.007 (12) 0.010 (13)
C15 0.091 (18) 0.036 (18) 0.055 (14) −0.005 (15) 0.011 (11) −0.002 (11)
C16 0.069 (12) 0.027 (16) 0.045 (12) 0.008 (10) 0.008 (9) −0.005 (9)
C11' 0.042 (7) 0.037 (8) 0.033 (6) −0.008 (6) −0.001 (4) 0.004 (5)
C12' 0.078 (12) 0.100 (14) 0.035 (6) −0.039 (11) −0.003 (6) 0.007 (6)
C13' 0.102 (16) 0.135 (19) 0.036 (7) −0.054 (15) −0.001 (7) 0.021 (7)
C14' 0.070 (12) 0.101 (14) 0.061 (8) −0.026 (10) −0.007 (6) 0.028 (7)
C15' 0.036 (7) 0.067 (13) 0.063 (8) −0.003 (8) −0.001 (6) 0.022 (7)
C16' 0.032 (6) 0.025 (7) 0.042 (7) 0.009 (5) −0.002 (5) −0.002 (5)
C17 0.049 (4) 0.031 (4) 0.048 (4) −0.005 (3) 0.007 (3) 0.003 (3)
C18 0.043 (5) 0.040 (4) 0.057 (5) −0.008 (3) 0.011 (4) −0.001 (4)
C19 0.040 (5) 0.048 (5) 0.076 (6) −0.003 (4) 0.011 (4) −0.006 (4)
C20 0.082 (8) 0.052 (6) 0.077 (6) 0.016 (5) −0.006 (5) 0.002 (5)
C21 0.120 (9) 0.059 (6) 0.067 (7) 0.035 (6) −0.009 (6) 0.008 (5)
C22 0.089 (7) 0.039 (4) 0.049 (5) 0.017 (4) 0.008 (5) 0.005 (4)
C23 0.078 (5) 0.030 (4) 0.026 (4) 0.005 (3) 0.005 (4) 0.007 (3)
C24 0.065 (5) 0.031 (4) 0.040 (4) 0.008 (3) 0.003 (4) 0.009 (3)
C25 0.077 (6) 0.040 (4) 0.059 (6) 0.003 (4) 0.012 (4) 0.017 (4)
C26 0.089 (6) 0.058 (5) 0.061 (6) 0.024 (5) 0.033 (5) 0.025 (5)
C27 0.107 (7) 0.057 (5) 0.067 (7) 0.029 (5) 0.051 (6) 0.028 (5)
C28 0.101 (6) 0.032 (4) 0.049 (5) 0.014 (4) 0.032 (5) 0.012 (4)
C29 0.071 (5) 0.033 (4) 0.043 (4) −0.004 (4) −0.001 (4) −0.010 (3)
C30 0.059 (5) 0.032 (4) 0.044 (4) 0.011 (3) −0.002 (3) −0.005 (3)
C31 0.054 (5) 0.049 (5) 0.055 (5) 0.004 (4) 0.000 (4) −0.019 (4)
C32 0.103 (8) 0.079 (7) 0.050 (5) −0.015 (5) −0.003 (5) −0.024 (5)
C33 0.157 (12) 0.157 (12) 0.040 (6) −0.074 (10) 0.016 (6) −0.035 (6)
C34 0.122 (9) 0.090 (7) 0.035 (4) −0.044 (6) 0.007 (5) −0.013 (4)
C35 0.055 (5) 0.032 (4) 0.045 (4) −0.006 (3) −0.004 (3) −0.007 (3)
C36 0.087 (6) 0.042 (4) 0.037 (4) 0.004 (4) −0.006 (4) −0.005 (4)
C37 0.099 (7) 0.055 (5) 0.054 (6) 0.016 (5) −0.002 (5) −0.009 (4)
C38 0.073 (7) 0.040 (5) 0.068 (6) 0.005 (4) −0.001 (5) −0.006 (4)
C39 0.052 (5) 0.041 (5) 0.053 (5) −0.003 (4) −0.002 (4) −0.003 (4)
C40 0.048 (5) 0.039 (4) 0.050 (5) −0.006 (3) −0.008 (4) −0.002 (3)
C41 0.045 (4) 0.046 (4) 0.029 (4) −0.008 (3) 0.010 (3) −0.002 (3)
C42 0.051 (5) 0.043 (5) 0.038 (4) −0.005 (4) 0.006 (3) 0.003 (3)
C43 0.041 (4) 0.044 (5) 0.045 (4) −0.007 (3) 0.007 (4) 0.003 (4)
C44 0.029 (4) 0.066 (6) 0.054 (5) −0.004 (4) 0.004 (3) −0.011 (4)
C45 0.043 (4) 0.075 (5) 0.041 (4) −0.002 (4) 0.004 (4) −0.016 (4)
C46 0.048 (4) 0.068 (5) 0.029 (4) −0.011 (4) 0.006 (3) −0.003 (4)
C47 0.048 (9) 0.047 (7) 0.024 (8) −0.015 (6) 0.003 (7) 0.001 (6)
C48 0.054 (10) 0.038 (8) 0.052 (11) −0.013 (7) 0.012 (8) −0.008 (7)
C49 0.069 (12) 0.048 (9) 0.058 (13) −0.009 (7) 0.010 (10) −0.019 (8)
C50 0.070 (12) 0.052 (9) 0.067 (15) −0.002 (8) 0.016 (10) −0.014 (9)
C51 0.070 (12) 0.068 (10) 0.085 (19) −0.010 (8) 0.020 (11) −0.017 (10)
C52 0.057 (10) 0.062 (10) 0.062 (16) −0.012 (7) 0.018 (9) −0.007 (9)
C53 0.064 (10) 0.040 (9) 0.026 (6) −0.012 (7) 0.002 (5) 0.002 (5)
C54 0.074 (13) 0.046 (9) 0.028 (8) −0.008 (8) 0.007 (7) 0.004 (6)
C55 0.066 (12) 0.044 (10) 0.041 (8) −0.015 (8) −0.001 (8) 0.003 (7)
C56 0.072 (14) 0.069 (13) 0.028 (8) 0.008 (10) −0.008 (7) 0.000 (7)
C57 0.098 (15) 0.091 (14) 0.023 (7) 0.032 (12) −0.003 (7) 0.005 (7)
C58 0.081 (12) 0.077 (12) 0.025 (6) 0.023 (10) −0.001 (6) 0.000 (7)
C47' 0.054 (10) 0.052 (8) 0.021 (9) −0.009 (6) 0.013 (8) 0.002 (7)
C48' 0.058 (12) 0.057 (11) 0.057 (15) −0.008 (8) 0.013 (10) −0.011 (10)
C49' 0.062 (13) 0.060 (11) 0.072 (18) −0.009 (9) 0.018 (11) −0.014 (11)
C50' 0.061 (13) 0.056 (11) 0.075 (19) −0.009 (9) 0.016 (11) −0.022 (11)
C51' 0.059 (12) 0.060 (10) 0.055 (15) −0.012 (8) 0.034 (11) −0.020 (9)
C52' 0.054 (11) 0.053 (10) 0.034 (11) −0.011 (7) 0.014 (9) −0.010 (8)
C53' 0.044 (10) 0.048 (11) 0.022 (7) −0.016 (8) 0.000 (6) 0.003 (7)
C54' 0.055 (12) 0.059 (12) 0.038 (9) −0.013 (9) −0.006 (7) −0.003 (7)
C55' 0.055 (13) 0.058 (12) 0.038 (9) −0.012 (9) −0.006 (8) −0.001 (8)
C56' 0.065 (14) 0.075 (14) 0.035 (9) −0.002 (10) −0.003 (8) −0.008 (8)
C57' 0.099 (17) 0.089 (17) 0.016 (8) 0.025 (13) −0.009 (8) −0.003 (8)
C58' 0.064 (12) 0.080 (14) 0.026 (7) 0.003 (10) 0.001 (7) 0.005 (8)
C59 0.040 (4) 0.075 (6) 0.052 (5) −0.010 (4) −0.005 (3) −0.012 (4)
C60 0.044 (4) 0.099 (7) 0.054 (5) −0.013 (4) 0.001 (4) −0.001 (5)
C61 0.044 (5) 0.108 (8) 0.070 (6) −0.008 (5) −0.001 (4) 0.008 (5)
C62 0.039 (5) 0.076 (7) 0.094 (7) 0.007 (4) −0.002 (4) 0.002 (5)
C63 0.036 (4) 0.058 (6) 0.077 (6) 0.007 (4) −0.013 (4) −0.008 (5)
C64 0.041 (4) 0.055 (5) 0.065 (6) 0.003 (4) −0.009 (4) −0.021 (4)
C65 0.065 (10) 0.077 (9) 0.038 (9) −0.007 (6) −0.007 (8) −0.006 (7)
C66 0.068 (11) 0.088 (12) 0.067 (15) −0.001 (8) −0.015 (10) −0.016 (10)
C67 0.095 (14) 0.099 (13) 0.10 (2) 0.002 (9) −0.023 (13) −0.002 (13)
C68 0.101 (14) 0.101 (13) 0.09 (2) −0.002 (10) −0.034 (13) 0.014 (12)
C69 0.096 (14) 0.086 (11) 0.087 (18) −0.008 (9) −0.033 (12) 0.021 (11)
C70 0.074 (12) 0.087 (10) 0.070 (14) −0.016 (8) −0.033 (10) 0.019 (10)
C71 0.042 (8) 0.085 (11) 0.039 (6) −0.016 (7) −0.002 (6) −0.022 (6)
C72 0.108 (16) 0.116 (14) 0.034 (7) 0.010 (12) 0.008 (7) −0.012 (8)
C73 0.19 (3) 0.153 (18) 0.055 (10) 0.055 (19) 0.040 (12) 0.001 (11)
C74 0.096 (17) 0.126 (16) 0.049 (9) 0.006 (13) 0.022 (9) −0.016 (9)
C75 0.040 (10) 0.087 (12) 0.047 (9) −0.028 (8) 0.005 (7) −0.029 (8)
C76 0.043 (11) 0.082 (11) 0.037 (8) −0.020 (8) 0.001 (7) −0.017 (7)
C65' 0.044 (9) 0.079 (10) 0.034 (10) −0.013 (7) −0.010 (7) −0.005 (8)
C66' 0.040 (9) 0.064 (10) 0.031 (10) −0.013 (7) −0.011 (8) −0.006 (8)
C67' 0.066 (12) 0.069 (11) 0.041 (11) −0.012 (8) −0.017 (9) −0.008 (8)
C68' 0.083 (13) 0.092 (14) 0.063 (16) −0.031 (10) −0.028 (11) 0.021 (12)
C69' 0.080 (13) 0.103 (14) 0.042 (13) −0.032 (10) −0.025 (10) 0.020 (12)
C70' 0.065 (11) 0.110 (14) 0.08 (2) −0.036 (10) −0.029 (11) 0.033 (14)
C71' 0.035 (9) 0.073 (12) 0.031 (7) −0.015 (8) −0.006 (6) −0.009 (7)
C72' 0.088 (16) 0.14 (2) 0.029 (8) 0.032 (16) −0.004 (7) 0.000 (8)
C73' 0.091 (18) 0.14 (2) 0.035 (9) 0.024 (15) 0.003 (9) −0.002 (9)
C74' 0.051 (11) 0.106 (16) 0.044 (9) −0.011 (10) 0.002 (7) −0.003 (8)
C75' 0.049 (11) 0.076 (12) 0.038 (8) −0.014 (9) −0.005 (7) −0.006 (7)
C76' 0.032 (10) 0.065 (10) 0.032 (8) −0.020 (7) −0.009 (6) −0.005 (7)
N1 0.048 (3) 0.033 (3) 0.021 (3) −0.004 (3) 0.002 (2) 0.002 (2)
N2 0.053 (4) 0.037 (3) 0.028 (3) −0.011 (3) −0.002 (3) −0.005 (2)
N3 0.048 (4) 0.059 (4) 0.031 (4) −0.014 (3) −0.002 (3) 0.000 (3)
N4 0.060 (4) 0.052 (4) 0.024 (3) −0.019 (3) 0.003 (3) 0.001 (3)
O1 0.047 (3) 0.113 (5) 0.039 (3) −0.029 (3) −0.001 (3) 0.003 (3)
O2 0.064 (4) 0.148 (7) 0.063 (5) −0.050 (4) 0.017 (4) −0.006 (5)
O3 0.160 (9) 0.076 (5) 0.073 (6) 0.014 (5) −0.005 (6) 0.026 (4)
O4 0.220 (11) 0.050 (4) 0.075 (6) −0.008 (5) 0.038 (7) −0.022 (4)
P1 0.0541 (13) 0.0287 (10) 0.0320 (11) −0.0015 (9) 0.0029 (9) 0.0003 (9)
P2 0.0661 (15) 0.0279 (10) 0.0304 (11) −0.0005 (10) 0.0016 (10) −0.0020 (9)
Ag1 0.0482 (4) 0.0319 (3) 0.0299 (4) −0.0017 (2) −0.0001 (4) −0.0009 (3)
Ag2 0.0587 (4) 0.0303 (3) 0.0291 (4) −0.0039 (2) 0.0038 (3) 0.0004 (3)
Ag3 0.070 (3) 0.0413 (17) 0.0194 (13) −0.0175 (12) 0.0076 (12) 0.0076 (12)
P3 0.049 (6) 0.045 (5) 0.025 (3) −0.014 (4) 0.001 (3) 0.006 (3)
P4 0.043 (4) 0.077 (6) 0.038 (3) −0.008 (3) −0.004 (3) −0.010 (4)
Ag4 0.0490 (16) 0.056 (2) 0.0271 (11) −0.0101 (13) −0.0026 (11) −0.0058 (15)
P3' 0.039 (5) 0.052 (7) 0.019 (4) −0.011 (4) 0.009 (3) 0.000 (4)
Ag3' 0.027 (2) 0.070 (3) 0.0293 (18) −0.0199 (13) 0.0096 (13) −0.0093 (18)
P4' 0.037 (5) 0.071 (6) 0.027 (3) −0.009 (4) −0.009 (3) −0.013 (4)
Ag4' 0.0395 (18) 0.057 (3) 0.0284 (11) −0.0175 (16) −0.0047 (14) −0.0126 (18)

Geometric parameters (Å, º)

C1—N1 1.123 (10) C54—H54 0.9300
C1—O1 1.225 (10) C55—C56 1.3900
C2—N2 1.114 (10) C55—H55 0.9300
C2—O2 1.227 (10) C56—C57 1.3900
C3—N3 1.111 (12) C56—H56 0.9300
C3—O3 1.231 (13) C57—C58 1.3900
C4—N4 1.115 (12) C57—H57 0.9300
C4—O4 1.222 (12) C58—H58 0.9300
C5—C6 1.380 (11) C47'—C48' 1.3900
C5—C10 1.401 (10) C47'—C52' 1.3900
C5—P1 1.805 (9) C47'—P3' 1.80 (2)
C6—C7 1.389 (12) C48'—C49' 1.3900
C6—H6 0.9300 C48'—H48' 0.9300
C7—C8 1.376 (12) C49'—C50' 1.3900
C7—H7 0.9300 C49'—H49' 0.9300
C8—C9 1.395 (12) C50'—C51' 1.3900
C8—H8 0.9300 C50'—H50' 0.9300
C9—C10 1.357 (12) C51'—C52' 1.3900
C9—H9 0.9300 C51'—H51' 0.9300
C10—H10 0.9300 C52'—H52' 0.9300
C11—C12 1.3900 C53'—C54' 1.3900
C11—C16 1.3900 C53'—C58' 1.3900
C11—P1 1.767 (17) C53'—P3' 1.84 (2)
C12—C13 1.3900 C54'—C55' 1.3900
C12—H12 0.9300 C54'—H54' 0.9300
C13—C14 1.3900 C55'—C56' 1.3900
C13—H13 0.9300 C55'—H55' 0.9300
C14—C15 1.3900 C56'—C57' 1.3900
C14—H14 0.9300 C56'—H56' 0.9300
C15—C16 1.3900 C57'—C58' 1.3900
C15—H15 0.9300 C57'—H57' 0.9300
C16—H16 0.9300 C58'—H58' 0.9300
C11'—C12' 1.3900 C59—C64 1.384 (12)
C11'—C16' 1.3900 C59—C60 1.397 (14)
C11'—P1 1.851 (9) C59—P4 1.841 (17)
C12'—C13' 1.3900 C59—P4' 1.843 (18)
C12'—H12' 0.9300 C60—C61 1.377 (14)
C13'—C14' 1.3900 C60—H60 0.9300
C13'—H13' 0.9300 C61—C62 1.382 (15)
C14'—C15' 1.3900 C61—H61 0.9300
C14'—H14' 0.9300 C62—C63 1.390 (15)
C15'—C16' 1.3900 C62—H62 0.9300
C15'—H15' 0.9300 C63—C64 1.366 (14)
C16'—H16' 0.9300 C63—H63 0.9300
C17—C22 1.382 (13) C64—H64 0.9300
C17—C18 1.412 (12) C65—C66 1.3900
C17—P1 1.820 (9) C65—C70 1.3900
C18—C19 1.409 (14) C65—P4 1.832 (16)
C18—H18 0.9300 C66—C67 1.3900
C19—C20 1.368 (15) C66—H66 0.9300
C19—H19 0.9300 C67—C68 1.3900
C20—C21 1.370 (17) C67—H67 0.9300
C20—H20 0.9300 C68—C69 1.3900
C21—C22 1.408 (13) C68—H68 0.9300
C21—H21 0.9300 C69—C70 1.3900
C22—H22 0.9300 C69—H69 0.9300
C23—C24 1.367 (10) C70—H70 0.9300
C23—C28 1.396 (12) C71—C72 1.3900
C23—P2 1.829 (9) C71—C76 1.3900
C24—C25 1.389 (12) C71—P4 1.831 (14)
C24—H24 0.9300 C72—C73 1.3900
C25—C26 1.348 (12) C72—H72 0.9300
C25—H25 0.9300 C73—C74 1.3900
C26—C27 1.380 (12) C73—H73 0.9300
C26—H26 0.9300 C74—C75 1.3900
C27—C28 1.360 (13) C74—H74 0.9300
C27—H27 0.9300 C75—C76 1.3900
C28—H28 0.9300 C75—H75 0.9300
C29—C34 1.359 (12) C76—H76 0.9300
C29—C30 1.394 (12) C65'—C66' 1.3900
C29—P2 1.822 (8) C65'—C70' 1.3900
C30—C31 1.371 (11) C65'—P4' 1.815 (17)
C30—H30 0.9300 C66'—C67' 1.3900
C31—C32 1.358 (12) C66'—H66' 0.9300
C31—H31 0.9300 C67'—C68' 1.3900
C32—C33 1.370 (15) C67'—H67' 0.9300
C32—H32 0.9300 C68'—C69' 1.3900
C33—C34 1.371 (14) C68'—H68' 0.9300
C33—H33 0.9300 C69'—C70' 1.3900
C34—H34 0.9300 C69'—H69' 0.9300
C35—C40 1.373 (13) C70'—H70' 0.9300
C35—C36 1.381 (12) C71'—C72' 1.3900
C35—P2 1.826 (9) C71'—C76' 1.3900
C36—C37 1.379 (13) C71'—P4' 1.868 (17)
C36—H36 0.9300 C72'—C73' 1.3900
C37—C38 1.357 (15) C72'—H72' 0.9300
C37—H37 0.9300 C73'—C74' 1.3900
C38—C39 1.371 (14) C73'—H73' 0.9300
C38—H38 0.9300 C74'—C75' 1.3900
C39—C40 1.366 (13) C74'—H74' 0.9300
C39—H39 0.9300 C75'—C76' 1.3900
C40—H40 0.9300 C75'—H75' 0.9300
C41—C46 1.367 (12) C76'—H76' 0.9300
C41—C42 1.391 (11) N1—Ag3' 2.346 (9)
C41—P3 1.80 (2) N1—Ag3 2.414 (8)
C41—P3' 1.86 (2) N1—Ag1 2.424 (7)
C42—C43 1.381 (12) N1—Ag2 2.425 (6)
C42—H42 0.9300 N2—Ag4 2.332 (10)
C43—C44 1.367 (13) N2—Ag4' 2.376 (11)
C43—H43 0.9300 N2—Ag1 2.401 (6)
C44—C45 1.398 (13) N2—Ag2 2.440 (8)
C44—H44 0.9300 N3—Ag4 2.345 (10)
C45—C46 1.392 (12) N3—Ag3' 2.366 (11)
C45—H45 0.9300 N3—Ag1 2.371 (7)
C46—H46 0.9300 N3—Ag3 2.469 (11)
C47—C48 1.3900 N3—Ag4' 2.570 (12)
C47—C52 1.3900 N4—Ag4' 2.273 (13)
C47—P3 1.848 (19) N4—Ag2 2.361 (7)
C48—C49 1.3900 N4—Ag3 2.391 (8)
C48—H48 0.9300 N4—Ag3' 2.435 (9)
C49—C50 1.3900 N4—Ag4 2.605 (12)
C49—H49 0.9300 P1—Ag1 2.354 (2)
C50—C51 1.3900 P2—Ag2 2.361 (2)
C50—H50 0.9300 Ag1—Ag2 3.1906 (10)
C51—C52 1.3900 Ag3—P3 2.35 (2)
C51—H51 0.9300 Ag3—Ag4 3.250 (9)
C52—H52 0.9300 P4—Ag4 2.381 (14)
C53—C54 1.3900 P3'—Ag3' 2.39 (2)
C53—C58 1.3900 Ag3'—Ag4' 3.133 (8)
C53—P3 1.832 (18) P4'—Ag4' 2.336 (15)
C54—C55 1.3900
N1—C1—O1 178.9 (10) C61—C60—C59 120.9 (11)
N2—C2—O2 178.8 (12) C61—C60—H60 119.6
N3—C3—O3 178.7 (13) C59—C60—H60 119.6
N4—C4—O4 178.4 (14) C60—C61—C62 119.0 (11)
C6—C5—C10 117.8 (8) C60—C61—H61 120.5
C6—C5—P1 117.5 (6) C62—C61—H61 120.5
C10—C5—P1 124.7 (7) C61—C62—C63 120.4 (11)
C5—C6—C7 121.6 (8) C61—C62—H62 119.8
C5—C6—H6 119.2 C63—C62—H62 119.8
C7—C6—H6 119.2 C64—C63—C62 120.2 (11)
C8—C7—C6 119.1 (9) C64—C63—H63 119.9
C8—C7—H7 120.5 C62—C63—H63 119.9
C6—C7—H7 120.5 C63—C64—C59 120.3 (11)
C7—C8—C9 120.2 (9) C63—C64—H64 119.9
C7—C8—H8 119.9 C59—C64—H64 119.9
C9—C8—H8 119.9 C66—C65—C70 120.0
C10—C9—C8 119.8 (8) C66—C65—P4 123.0 (10)
C10—C9—H9 120.1 C70—C65—P4 116.9 (10)
C8—C9—H9 120.1 C67—C66—C65 120.0
C9—C10—C5 121.4 (8) C67—C66—H66 120.0
C9—C10—H10 119.3 C65—C66—H66 120.0
C5—C10—H10 119.3 C66—C67—C68 120.0
C12—C11—C16 120.0 C66—C67—H67 120.0
C12—C11—P1 124.1 (17) C68—C67—H67 120.0
C16—C11—P1 115.7 (17) C69—C68—C67 120.0
C13—C12—C11 120.0 C69—C68—H68 120.0
C13—C12—H12 120.0 C67—C68—H68 120.0
C11—C12—H12 120.0 C70—C69—C68 120.0
C14—C13—C12 120.0 C70—C69—H69 120.0
C14—C13—H13 120.0 C68—C69—H69 120.0
C12—C13—H13 120.0 C69—C70—C65 120.0
C13—C14—C15 120.0 C69—C70—H70 120.0
C13—C14—H14 120.0 C65—C70—H70 120.0
C15—C14—H14 120.0 C72—C71—C76 120.0
C16—C15—C14 120.0 C72—C71—P4 121.6 (8)
C16—C15—H15 120.0 C76—C71—P4 118.4 (8)
C14—C15—H15 120.0 C71—C72—C73 120.0
C15—C16—C11 120.0 C71—C72—H72 120.0
C15—C16—H16 120.0 C73—C72—H72 120.0
C11—C16—H16 120.0 C74—C73—C72 120.0
C12'—C11'—C16' 120.0 C74—C73—H73 120.0
C12'—C11'—P1 120.6 (7) C72—C73—H73 120.0
C16'—C11'—P1 119.2 (7) C75—C74—C73 120.0
C13'—C12'—C11' 120.0 C75—C74—H74 120.0
C13'—C12'—H12' 120.0 C73—C74—H74 120.0
C11'—C12'—H12' 120.0 C76—C75—C74 120.0
C12'—C13'—C14' 120.0 C76—C75—H75 120.0
C12'—C13'—H13' 120.0 C74—C75—H75 120.0
C14'—C13'—H13' 120.0 C75—C76—C71 120.0
C15'—C14'—C13' 120.0 C75—C76—H76 120.0
C15'—C14'—H14' 120.0 C71—C76—H76 120.0
C13'—C14'—H14' 120.0 C66'—C65'—C70' 120.0
C14'—C15'—C16' 120.0 C66'—C65'—P4' 125.2 (10)
C14'—C15'—H15' 120.0 C70'—C65'—P4' 114.7 (10)
C16'—C15'—H15' 120.0 C67'—C66'—C65' 120.0
C15'—C16'—C11' 120.0 C67'—C66'—H66' 120.0
C15'—C16'—H16' 120.0 C65'—C66'—H66' 120.0
C11'—C16'—H16' 120.0 C66'—C67'—C68' 120.0
C22—C17—C18 118.9 (9) C66'—C67'—H67' 120.0
C22—C17—P1 118.7 (7) C68'—C67'—H67' 120.0
C18—C17—P1 122.5 (7) C69'—C68'—C67' 120.0
C19—C18—C17 118.7 (10) C69'—C68'—H68' 120.0
C19—C18—H18 120.7 C67'—C68'—H68' 120.0
C17—C18—H18 120.7 C68'—C69'—C70' 120.0
C20—C19—C18 121.4 (11) C68'—C69'—H69' 120.0
C20—C19—H19 119.3 C70'—C69'—H69' 120.0
C18—C19—H19 119.3 C69'—C70'—C65' 120.0
C19—C20—C21 120.2 (11) C69'—C70'—H70' 120.0
C19—C20—H20 119.9 C65'—C70'—H70' 120.0
C21—C20—H20 119.9 C72'—C71'—C76' 120.0
C20—C21—C22 119.7 (12) C72'—C71'—P4' 123.4 (9)
C20—C21—H21 120.1 C76'—C71'—P4' 116.5 (9)
C22—C21—H21 120.1 C73'—C72'—C71' 120.0
C17—C22—C21 121.1 (11) C73'—C72'—H72' 120.0
C17—C22—H22 119.4 C71'—C72'—H72' 120.0
C21—C22—H22 119.4 C74'—C73'—C72' 120.0
C24—C23—C28 119.1 (8) C74'—C73'—H73' 120.0
C24—C23—P2 123.8 (7) C72'—C73'—H73' 120.0
C28—C23—P2 117.1 (6) C75'—C74'—C73' 120.0
C23—C24—C25 119.2 (8) C75'—C74'—H74' 120.0
C23—C24—H24 120.4 C73'—C74'—H74' 120.0
C25—C24—H24 120.4 C74'—C75'—C76' 120.0
C26—C25—C24 121.3 (8) C74'—C75'—H75' 120.0
C26—C25—H25 119.3 C76'—C75'—H75' 120.0
C24—C25—H25 119.3 C75'—C76'—C71' 120.0
C25—C26—C27 120.1 (9) C75'—C76'—H76' 120.0
C25—C26—H26 120.0 C71'—C76'—H76' 120.0
C27—C26—H26 120.0 C1—N1—Ag3' 119.1 (6)
C28—C27—C26 119.4 (9) C1—N1—Ag3 118.1 (6)
C28—C27—H27 120.3 C1—N1—Ag1 130.2 (6)
C26—C27—H27 120.3 Ag3'—N1—Ag1 94.2 (3)
C27—C28—C23 120.9 (8) Ag3—N1—Ag1 96.3 (3)
C27—C28—H28 119.5 C1—N1—Ag2 125.7 (6)
C23—C28—H28 119.5 Ag3'—N1—Ag2 95.1 (3)
C34—C29—C30 117.2 (8) Ag3—N1—Ag2 94.2 (2)
C34—C29—P2 124.9 (7) Ag1—N1—Ag2 82.3 (2)
C30—C29—P2 117.9 (7) C2—N2—Ag4 115.3 (7)
C31—C30—C29 121.5 (8) C2—N2—Ag4' 118.3 (6)
C31—C30—H30 119.3 C2—N2—Ag1 124.3 (6)
C29—C30—H30 119.3 Ag4—N2—Ag1 94.0 (3)
C32—C31—C30 119.7 (9) Ag4'—N2—Ag1 98.4 (3)
C32—C31—H31 120.1 C2—N2—Ag2 132.7 (7)
C30—C31—H31 120.1 Ag4—N2—Ag2 98.5 (3)
C31—C32—C33 119.8 (10) Ag4'—N2—Ag2 90.8 (3)
C31—C32—H32 120.1 Ag1—N2—Ag2 82.5 (2)
C33—C32—H32 120.1 C3—N3—Ag4 129.2 (8)
C32—C33—C34 120.0 (10) C3—N3—Ag3' 126.2 (8)
C32—C33—H33 120.0 C3—N3—Ag1 116.7 (8)
C34—C33—H33 120.0 Ag4—N3—Ag1 94.4 (3)
C29—C34—C33 121.7 (10) Ag3'—N3—Ag1 95.1 (3)
C29—C34—H34 119.2 C3—N3—Ag3 126.3 (7)
C33—C34—H34 119.2 Ag4—N3—Ag3 84.9 (4)
C40—C35—C36 118.6 (9) Ag1—N3—Ag3 96.3 (3)
C40—C35—P2 123.0 (7) C3—N3—Ag4' 134.9 (8)
C36—C35—P2 118.4 (8) Ag3'—N3—Ag4' 78.7 (3)
C37—C36—C35 119.6 (10) Ag1—N3—Ag4' 94.0 (3)
C37—C36—H36 120.2 C4—N4—Ag4' 123.1 (8)
C35—C36—H36 120.2 C4—N4—Ag2 117.3 (8)
C38—C37—C36 121.5 (11) Ag4'—N4—Ag2 95.4 (4)
C38—C37—H37 119.3 C4—N4—Ag3 130.5 (8)
C36—C37—H37 119.3 Ag2—N4—Ag3 96.5 (3)
C37—C38—C39 118.6 (10) C4—N4—Ag3' 133.3 (8)
C37—C38—H38 120.7 Ag4'—N4—Ag3' 83.4 (4)
C39—C38—H38 120.7 Ag2—N4—Ag3' 94.5 (3)
C40—C39—C38 120.8 (10) C4—N4—Ag4 127.8 (8)
C40—C39—H39 119.6 Ag2—N4—Ag4 93.3 (3)
C38—C39—H39 119.6 Ag3—N4—Ag4 81.0 (3)
C39—C40—C35 120.7 (10) C11—P1—C5 100.8 (12)
C39—C40—H40 119.6 C11—P1—C17 106.3 (11)
C35—C40—H40 119.6 C5—P1—C17 107.0 (4)
C46—C41—C42 118.7 (8) C5—P1—C11' 106.0 (5)
C46—C41—P3 117.1 (9) C17—P1—C11' 101.8 (6)
C42—C41—P3 123.9 (9) C11—P1—Ag1 114.4 (11)
C46—C41—P3' 120.1 (9) C5—P1—Ag1 113.0 (3)
C42—C41—P3' 120.9 (9) C17—P1—Ag1 114.1 (3)
C43—C42—C41 120.7 (9) C11'—P1—Ag1 113.9 (5)
C43—C42—H42 119.7 C29—P2—C35 104.5 (4)
C41—C42—H42 119.7 C29—P2—C23 103.6 (4)
C44—C43—C42 120.8 (9) C35—P2—C23 106.4 (4)
C44—C43—H43 119.6 C29—P2—Ag2 114.1 (3)
C42—C43—H43 119.6 C35—P2—Ag2 114.0 (3)
C43—C44—C45 119.1 (9) C23—P2—Ag2 113.3 (3)
C43—C44—H44 120.5 P1—Ag1—N3 137.1 (2)
C45—C44—H44 120.5 P1—Ag1—N2 121.37 (17)
C46—C45—C44 119.8 (9) N3—Ag1—N2 84.7 (2)
C46—C45—H45 120.1 P1—Ag1—N1 121.91 (16)
C44—C45—H45 120.1 N3—Ag1—N1 84.0 (2)
C41—C46—C45 121.0 (9) N2—Ag1—N1 95.5 (2)
C41—C46—H46 119.5 P1—Ag1—Ag2 128.18 (6)
C45—C46—H46 119.5 N3—Ag1—Ag2 94.7 (2)
C48—C47—C52 120.0 N2—Ag1—Ag2 49.31 (18)
C48—C47—P3 117.4 (10) N1—Ag1—Ag2 48.87 (14)
C52—C47—P3 122.5 (10) N4—Ag2—P2 137.2 (2)
C47—C48—C49 120.0 N4—Ag2—N1 84.6 (2)
C47—C48—H48 120.0 P2—Ag2—N1 123.30 (16)
C49—C48—H48 120.0 N4—Ag2—N2 85.1 (2)
C50—C49—C48 120.0 P2—Ag2—N2 119.82 (16)
C50—C49—H49 120.0 N1—Ag2—N2 94.5 (2)
C48—C49—H49 120.0 N4—Ag2—Ag1 95.2 (2)
C49—C50—C51 120.0 P2—Ag2—Ag1 127.53 (6)
C49—C50—H50 120.0 N1—Ag2—Ag1 48.85 (16)
C51—C50—H50 120.0 N2—Ag2—Ag1 48.24 (14)
C52—C51—C50 120.0 P3—Ag3—N4 121.2 (6)
C52—C51—H51 120.0 P3—Ag3—N1 134.0 (6)
C50—C51—H51 120.0 N4—Ag3—N1 84.2 (3)
C51—C52—C47 120.0 P3—Ag3—N3 126.6 (5)
C51—C52—H52 120.0 N4—Ag3—N3 95.5 (3)
C47—C52—H52 120.0 N1—Ag3—N3 82.2 (3)
C54—C53—C58 120.0 P3—Ag3—Ag4 132.9 (6)
C54—C53—P3 117.5 (9) N4—Ag3—Ag4 52.4 (3)
C58—C53—P3 122.3 (9) N1—Ag3—Ag4 93.0 (3)
C55—C54—C53 120.0 N3—Ag3—Ag4 46.0 (2)
C55—C54—H54 120.0 C41—P3—C53 101.4 (11)
C53—C54—H54 120.0 C41—P3—C47 108.6 (10)
C56—C55—C54 120.0 C53—P3—C47 104.2 (12)
C56—C55—H55 120.0 C41—P3—Ag3 113.8 (10)
C54—C55—H55 120.0 C53—P3—Ag3 112.9 (9)
C55—C56—C57 120.0 C47—P3—Ag3 114.7 (10)
C55—C56—H56 120.0 C71—P4—C65 104.4 (10)
C57—C56—H56 120.0 C71—P4—C59 101.9 (8)
C58—C57—C56 120.0 C65—P4—C59 112.4 (8)
C58—C57—H57 120.0 C71—P4—Ag4 111.0 (6)
C56—C57—H57 120.0 C65—P4—Ag4 113.3 (8)
C57—C58—C53 120.0 C59—P4—Ag4 112.9 (7)
C57—C58—H58 120.0 N2—Ag4—N3 86.8 (3)
C53—C58—H58 120.0 N2—Ag4—P4 140.2 (5)
C48'—C47'—C52' 120.0 N3—Ag4—P4 121.2 (5)
C48'—C47'—P3' 116.0 (12) N2—Ag4—N4 82.1 (3)
C52'—C47'—P3' 124.0 (12) N3—Ag4—N4 93.1 (3)
C47'—C48'—C49' 120.0 P4—Ag4—N4 119.9 (3)
C47'—C48'—H48' 120.0 N2—Ag4—Ag3 94.6 (3)
C49'—C48'—H48' 120.0 N3—Ag4—Ag3 49.2 (3)
C48'—C49'—C50' 120.0 P4—Ag4—Ag3 124.9 (4)
C48'—C49'—H49' 120.0 N4—Ag4—Ag3 46.6 (2)
C50'—C49'—H49' 120.0 C47'—P3'—C53' 106.4 (14)
C51'—C50'—C49' 120.0 C47'—P3'—C41 103.4 (11)
C51'—C50'—H50' 120.0 C53'—P3'—C41 106.0 (13)
C49'—C50'—H50' 120.0 C47'—P3'—Ag3' 111.5 (12)
C52'—C51'—C50' 120.0 C53'—P3'—Ag3' 116.9 (10)
C52'—C51'—H51' 120.0 C41—P3'—Ag3' 111.6 (11)
C50'—C51'—H51' 120.0 N1—Ag3'—N3 85.9 (4)
C51'—C52'—C47' 120.0 N1—Ag3'—P3' 137.2 (6)
C51'—C52'—H52' 120.0 N3—Ag3'—P3' 120.0 (6)
C47'—C52'—H52' 120.0 N1—Ag3'—N4 84.6 (3)
C54'—C53'—C58' 120.0 N3—Ag3'—N4 97.1 (3)
C54'—C53'—P3' 117.2 (11) P3'—Ag3'—N4 120.9 (6)
C58'—C53'—P3' 122.7 (11) N1—Ag3'—Ag4' 95.7 (3)
C55'—C54'—C53' 120.0 N3—Ag3'—Ag4' 53.5 (3)
C55'—C54'—H54' 120.0 P3'—Ag3'—Ag4' 127.0 (6)
C53'—C54'—H54' 120.0 N4—Ag3'—Ag4' 46.1 (3)
C54'—C55'—C56' 120.0 C65'—P4'—C59 102.3 (9)
C54'—C55'—H55' 120.0 C65'—P4'—C71' 104.4 (11)
C56'—C55'—H55' 120.0 C59—P4'—C71' 107.0 (9)
C55'—C56'—C57' 120.0 C65'—P4'—Ag4' 113.2 (9)
C55'—C56'—H56' 120.0 C59—P4'—Ag4' 115.3 (8)
C57'—C56'—H56' 120.0 C71'—P4'—Ag4' 113.5 (7)
C58'—C57'—C56' 120.0 N4—Ag4'—P4' 122.0 (4)
C58'—C57'—H57' 120.0 N4—Ag4'—N2 88.6 (4)
C56'—C57'—H57' 120.0 P4'—Ag4'—N2 138.5 (5)
C57'—C58'—C53' 120.0 N4—Ag4'—N3 95.8 (3)
C57'—C58'—H58' 120.0 P4'—Ag4'—N3 118.5 (5)
C53'—C58'—H58' 120.0 N2—Ag4'—N3 80.9 (3)
C64—C59—C60 119.1 (10) N4—Ag4'—Ag3' 50.5 (3)
C64—C59—P4 122.2 (9) P4'—Ag4'—Ag3' 126.0 (5)
C60—C59—P4 118.3 (9) N2—Ag4'—Ag3' 94.7 (3)
C64—C59—P4' 121.5 (9) N3—Ag4'—Ag3' 47.8 (3)
C60—C59—P4' 118.5 (9)
C10—C5—C6—C7 −0.3 (14) C74'—C75'—C76'—C71' 0.0
P1—C5—C6—C7 178.4 (8) C72'—C71'—C76'—C75' 0.0
C5—C6—C7—C8 1.8 (16) P4'—C71'—C76'—C75' −177.9 (13)
C6—C7—C8—C9 −2.7 (17) C12—C11—P1—C5 −11 (3)
C7—C8—C9—C10 2.3 (16) C16—C11—P1—C5 174.1 (15)
C8—C9—C10—C5 −0.9 (15) C12—C11—P1—C17 −122 (3)
C6—C5—C10—C9 −0.1 (13) C16—C11—P1—C17 62.6 (16)
P1—C5—C10—C9 −178.7 (7) C12—C11—P1—C11' −163 (16)
C16—C11—C12—C13 0.0 C16—C11—P1—C11' 22 (14)
P1—C11—C12—C13 −175 (3) C12—C11—P1—Ag1 111 (3)
C11—C12—C13—C14 0.0 C16—C11—P1—Ag1 −64.3 (17)
C12—C13—C14—C15 0.0 C6—C5—P1—C11 80.9 (13)
C13—C14—C15—C16 0.0 C10—C5—P1—C11 −100.5 (13)
C14—C15—C16—C11 0.0 C6—C5—P1—C17 −168.2 (7)
C12—C11—C16—C15 0.0 C10—C5—P1—C17 10.5 (9)
P1—C11—C16—C15 175 (2) C6—C5—P1—C11' 83.7 (9)
C16'—C11'—C12'—C13' 0.0 C10—C5—P1—C11' −97.6 (9)
P1—C11'—C12'—C13' 175.1 (10) C6—C5—P1—Ag1 −41.7 (8)
C11'—C12'—C13'—C14' 0.0 C10—C5—P1—Ag1 137.0 (7)
C12'—C13'—C14'—C15' 0.0 C22—C17—P1—C11 −144.3 (14)
C13'—C14'—C15'—C16' 0.0 C18—C17—P1—C11 34.5 (14)
C14'—C15'—C16'—C11' 0.0 C22—C17—P1—C5 108.6 (8)
C12'—C11'—C16'—C15' 0.0 C18—C17—P1—C5 −72.7 (8)
P1—C11'—C16'—C15' −175.2 (10) C22—C17—P1—C11' −140.4 (8)
C22—C17—C18—C19 2.6 (13) C18—C17—P1—C11' 38.4 (9)
P1—C17—C18—C19 −176.2 (7) C22—C17—P1—Ag1 −17.3 (9)
C17—C18—C19—C20 −1.7 (15) C18—C17—P1—Ag1 161.5 (6)
C18—C19—C20—C21 −0.5 (19) C12'—C11'—P1—C11 45 (14)
C19—C20—C21—C22 2 (2) C16'—C11'—P1—C11 −140 (15)
C18—C17—C22—C21 −1.4 (16) C12'—C11'—P1—C5 16.9 (12)
P1—C17—C22—C21 177.5 (9) C16'—C11'—P1—C5 −167.9 (10)
C20—C21—C22—C17 −0.8 (19) C12'—C11'—P1—C17 −94.9 (12)
C28—C23—C24—C25 −0.7 (13) C16'—C11'—P1—C17 80.3 (10)
P2—C23—C24—C25 −179.5 (7) C12'—C11'—P1—Ag1 141.8 (12)
C23—C24—C25—C26 −0.5 (15) C16'—C11'—P1—Ag1 −43.0 (11)
C24—C25—C26—C27 0.5 (17) C34—C29—P2—C35 −93.6 (10)
C25—C26—C27—C28 0.6 (18) C30—C29—P2—C35 86.1 (8)
C26—C27—C28—C23 −1.8 (17) C34—C29—P2—C23 17.7 (10)
C24—C23—C28—C27 1.8 (15) C30—C29—P2—C23 −162.6 (7)
P2—C23—C28—C27 −179.3 (8) C34—C29—P2—Ag2 141.3 (9)
C34—C29—C30—C31 −0.6 (13) C30—C29—P2—Ag2 −39.0 (8)
P2—C29—C30—C31 179.7 (7) C40—C35—P2—C29 41.2 (9)
C29—C30—C31—C32 0.1 (13) C36—C35—P2—C29 −139.9 (8)
C30—C31—C32—C33 −1.5 (17) C40—C35—P2—C23 −68.0 (9)
C31—C32—C33—C34 3 (2) C36—C35—P2—C23 110.9 (8)
C30—C29—C34—C33 2.5 (18) C40—C35—P2—Ag2 166.5 (7)
P2—C29—C34—C33 −177.8 (12) C36—C35—P2—Ag2 −14.7 (9)
C32—C33—C34—C29 −4 (2) C24—C23—P2—C29 −100.9 (8)
C40—C35—C36—C37 −1.8 (15) C28—C23—P2—C29 80.3 (8)
P2—C35—C36—C37 179.3 (9) C24—C23—P2—C35 9.0 (9)
C35—C36—C37—C38 −0.9 (18) C28—C23—P2—C35 −169.8 (7)
C36—C37—C38—C39 2.3 (18) C24—C23—P2—Ag2 134.9 (7)
C37—C38—C39—C40 −1.1 (17) C28—C23—P2—Ag2 −43.9 (8)
C38—C39—C40—C35 −1.6 (15) C46—C41—P3—C53 148.6 (10)
C36—C35—C40—C39 3.0 (14) C42—C41—P3—C53 −37.2 (14)
P2—C35—C40—C39 −178.1 (7) P3'—C41—P3—C53 39 (7)
C46—C41—C42—C43 −2.7 (15) C46—C41—P3—C47 −102.0 (13)
P3—C41—C42—C43 −176.7 (10) C42—C41—P3—C47 72.1 (14)
P3'—C41—C42—C43 171.9 (11) P3'—C41—P3—C47 148 (8)
C41—C42—C43—C44 1.6 (15) C46—C41—P3—Ag3 27.1 (13)
C42—C43—C44—C45 0.8 (15) C42—C41—P3—Ag3 −158.8 (8)
C43—C44—C45—C46 −2.0 (14) P3'—C41—P3—Ag3 −83 (7)
C42—C41—C46—C45 1.4 (15) C54—C53—P3—C41 −79.2 (13)
P3—C41—C46—C45 175.9 (10) C58—C53—P3—C41 95.2 (13)
P3'—C41—C46—C45 −173.1 (11) C54—C53—P3—C47 168.0 (11)
C44—C45—C46—C41 0.9 (15) C58—C53—P3—C47 −17.5 (16)
C52—C47—C48—C49 0.0 C54—C53—P3—Ag3 42.9 (15)
P3—C47—C48—C49 −177.3 (14) C58—C53—P3—Ag3 −142.6 (11)
C47—C48—C49—C50 0.0 C48—C47—P3—C41 169.8 (11)
C48—C49—C50—C51 0.0 C52—C47—P3—C41 −7.4 (16)
C49—C50—C51—C52 0.0 C48—C47—P3—C53 −82.8 (14)
C50—C51—C52—C47 0.0 C52—C47—P3—C53 100.0 (13)
C48—C47—C52—C51 0.0 C48—C47—P3—Ag3 41.2 (15)
P3—C47—C52—C51 177.2 (15) C52—C47—P3—Ag3 −136.1 (10)
C58—C53—C54—C55 0.0 C72—C71—P4—C65 1.4 (13)
P3—C53—C54—C55 174.6 (15) C76—C71—P4—C65 −176.6 (10)
C53—C54—C55—C56 0.0 C72—C71—P4—C59 118.5 (11)
C54—C55—C56—C57 0.0 C76—C71—P4—C59 −59.5 (11)
C55—C56—C57—C58 0.0 C72—C71—P4—Ag4 −121.1 (10)
C56—C57—C58—C53 0.0 C76—C71—P4—Ag4 60.9 (11)
C54—C53—C58—C57 0.0 C66—C65—P4—C71 102.2 (12)
P3—C53—C58—C57 −174.3 (16) C70—C65—P4—C71 −79.9 (12)
C52'—C47'—C48'—C49' 0.0 C66—C65—P4—C59 −7.4 (14)
P3'—C47'—C48'—C49' −179.0 (17) C70—C65—P4—C59 170.4 (10)
C47'—C48'—C49'—C50' 0.0 C66—C65—P4—Ag4 −136.8 (10)
C48'—C49'—C50'—C51' 0.0 C70—C65—P4—Ag4 41.0 (12)
C49'—C50'—C51'—C52' 0.0 C64—C59—P4—C71 −48.3 (12)
C50'—C51'—C52'—C47' 0.0 C60—C59—P4—C71 138.0 (10)
C48'—C47'—C52'—C51' 0.0 P4'—C59—P4—C71 43 (3)
P3'—C47'—C52'—C51' 178.9 (18) C64—C59—P4—C65 62.9 (13)
C58'—C53'—C54'—C55' 0.0 C60—C59—P4—C65 −110.7 (12)
P3'—C53'—C54'—C55' −178.3 (16) P4'—C59—P4—C65 155 (4)
C53'—C54'—C55'—C56' 0.0 C64—C59—P4—Ag4 −167.4 (8)
C54'—C55'—C56'—C57' 0.0 C60—C59—P4—Ag4 18.9 (12)
C55'—C56'—C57'—C58' 0.0 P4'—C59—P4—Ag4 −76 (3)
C56'—C57'—C58'—C53' 0.0 C48'—C47'—P3'—C53' −82.6 (16)
C54'—C53'—C58'—C57' 0.0 C52'—C47'—P3'—C53' 98.5 (16)
P3'—C53'—C58'—C57' 178.2 (17) C48'—C47'—P3'—C41 166.0 (12)
C64—C59—C60—C61 −0.3 (18) C52'—C47'—P3'—C41 −13.0 (17)
P4—C59—C60—C61 173.6 (10) C48'—C47'—P3'—Ag3' 45.9 (16)
P4'—C59—C60—C61 −169.8 (10) C52'—C47'—P3'—Ag3' −133.0 (12)
C59—C60—C61—C62 1.2 (18) C54'—C53'—P3'—C47' 159.2 (12)
C60—C61—C62—C63 −1.6 (17) C58'—C53'—P3'—C47' −19.1 (19)
C61—C62—C63—C64 1.1 (17) C54'—C53'—P3'—C41 −91.3 (13)
C62—C63—C64—C59 −0.2 (16) C58'—C53'—P3'—C41 90.5 (16)
C60—C59—C64—C63 −0.2 (16) C54'—C53'—P3'—Ag3' 33.9 (17)
P4—C59—C64—C63 −173.9 (9) C58'—C53'—P3'—Ag3' −144.3 (12)
P4'—C59—C64—C63 169.0 (10) C46—C41—P3'—C47' −108.6 (13)
C70—C65—C66—C67 0.0 C42—C41—P3'—C47' 77.0 (14)
P4—C65—C66—C67 177.8 (14) P3—C41—P3'—C47' −33 (7)
C65—C66—C67—C68 0.0 C46—C41—P3'—C53' 139.7 (12)
C66—C67—C68—C69 0.0 C42—C41—P3'—C53' −34.7 (15)
C67—C68—C69—C70 0.0 P3—C41—P3'—C53' −145 (8)
C68—C69—C70—C65 0.0 C46—C41—P3'—Ag3' 11.4 (15)
C66—C65—C70—C69 0.0 C42—C41—P3'—Ag3' −163.1 (8)
P4—C65—C70—C69 −177.9 (13) P3—C41—P3'—Ag3' 87 (7)
C76—C71—C72—C73 0.0 C66'—C65'—P4'—C59 −9.1 (15)
P4—C71—C72—C73 −178.0 (12) C70'—C65'—P4'—C59 172.0 (10)
C71—C72—C73—C74 0.0 C66'—C65'—P4'—C71' 102.3 (14)
C72—C73—C74—C75 0.0 C70'—C65'—P4'—C71' −76.6 (12)
C73—C74—C75—C76 0.0 C66'—C65'—P4'—Ag4' −133.8 (11)
C74—C75—C76—C71 0.0 C70'—C65'—P4'—Ag4' 47.3 (13)
C72—C71—C76—C75 0.0 C64—C59—P4'—C65' 70.0 (13)
P4—C71—C76—C75 178.0 (12) C60—C59—P4'—C65' −120.7 (12)
C70'—C65'—C66'—C67' 0.0 P4—C59—P4'—C65' −27 (3)
P4'—C65'—C66'—C67' −178.9 (16) C64—C59—P4'—C71' −39.4 (13)
C65'—C66'—C67'—C68' 0.0 C60—C59—P4'—C71' 129.8 (11)
C66'—C67'—C68'—C69' 0.0 P4—C59—P4'—C71' −137 (4)
C67'—C68'—C69'—C70' 0.0 C64—C59—P4'—Ag4' −166.7 (8)
C68'—C69'—C70'—C65' 0.0 C60—C59—P4'—Ag4' 2.6 (13)
C66'—C65'—C70'—C69' 0.0 P4—C59—P4'—Ag4' 96 (3)
P4'—C65'—C70'—C69' 179.0 (15) C72'—C71'—P4'—C65' −14.6 (14)
C76'—C71'—C72'—C73' 0.0 C76'—C71'—P4'—C65' 163.2 (11)
P4'—C71'—C72'—C73' 177.7 (14) C72'—C71'—P4'—C59 93.3 (13)
C71'—C72'—C73'—C74' 0.0 C76'—C71'—P4'—C59 −88.8 (13)
C72'—C73'—C74'—C75' 0.0 C72'—C71'—P4'—Ag4' −138.3 (11)
C73'—C74'—C75'—C76' 0.0 C76'—C71'—P4'—Ag4' 39.5 (15)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C9—H9···O2i 0.93 2.37 3.177 (12) 145
C16′—H16′···O2 0.93 2.59 3.324 (17) 136
C25—H25···O1ii 0.93 2.48 3.358 (12) 157
C51—H51···O4iii 0.93 2.22 3.07 (2) 151
C67—H67···O3iv 0.93 2.19 3.01 (2) 147

Symmetry codes: (i) −y+1, x, −z+2; (ii) −y+1, x−1, −z+2; (iii) y+1, −x+1, −z+1; (iv) y, −x+1, −z+1.

References

  1. Bachmann, W. E. & Maxwell, C. E. III (1950). J. Am. Chem. Soc. 72, 2880.
  2. Becker, H. G. O. & Eisenschmidt, V. (1973). J. Prakt. Chem. 315, 640–648.
  3. Biltz, H. & Jeltsch, A. (1923). Ber. Dtsch. Chem. Ges. A/B, 56, 1914–1926.
  4. Blair, J. S. (1926). J. Am. Chem. Soc. 48, 96–103.
  5. Bokhonov, B. B., Sharafutdinov, M. R., Whitcomb, D. R. & Burleva, L. P. (2014). J. Phys. Chem. C118, 11980–11989.
  6. Bondi, A. (1964). J. Phys. Chem. 68, 441–451.
  7. Bowmaker, G. A., Effendy Junk, P. C. & White, A. H. (1998). J. Chem. Soc. Dalton Trans. pp. 2131–2138.
  8. Chi, K. M., Chen, K. H., Peng, S. M. & Lee, G. H. (1996). Organometallics, 15, 2575–2578.
  9. Chi, K. M. & Lu, Y. H. (2001). Chem. Vap. Deposition, 7, 117–120.
  10. Clusius, K. & Endtinger, F. (1960). Helv. Chim. Acta, 43, 2063–2066.
  11. Dains, F. B., Greider, H. W. & Kidwell, C. H. (1919). J. Am. Chem. Soc. 41, 1004–1013.
  12. Dains, F. B. & Wertheim, E. (1920). J. Am. Chem. Soc. 42, 2303–2309.
  13. Di Nicola, C., Effendy, Fazaroh, F., Pettinari, C., Skelton, B. W., Somers, N. & White, A. H. (2005). Inorg. Chim. Acta, 358, 720–734.
  14. Di Nicola, C., Effendy, Pettinari, C., Skelton, B. W., Somers, N. & White, A. H. (2006). Inorg. Chim. Acta, 359, 53–63.
  15. Ellestad, O. H., Klaeboe, P., Tucker, E. E. & Songstad, J. (1972). Acta Chem. Scand. 26, 3579–3592.
  16. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  17. Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. [DOI] [PubMed]
  18. Haase, T., Bahlawane, N., Strong, J. T., Jakob, A., Shen, Y., Lang, H. & Kohse-Höeinghaus, K. (2005a). Proc. Electrochem. Soc. pp. 276–283.
  19. Haase, T., Kohse-Höinghaus, K., Bahlawane, N., Djiele, P., Jakob, A. & Lang, H. (2005b). Chem. Vap. Deposition, 11, 195–205.
  20. Jahn, S. F., Blaudeck, T., Baumann, R. R., Jakob, A., Ecorchard, P., Rüffer, T., Lang, H. & Schmidt, P. (2010). Chem. Mater. 22, 3067–3071.
  21. Jakob, A., Schmidt, H., Djiele, P., Shen, Y. & Lang, H. (2006). Microchim. Acta, 156, 77–81.
  22. Kawakubo, H., Suzuki, T., Nishino, K., Hara, F., Takano, T., Takebayashi, Y., Onodera, M., Mitsui, A., Yahagi, H., Takayama, H., Kuroboshi, M. & Tanaka, H. (2015). Synth. Commun. 45, 1068–1072.
  23. Lang, H. (2011). Jordan J. Chem. 6, 231–245.
  24. Lang, H. & Buschbeck, R. (2009). Deposition of metals and metal oxides by means of metal enolates, in The Chemistry of Metal Enolates, edited by J. Zabicky, pp. 929–1017. Chichester: Wiley.
  25. Lang, H. & Dietrich, S. (2013). 4.10 – Metals – Gas-Phase Deposition and Applications, in Comprehensive Inorganic Chemistry II (Second Edition), edited by J. Reedijk & K. Poeppelmeier, pp. 211–269. Amsterdam: Elsevier.
  26. Mothes, R., Jakob, A., Waechtler, T., Schulz, S. E., Gessner, T. & Lang, H. (2015b). Eur. J. Inorg. Chem. 10, 1726–1733.
  27. Mothes, R., Petzold, H., Jakob, A., Rüffer, T. & Lang, H. (2015a). Inorg. Chim. Acta 429, 227–236.
  28. Murray, J. A. & Dains, F. B. (1934). J. Am. Chem. Soc. 56, 144–146.
  29. Oestreicher, A., Röhrich, T., Wilden, J., Lerch, M., Jakob, A. & Lang, H. (2013). Appl. Surf. Sci. 265, 239–244.
  30. Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.
  31. Parsons, S. & Flack, H. (2004). Acta Cryst. A60, s61.
  32. Partyka, D. V. & Deligonul, N. (2009). Inorg. Chem. 48, 9463–9475. [DOI] [PubMed]
  33. Potts, K. T., O’Brien, J. J. & Tham, F. S. (1990). Inorg. Chim. Acta, 177, 13–24.
  34. Schmidbaur, H. & Schier, A. (2015). Angew. Chem. Int. Ed. 54, 746–784. [DOI] [PubMed]
  35. Schmidt, H., Jakob, A., Haase, T., Kohse-Höinghaus, K., Schulz, S. E., Wächtler, T., Gessner, T. & Lang, H. (2005). Z. Anorg. Allg. Chem. 631, 2786–2791.
  36. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  37. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  38. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  39. Spek, A. L. (2015). Acta Cryst. C71, 9–18. [DOI] [PubMed]
  40. Steffan, M., Jakob, A., Claus, P. & Lang, H. (2009). Catal. Commun. 10, 437–441.
  41. Steiner, T. (2002). Angew. Chem. Int. Ed. 41, 48–76.
  42. Struppert, T., Jakob, A., Heft, A., Grünler, B. & Lang, H. (2010). Thin Solid Films, 518, 5741–5744.
  43. Thorn, A., Dittrich, B. & Sheldrick, G. M. (2012). Acta Cryst. A68, 448–451.
  44. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S2056989015017636/wm5201sup1.cif

e-71-01262-sup1.cif (4.1MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015017636/wm5201Isup2.hkl

e-71-01262-Isup2.hkl (1.6MB, hkl)

CCDC reference: 1426238

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES