Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Sep 30;71(Pt 10):o805–o806. doi: 10.1107/S2056989015017880

Crystal structure of 4-[(2,4-di­chloro­phen­yl)(5-hy­droxy-3-methyl-1-phenyl-1H-pyrazol-4-yl)meth­yl]-5-methyl-2-phenyl-2,3-di­hydro-1H-pyrazol-3-one

Balbir Kumar a, Hitesh Mahajan b, Satya Paul b, Rajni Kant a, Vivek K Gupta a,*
PMCID: PMC4647350  PMID: 26594489

Abstract

In the title compound C27H22Cl2N4O2, the pyrazol-5-ol ring makes a dihedral angle of 34.80 (11)° with the phenyl ring to which it is bound, while the pyrazolone ring is inclined at 34.34 (12)° to its attached phenyl ring. In the crystal, N—H⋯O and C—H⋯Cl hydrogen bonds link the mol­ecules into chains along [010]. Inter­molecular π–π inter­actions are observed between the pyrazolone ring and the phenyl ring bound to the pyrazol-5-ol ring system [centroid–centroid separation = 3.916 (2) Å].

Keywords: crystal structure, pyrazolone, hydrogen bonding, π–π inter­actions

Related literature  

For the biological activity of bis-pyrazolo­nes, see: Park et al. (2005), and for their applications see: Bailey et al. (1985); Rosiere & Grossman (1951); Mahajan et al. (1991); Chauhan et al. (1993); Hamama et al. (2001). For the synthesis of similar compounds, see: Bhardwaj et al. (2015); Niknam & Mirzaee (2011). For related structures, see: Sharma et al. (2014).graphic file with name e-71-0o805-scheme1.jpg

Experimental  

Crystal data  

  • C27H22Cl2N4O2

  • M r = 505.39

  • Monoclinic Inline graphic

  • a = 19.8321 (19) Å

  • b = 7.8574 (5) Å

  • c = 16.3416 (16) Å

  • β = 106.815 (10)°

  • V = 2437.6 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.20 mm

Data collection  

  • Agilent Xcalibur, Sapphire3 diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2013) T min = 0.751, T max = 1.000

  • 9479 measured reflections

  • 4775 independent reflections

  • 2524 reflections with I > 2σ(I)

  • R int = 0.042

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.060

  • wR(F 2) = 0.174

  • S = 1.00

  • 4775 reflections

  • 318 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.30 e Å−3

Data collection: CrysAlis PRO (Agilent, 2013); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S2056989015017880/sj5478sup1.cif

e-71-0o805-sup1.cif (30.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015017880/sj5478Isup2.hkl

e-71-0o805-Isup2.hkl (229.2KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015017880/sj5478Isup3.cml

ORTEP . DOI: 10.1107/S2056989015017880/sj5478fig1.tif

ORTEP view of the mol­ecule with the atom-labeling scheme. Displacement ellipsoids are drawn at the 40% probability level. H atoms are shown as small spheres of arbitrary radii.

a . DOI: 10.1107/S2056989015017880/sj5478fig2.tif

The packing arrangement of mol­ecules viewed along the a axis.

CCDC reference: 1427164

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
N2H2O27i 0.86 2.08 2.756(3) 135
C24H24ACl1ii 0.96 2.93 3.823(3) 156

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

RK acknowledges the Department of Science & Technology for the single-crystal X-ray diffractometer sanctioned as a National Facility under project No. SR/S2/CMP-47/2003.

supplementary crystallographic information

S1. Comment

Bis-pyrazolones are an important class of heterocyclic compounds which have risen to prominence in recent years due to their vital role in various biological activities such as selective COX-2 inhibition, antitumor and cytokine inhibition (Park et al., 2005). Bis-pyrazolones are also used as antidepressants (Bailey et al., 1985), gastric secretion stimulators (Rosiere & Grossman, 1951), or as antibacterial (Mahajan et al., 1991) and antifilarial agents (Chauhan et al., 1993). Moreover, 4,4'-(arylmethylene) bis(1H-pyrazol-5-ols) are used as pesticides, fungicides and dye stuffs (Hamama et al., 2001). In recent years, different reagents have been reported for the synthesis of 4,4'-(arylmethylene)bis(3-methyl-1-phenyl-pyrazol-5-ol) derivatives including the condensation reaction between arylaldehyde and 5-methyl-2-phenyl-2,4-dihydro-3H-pyrazol-3-one (Niknam & Mirzaee, 2011; Bhardwaj et al., 2015).

In the title compound C27H22C12N4O2, the pyrazole rings N1/N2/C3/C4/C5 and N6/N7/C8/C9/C10 make dihedral angle of 34.80 (11)° and 34.34 (12)° with the phenyl rings C18/C19/C20/C21/C22/C23 and C28/C29/C30/C31/C32/C33 respectively. The C5═O26 double bond [1.277 (3) Å] is significantly longer than that normally observed for carbonyl bonds [1.19 Å], probably because the hydroxyl group and carbonyl oxygen atom are involved in an intermolecular O—H···O hydrogen bond and is comparable with that found in a related structure (Sharma et al., (2014). The bond lengths of C15—Cl1 [1.729 (4) Å] and C13—Cl2 [1.730 (4) Å], are comparable with the accepted value of 1.739 Å and are in good agreement with another molecule of this type (Sharma et al., 2014). π - π interactions are observed between the pyrazole ring (N1/N2/C3/C4/C5) and phenyl ring (C28/C29/C30/C31/C32/C33) [centroid–centroidi seperation = 3.916 (2) Å, interplanar spacing = 3.784 Å, centroid shift = 1.01 Å for symmetry operation: x, 1 + y, z]. Classical N–H···O and non-classical C–H···Cl hydrogen bonds, Table 1, also stabilise the crystal packing.

S2. Experimental

Synthesis of 4-[(2,4-dichlorophenyl)(5-hydroxy-3-methyl-1-phenyl- 1H-pyrazol-4-yl)methyl]-1,2-dihydro-5-methyl-2-phenyl- 3H-pyrazol-3-one: To a mixture of 2,4-dichlorobenzaldehyde (1 mmol) and 5-methyl-2-phenyl-2, 4-dihydro-3H-pyrazol-3-one (2 mmol), melt of imidazole-DMU (30:70) was added and the reaction mixture was stirred at 70 ° C for the appropriate time. After completion of the reaction (monitored by TLC), the reaction mixture was cooled to room temperature and diluted with water (20 ml). The product was extracted with EtOAc (20 ml) and dried over anhydrous Na2SO4. Removal of the solvent under reduced pressure gave 4-[(2,4-dichlorophenyl)(5-hydroxy-3-methyl-1-phenyl-1H-pyrazol-4-yl) methyl]-1,2-dihydro-5-methyl-2-phenyl-3H-pyrazol-3-one which was purified by crystallization from ethyl acetate:pet ether. The product, was obtained as shiny white crystals.

S3. Refinement

All the H atoms were fixed geometrically and allowed to ride on their parent C atoms, with C—H distances of 0.93–0.98 Å; and with Uiso(H) = 1.2Ueq(C), except for the methyl group where Uiso(H) = 1.5Ueq(C).

Figures

Fig. 1.

Fig. 1.

ORTEP view of the molecule with the atom-labeling scheme. Displacement ellipsoids are drawn at the 40% probability level. H atoms are shown as small spheres of arbitrary radii.

Fig. 2.

Fig. 2.

The packing arrangement of molecules viewed along the a axis.

Crystal data

C27H22Cl2N4O2 F(000) = 1048
Mr = 505.39 Dx = 1.377 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 2488 reflections
a = 19.8321 (19) Å θ = 3.8–27.6°
b = 7.8574 (5) Å µ = 0.30 mm1
c = 16.3416 (16) Å T = 293 K
β = 106.815 (10)° Block, white
V = 2437.6 (4) Å3 0.30 × 0.20 × 0.20 mm
Z = 4

Data collection

Agilent Xcalibur, Sapphire3 diffractometer 4775 independent reflections
Radiation source: fine-focus sealed tube 2524 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.042
Detector resolution: 16.1049 pixels mm-1 θmax = 26.0°, θmin = 3.5°
ω scans h = −24→11
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2013) k = −9→8
Tmin = 0.751, Tmax = 1.000 l = −17→20
9479 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.174 H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0647P)2] where P = (Fo2 + 2Fc2)/3
4775 reflections (Δ/σ)max < 0.001
318 parameters Δρmax = 0.29 e Å3
0 restraints Δρmin = −0.30 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.00677 (6) 0.80461 (13) 0.44350 (7) 0.0924 (4)
O27 0.28998 (11) 0.6772 (2) 0.75223 (13) 0.0473 (6)
H27 0.2752 0.6135 0.7112 0.071*
C10 0.26128 (16) 0.6342 (4) 0.81376 (18) 0.0403 (7)
N2 0.26121 (14) 0.0048 (3) 0.69193 (16) 0.0483 (7)
H2 0.2620 −0.1016 0.6800 0.058*
O26 0.32799 (13) 0.4092 (3) 0.70772 (16) 0.0637 (7)
N1 0.31308 (14) 0.1203 (3) 0.69305 (16) 0.0468 (7)
C3 0.20859 (16) 0.0860 (4) 0.71276 (19) 0.0433 (7)
C11 0.17730 (17) 0.3891 (4) 0.74490 (19) 0.0445 (7)
H11 0.1429 0.3264 0.7659 0.053*
N6 0.27580 (14) 0.7213 (3) 0.88777 (16) 0.0479 (7)
C12 0.13422 (17) 0.4914 (4) 0.6682 (2) 0.0455 (8)
C5 0.29086 (17) 0.2771 (4) 0.70900 (19) 0.0462 (8)
C9 0.21443 (17) 0.5069 (3) 0.8164 (2) 0.0423 (7)
C18 0.37530 (18) 0.0725 (4) 0.6727 (2) 0.0461 (8)
N7 0.24029 (15) 0.6527 (4) 0.94179 (16) 0.0548 (7)
C13 0.06910 (18) 0.5592 (4) 0.6645 (2) 0.0523 (8)
C8 0.20479 (18) 0.5215 (4) 0.8983 (2) 0.0487 (8)
C4 0.22364 (17) 0.2559 (4) 0.7224 (2) 0.0448 (8)
C15 0.0563 (2) 0.6877 (4) 0.5296 (2) 0.0610 (10)
C23 0.4379 (2) 0.1532 (4) 0.7111 (2) 0.0629 (10)
H23 0.4394 0.2397 0.7504 0.075*
C28 0.31742 (19) 0.8696 (4) 0.9144 (2) 0.0536 (9)
C17 0.15898 (19) 0.5269 (4) 0.5982 (2) 0.0605 (9)
H17 0.2025 0.4840 0.5974 0.073*
C20 0.4358 (2) −0.0977 (5) 0.5960 (2) 0.0745 (12)
H20 0.4352 −0.1833 0.5564 0.089*
C19 0.37351 (19) −0.0548 (4) 0.6142 (2) 0.0592 (10)
H19 0.3316 −0.1110 0.5875 0.071*
C14 0.02955 (19) 0.6543 (4) 0.5963 (2) 0.0614 (10)
H14 −0.0146 0.6951 0.5957 0.074*
C24 0.14727 (19) −0.0126 (4) 0.7233 (2) 0.0642 (10)
H24A 0.1074 0.0038 0.6740 0.096*
H24B 0.1359 0.0264 0.7734 0.096*
H24C 0.1591 −0.1313 0.7293 0.096*
C21 0.4975 (2) −0.0175 (5) 0.6344 (3) 0.0718 (11)
H21 0.5386 −0.0478 0.6214 0.086*
C16 0.1201 (2) 0.6255 (5) 0.5291 (2) 0.0678 (10)
H16 0.1379 0.6482 0.4834 0.081*
C22 0.4984 (2) 0.1070 (5) 0.6918 (3) 0.0695 (10)
H22 0.5405 0.1620 0.7186 0.083*
C29 0.3772 (2) 0.8959 (5) 0.8911 (2) 0.0730 (11)
H29 0.3916 0.8168 0.8573 0.088*
C25 0.1636 (2) 0.4104 (5) 0.9406 (2) 0.0697 (11)
H25A 0.1756 0.4378 1.0004 0.105*
H25B 0.1748 0.2932 0.9340 0.105*
H25C 0.1142 0.4288 0.9148 0.105*
C30 0.4165 (2) 1.0431 (6) 0.9185 (3) 0.0920 (15)
H30 0.4573 1.0621 0.9026 0.110*
C33 0.2971 (3) 0.9859 (6) 0.9643 (3) 0.1041 (18)
H33 0.2566 0.9676 0.9807 0.125*
C31 0.3961 (3) 1.1586 (7) 0.9681 (3) 0.115 (2)
H31 0.4226 1.2561 0.9867 0.138*
C32 0.3362 (4) 1.1294 (7) 0.9901 (4) 0.143 (3)
H32 0.3215 1.2088 1.0235 0.171*
Cl2 0.03200 (6) 0.52304 (19) 0.74666 (7) 0.1010 (5)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0896 (9) 0.0657 (7) 0.0978 (8) 0.0008 (6) −0.0113 (6) 0.0091 (6)
O27 0.0627 (15) 0.0263 (11) 0.0621 (13) −0.0044 (10) 0.0328 (11) −0.0077 (9)
C10 0.0476 (19) 0.0304 (16) 0.0489 (17) 0.0064 (14) 0.0233 (14) 0.0018 (14)
N2 0.0479 (17) 0.0221 (13) 0.0779 (18) −0.0050 (11) 0.0232 (14) −0.0084 (12)
O26 0.0655 (16) 0.0256 (11) 0.1200 (19) −0.0075 (11) 0.0583 (14) −0.0091 (12)
N1 0.0478 (17) 0.0259 (13) 0.0726 (17) −0.0010 (12) 0.0269 (13) −0.0013 (13)
C3 0.0413 (19) 0.0286 (16) 0.0617 (19) 0.0007 (14) 0.0177 (15) −0.0025 (14)
C11 0.050 (2) 0.0267 (15) 0.065 (2) −0.0010 (14) 0.0296 (15) −0.0016 (14)
N6 0.0531 (18) 0.0389 (15) 0.0586 (17) −0.0062 (13) 0.0270 (13) −0.0058 (13)
C12 0.044 (2) 0.0288 (16) 0.067 (2) −0.0038 (13) 0.0208 (15) −0.0079 (15)
C5 0.050 (2) 0.0269 (15) 0.068 (2) 0.0014 (14) 0.0269 (16) −0.0055 (15)
C9 0.0458 (19) 0.0253 (15) 0.0615 (19) 0.0004 (13) 0.0248 (14) −0.0004 (14)
C18 0.052 (2) 0.0323 (16) 0.0582 (19) 0.0131 (14) 0.0227 (16) −0.0026 (14)
N7 0.0557 (19) 0.0548 (18) 0.0604 (17) −0.0054 (15) 0.0271 (14) −0.0009 (14)
C13 0.042 (2) 0.0426 (18) 0.073 (2) 0.0023 (16) 0.0185 (17) −0.0113 (17)
C8 0.049 (2) 0.0450 (19) 0.058 (2) 0.0062 (16) 0.0249 (16) 0.0054 (16)
C4 0.0420 (19) 0.0266 (15) 0.069 (2) 0.0015 (13) 0.0208 (15) −0.0040 (14)
C15 0.055 (2) 0.0376 (19) 0.079 (3) −0.0053 (17) 0.0003 (19) −0.0054 (18)
C23 0.055 (2) 0.048 (2) 0.092 (3) −0.0014 (18) 0.030 (2) −0.0124 (19)
C28 0.054 (2) 0.048 (2) 0.0577 (19) −0.0084 (17) 0.0153 (16) −0.0079 (17)
C17 0.047 (2) 0.058 (2) 0.082 (2) 0.0052 (18) 0.0287 (19) 0.008 (2)
C20 0.079 (3) 0.071 (3) 0.079 (3) 0.027 (2) 0.031 (2) −0.012 (2)
C19 0.054 (2) 0.056 (2) 0.065 (2) 0.0151 (18) 0.0126 (17) −0.0104 (18)
C14 0.042 (2) 0.054 (2) 0.084 (3) 0.0018 (17) 0.0121 (19) −0.017 (2)
C24 0.048 (2) 0.0358 (19) 0.111 (3) −0.0119 (16) 0.026 (2) −0.0087 (19)
C21 0.062 (3) 0.072 (3) 0.094 (3) 0.024 (2) 0.042 (2) 0.011 (2)
C16 0.066 (3) 0.063 (2) 0.076 (3) 0.003 (2) 0.025 (2) 0.013 (2)
C22 0.046 (2) 0.063 (2) 0.107 (3) −0.0013 (19) 0.034 (2) 0.001 (2)
C29 0.064 (3) 0.078 (3) 0.086 (3) −0.018 (2) 0.035 (2) −0.009 (2)
C25 0.078 (3) 0.062 (2) 0.080 (2) −0.006 (2) 0.041 (2) 0.014 (2)
C30 0.083 (3) 0.110 (4) 0.089 (3) −0.057 (3) 0.033 (3) −0.018 (3)
C33 0.110 (4) 0.097 (3) 0.131 (4) −0.054 (3) 0.075 (3) −0.067 (3)
C31 0.162 (6) 0.094 (4) 0.099 (4) −0.077 (4) 0.053 (4) −0.047 (3)
C32 0.179 (6) 0.119 (4) 0.166 (5) −0.092 (5) 0.107 (5) −0.093 (4)
Cl2 0.0630 (8) 0.1521 (12) 0.1022 (9) 0.0321 (7) 0.0465 (6) 0.0080 (8)

Geometric parameters (Å, º)

Cl1—C15 1.729 (4) C23—C22 1.375 (5)
O27—C10 1.334 (3) C23—H23 0.9300
O27—H27 0.8200 C28—C33 1.361 (5)
C10—N6 1.346 (4) C28—C29 1.362 (5)
C10—C9 1.375 (4) C17—C16 1.401 (5)
N2—C3 1.348 (4) C17—H17 0.9300
N2—N1 1.368 (3) C20—C21 1.357 (5)
N2—H2 0.8600 C20—C19 1.395 (5)
O26—C5 1.277 (3) C20—H20 0.9300
N1—C5 1.358 (4) C19—H19 0.9300
N1—C18 1.418 (4) C14—H14 0.9300
C3—C4 1.367 (4) C24—H24A 0.9600
C3—C24 1.493 (4) C24—H24B 0.9600
C11—C9 1.506 (4) C24—H24C 0.9600
C11—C4 1.507 (4) C21—C22 1.352 (5)
C11—C12 1.526 (4) C21—H21 0.9300
C11—H11 0.9800 C16—H16 0.9300
N6—N7 1.388 (3) C22—H22 0.9300
N6—C28 1.421 (4) C29—C30 1.394 (5)
C12—C13 1.382 (4) C29—H29 0.9300
C12—C17 1.397 (4) C25—H25A 0.9600
C5—C4 1.422 (4) C25—H25B 0.9600
C9—C8 1.410 (4) C25—H25C 0.9600
C18—C23 1.374 (5) C30—C31 1.354 (6)
C18—C19 1.377 (4) C30—H30 0.9300
N7—C8 1.332 (4) C33—C32 1.364 (6)
C13—C14 1.383 (5) C33—H33 0.9300
C13—Cl2 1.730 (4) C31—C32 1.356 (7)
C8—C25 1.495 (4) C31—H31 0.9300
C15—C16 1.360 (5) C32—H32 0.9300
C15—C14 1.368 (5)
C10—O27—H27 109.5 C33—C28—N6 119.2 (3)
O27—C10—N6 121.4 (3) C29—C28—N6 120.9 (3)
O27—C10—C9 130.4 (3) C12—C17—C16 121.9 (3)
N6—C10—C9 108.2 (3) C12—C17—H17 119.1
C3—N2—N1 108.5 (2) C16—C17—H17 119.1
C3—N2—H2 125.8 C21—C20—C19 121.6 (4)
N1—N2—H2 125.8 C21—C20—H20 119.2
C5—N1—N2 108.6 (2) C19—C20—H20 119.2
C5—N1—C18 129.6 (3) C18—C19—C20 118.5 (4)
N2—N1—C18 121.5 (2) C18—C19—H19 120.7
N2—C3—C4 109.4 (3) C20—C19—H19 120.7
N2—C3—C24 120.0 (3) C15—C14—C13 119.1 (4)
C4—C3—C24 130.6 (3) C15—C14—H14 120.5
C9—C11—C4 114.9 (3) C13—C14—H14 120.5
C9—C11—C12 110.2 (2) C3—C24—H24A 109.5
C4—C11—C12 113.7 (2) C3—C24—H24B 109.5
C9—C11—H11 105.7 H24A—C24—H24B 109.5
C4—C11—H11 105.7 C3—C24—H24C 109.5
C12—C11—H11 105.7 H24A—C24—H24C 109.5
C10—N6—N7 111.0 (2) H24B—C24—H24C 109.5
C10—N6—C28 130.2 (3) C22—C21—C20 119.1 (4)
N7—N6—C28 118.7 (3) C22—C21—H21 120.4
C13—C12—C17 115.7 (3) C20—C21—H21 120.4
C13—C12—C11 122.2 (3) C15—C16—C17 119.3 (4)
C17—C12—C11 122.2 (3) C15—C16—H16 120.3
O26—C5—N1 120.9 (3) C17—C16—H16 120.3
O26—C5—C4 132.0 (3) C21—C22—C23 120.9 (4)
N1—C5—C4 107.1 (3) C21—C22—H22 119.6
C10—C9—C8 104.4 (3) C23—C22—H22 119.6
C10—C9—C11 127.3 (3) C28—C29—C30 119.2 (4)
C8—C9—C11 128.0 (3) C28—C29—H29 120.4
C23—C18—C19 119.4 (3) C30—C29—H29 120.4
C23—C18—N1 120.2 (3) C8—C25—H25A 109.5
C19—C18—N1 120.4 (3) C8—C25—H25B 109.5
C8—N7—N6 104.4 (2) H25A—C25—H25B 109.5
C12—C13—C14 123.2 (3) C8—C25—H25C 109.5
C12—C13—Cl2 120.3 (3) H25A—C25—H25C 109.5
C14—C13—Cl2 116.4 (3) H25B—C25—H25C 109.5
N7—C8—C9 111.9 (3) C31—C30—C29 120.8 (4)
N7—C8—C25 118.7 (3) C31—C30—H30 119.6
C9—C8—C25 129.4 (3) C29—C30—H30 119.6
C3—C4—C5 106.2 (3) C28—C33—C32 120.0 (5)
C3—C4—C11 125.3 (3) C28—C33—H33 120.0
C5—C4—C11 128.4 (3) C32—C33—H33 120.0
C16—C15—C14 120.8 (3) C30—C31—C32 118.8 (4)
C16—C15—Cl1 119.8 (3) C30—C31—H31 120.6
C14—C15—Cl1 119.4 (3) C32—C31—H31 120.6
C18—C23—C22 120.4 (3) C31—C32—C33 121.3 (5)
C18—C23—H23 119.8 C31—C32—H32 119.3
C22—C23—H23 119.8 C33—C32—H32 119.3
C33—C28—C29 119.9 (4)
C3—N2—N1—C5 −4.1 (3) C24—C3—C4—C5 176.8 (3)
C3—N2—N1—C18 −179.3 (3) N2—C3—C4—C11 179.4 (3)
N1—N2—C3—C4 3.7 (3) C24—C3—C4—C11 −1.9 (6)
N1—N2—C3—C24 −175.1 (3) O26—C5—C4—C3 177.3 (3)
O27—C10—N6—N7 −179.6 (3) N1—C5—C4—C3 −0.6 (3)
C9—C10—N6—N7 1.1 (3) O26—C5—C4—C11 −4.1 (6)
O27—C10—N6—C28 3.5 (5) N1—C5—C4—C11 178.0 (3)
C9—C10—N6—C28 −175.7 (3) C9—C11—C4—C3 131.2 (3)
C9—C11—C12—C13 −79.3 (4) C12—C11—C4—C3 −100.5 (4)
C4—C11—C12—C13 150.0 (3) C9—C11—C4—C5 −47.1 (4)
C9—C11—C12—C17 98.7 (3) C12—C11—C4—C5 81.1 (4)
C4—C11—C12—C17 −32.0 (4) C19—C18—C23—C22 −0.4 (5)
N2—N1—C5—O26 −175.3 (3) N1—C18—C23—C22 179.8 (3)
C18—N1—C5—O26 −0.6 (5) C10—N6—C28—C33 144.3 (4)
N2—N1—C5—C4 2.9 (3) N7—N6—C28—C33 −32.4 (5)
C18—N1—C5—C4 177.6 (3) C10—N6—C28—C29 −36.1 (5)
O27—C10—C9—C8 178.6 (3) N7—N6—C28—C29 147.3 (3)
N6—C10—C9—C8 −2.2 (3) C13—C12—C17—C16 0.2 (5)
O27—C10—C9—C11 −6.1 (5) C11—C12—C17—C16 −177.9 (3)
N6—C10—C9—C11 173.0 (3) C23—C18—C19—C20 0.1 (5)
C4—C11—C9—C10 72.0 (4) N1—C18—C19—C20 179.9 (3)
C12—C11—C9—C10 −57.9 (4) C21—C20—C19—C18 0.1 (6)
C4—C11—C9—C8 −113.8 (4) C16—C15—C14—C13 1.4 (5)
C12—C11—C9—C8 116.2 (3) Cl1—C15—C14—C13 179.3 (2)
C5—N1—C18—C23 37.7 (5) C12—C13—C14—C15 −1.7 (5)
N2—N1—C18—C23 −148.2 (3) Cl2—C13—C14—C15 179.7 (3)
C5—N1—C18—C19 −142.1 (3) C19—C20—C21—C22 0.0 (6)
N2—N1—C18—C19 32.0 (4) C14—C15—C16—C17 −0.4 (6)
C10—N6—N7—C8 0.6 (3) Cl1—C15—C16—C17 −178.2 (3)
C28—N6—N7—C8 177.8 (3) C12—C17—C16—C15 −0.5 (6)
C17—C12—C13—C14 0.9 (5) C20—C21—C22—C23 −0.3 (6)
C11—C12—C13—C14 179.0 (3) C18—C23—C22—C21 0.5 (6)
C17—C12—C13—Cl2 179.4 (2) C33—C28—C29—C30 −0.3 (6)
C11—C12—C13—Cl2 −2.5 (4) N6—C28—C29—C30 180.0 (3)
N6—N7—C8—C9 −2.1 (4) C28—C29—C30—C31 0.3 (7)
N6—N7—C8—C25 176.2 (3) C29—C28—C33—C32 0.6 (7)
C10—C9—C8—N7 2.7 (4) N6—C28—C33—C32 −179.7 (5)
C11—C9—C8—N7 −172.5 (3) C29—C30—C31—C32 −0.5 (9)
C10—C9—C8—C25 −175.2 (3) C30—C31—C32—C33 0.8 (10)
C11—C9—C8—C25 9.5 (6) C28—C33—C32—C31 −0.9 (10)
N2—C3—C4—C5 −1.9 (4)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N2—H2···O27i 0.86 2.08 2.756 (3) 135
C24—H24A···Cl1ii 0.96 2.93 3.823 (3) 156

Symmetry codes: (i) x, y−1, z; (ii) −x, −y+1, −z+1.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: SJ5478).

References

  1. Agilent (2013). CrysAlis PRO. Agilent Technologies, Yarnton, England.
  2. Bailey, D. M., Hansen, P. E., Hlavac, A. G., Baizman, E. R., Pearl, J., DeFelice, A. F. & Feigenson, M. E. (1985). J. Med. Chem. 28, 256–260. [DOI] [PubMed]
  3. Bhardwaj, M., Sahi, S., Mahajan, H., Paul, S. & Clark, J. H. (2015). J. Mol. Catal. A Chem. 408, 48–59.
  4. Chauhan, P. M. S., Singh, S. & Chatterjee, R. K. (1993). Indian J. Chem. Sect. B, 32, 856-861.
  5. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  6. Hamama, W. S. (2001). Synth. Commun. 31, 1335–1345.
  7. Mahajan, R. N., Havaldar, F. H. & Fernandes, P. S. (1991). J. Indian Chem. Soc. 68, 245-246.
  8. Niknam, K. & Mirzaee, S. (2011). Synth. Commun. 41, 2403–2413.
  9. Park, H. J., Lee, K., Park, S. J., Ahn, B., Lee, J. C., Cho, H. Y. & Lee, K. I. (2005). Bioorg. Med. Chem. Lett. 15, 3307–3312. [DOI] [PubMed]
  10. Rosiere, C. E. & Grossman, M. I. (1951). Science, 113, 651–651. [DOI] [PubMed]
  11. Sharma, N., Jadeja, R. N., Kant, R. & Gupta, K. V. (2014). AIP Conf. Proc. pp. 1206–1208.
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S2056989015017880/sj5478sup1.cif

e-71-0o805-sup1.cif (30.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015017880/sj5478Isup2.hkl

e-71-0o805-Isup2.hkl (229.2KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015017880/sj5478Isup3.cml

ORTEP . DOI: 10.1107/S2056989015017880/sj5478fig1.tif

ORTEP view of the mol­ecule with the atom-labeling scheme. Displacement ellipsoids are drawn at the 40% probability level. H atoms are shown as small spheres of arbitrary radii.

a . DOI: 10.1107/S2056989015017880/sj5478fig2.tif

The packing arrangement of mol­ecules viewed along the a axis.

CCDC reference: 1427164

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES