Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Sep 26;71(Pt 10):o792–o793. doi: 10.1107/S2056989015017740

Crystal structure of 2-(2,4-diphenyl-3-aza­bicyclo­[3.3.1]nonan-9-yl­idene)aceto­nitrile

K Priya a, K Saravanan a, S Kabilan a,*, S Selvanayagam b
PMCID: PMC4647352  PMID: 26594482

Abstract

In the title 3-aza­bicyclo­nonane derivative, C22H22N2, both the fused piperidine and cyclo­hexane rings adopt a chair conformation. The phenyl rings attached to the central aza­bicylononane fragment in an equatorial orientation are inclined to each other at 23.7 (1)°. The amino group is not involved in any hydrogen bonding, so the crystal packing is stabilized only by van der Waals forces.

Keywords: crystal structure, 3-aza­bicyclo­nonane derivatives, chair conformation

Related literature  

For the biological activities of 3-aza­bicyclo­nonane derivatives, see: Silver et al. (1967); Fleming & Wang (2003); Miller & Manson (2001); Fatiadi (1983). For related structures, see: Parthiban et al. (2008a ,b ,c ,d ,e ).graphic file with name e-71-0o792-scheme1.jpg

Experimental  

Crystal data  

  • C22H22N2

  • M r = 314.41

  • Triclinic, Inline graphic

  • a = 7.9672 (5) Å

  • b = 8.3129 (5) Å

  • c = 13.6069 (8) Å

  • α = 89.607 (4)°

  • β = 81.886 (4)°

  • γ = 84.469 (4)°

  • V = 888.00 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 296 K

  • 0.23 × 0.21 × 0.19 mm

Data collection  

  • Bruker SMART APEX CCD area-detector diffractometer

  • 14326 measured reflections

  • 3814 independent reflections

  • 2375 reflections with I > 2σ(I)

  • R int = 0.034

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.047

  • wR(F 2) = 0.131

  • S = 1.05

  • 3814 reflections

  • 221 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.16 e Å−3

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2014/7 and PLATON.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989015017740/cv5495sup1.cif

e-71-0o792-sup1.cif (431.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015017740/cv5495Isup2.hkl

e-71-0o792-Isup2.hkl (304.1KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015017740/cv5495Isup3.cml

. DOI: 10.1107/S2056989015017740/cv5495fig1.tif

The mol­ecular structure of the title compound with atom labelling. Displacement ellipsoids are drawn at the 40% probability level.

CCDC reference: 1426330

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

KP is thankful to the UGC, New Delhi, for the award of a UGC–BSR–RFSMS Fellowship. The authors thank the Department of Biotechnology (DBT&NEC), New Delhi, for financial support, and the IIT - Guwahathi for the data collection.

supplementary crystallographic information

S1. Chemical context

Nitrile derivatives received considerable inter­est since they have been used in biological field as well as in optical fields (Silver et al., 1967). Alkenyl nitriles are unique structural units and versatile building blocks in organic synthesis for natural products, pharmaceuticals, agricultural chemicals, and dyes (Fleming & Wang, 2003; Miller & Manson,2001; Fatiadi, 1983). Hence, the synthesis and stereochemistry of 3-aza­bicyclo­nonan-9-ones are under intensive study (Parthiban et al., 2008a, b, c, d, e). In continuation of our work with 3-aza­bicyclo­nonane derivatives, we have undertaken the crystal structure determination of the title compound, and the results are presented here.

S2. Structural commentary

The molecular structure of the title compound is shown in Fig. 1. The bond length C22—N2 of 1.146 (2) Å confirms the triple bond character. Two phenyl rings attached to the 3-aza­biclononane fragment form a dihedral angle of 23.7 (1)°. The piperidine (N1/C1—C5) and cyclo­hexane (C2—C4/C20/C19/C18) rings adopt chair conformation. This is confirmed by the puckering parameters q2 = 0.044 (1) Å, q3 = 0.598 (1) Å, QT = 0.600 (1) Å, φ = -156.7 (4)° for piperidine ring, and q2 = 0.122 (1) Å, q3 = -0.556 (1) Å, QT = 0.569 (1) Å, φ = -128.0 (1)° for cyclo­hexane ring. In the piperidine ring , atoms N1 and C3 deviate at 0.639 (1) and -0.705 (1) Å, respectively, from the least-squares plane formed by the remaining four atoms, whereas in cyclo­hexane ring, atoms C19 and C3 deviate at 0.562 (1) and -0.721 (1) Å, respectively, from the least-squares plane formed by the remaining four atoms.

S3. Supra­molecular features

The crystal packing is stabilized by van der Waals forces only, since the amino group is not involved in any hydrogen-bonding inter­actions.

S4. Synthesis and crystallization

To a solution of the 2, 4-di­phenyl-3-aza­bicyclo [3.3.1] nonan-9-one (500 mg, 1.72 mmol) in THF (5 mL), LiOH (212 mg, 3.516mmol) and di­ethyl­cyano­methyl phospho­nate (364g, 1.4063mmol) was added. The reaction mixture was stirred at for 3 h. After completion of the reaction (monitored by TLC), the reaction mixture was diluted with ethyl acetate (45 mL). The organic layer was washed with water (10 mL X 3) and dried over Na2SO4. The filtrate was concentrated and the crude product mass was purified by column-chromatography over silica-gel (100–200 mesh) using petroleum ether and di­ethyl ether (5-10%) as eluent to give a colorless solid. This solid was recrystallized in ethyl acetate to yield a colourless crystals of the title compound.

S5. Refinement

Atom H1N was located from a difference Fourier map and refined with a bond length restraint of 0.90 (2) Å. The remaining H atoms were positioned geometrically and were treated as riding on their parent C atoms, with C—H distances of 0.93-0.98 Å, and Uiso(H) = 1.5Ueq (C) for methyl H and Uiso(H) = 1.2Ueq(C) for all other H atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with atom labelling. Displacement ellipsoids are drawn at the 40% probability level.

Crystal data

C22H22N2 Z = 2
Mr = 314.41 F(000) = 336
Triclinic, P1 Dx = 1.176 Mg m3
a = 7.9672 (5) Å Mo Kα radiation, λ = 0.71073 Å
b = 8.3129 (5) Å Cell parameters from 9878 reflections
c = 13.6069 (8) Å θ = 2.3–27.2°
α = 89.607 (4)° µ = 0.07 mm1
β = 81.886 (4)° T = 296 K
γ = 84.469 (4)° Block, colourless
V = 888.00 (9) Å3 0.23 × 0.21 × 0.19 mm

Data collection

Bruker SMART APEX CCD area-detector diffractometer Rint = 0.034
Radiation source: fine-focus sealed tube θmax = 27.2°, θmin = 1.5°
ω scans h = −10→10
14326 measured reflections k = −9→10
3814 independent reflections l = −17→17
2375 reflections with I > 2σ(I)

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.047 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.131 w = 1/[σ2(Fo2) + (0.0623P)2 + 0.0228P] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max < 0.001
3814 reflections Δρmax = 0.13 e Å3
221 parameters Δρmin = −0.16 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.30954 (14) 0.47358 (15) 0.20403 (9) 0.0491 (3)
H1N 0.3354 (19) 0.5473 (19) 0.1565 (12) 0.069 (5)*
N2 0.6722 (2) 0.17287 (19) 0.51383 (11) 0.0845 (5)
C1 0.21406 (17) 0.55407 (17) 0.29305 (10) 0.0494 (4)
H1A 0.2864 0.6291 0.3178 0.059*
C2 0.17259 (18) 0.42725 (18) 0.37503 (11) 0.0543 (4)
H2 0.1209 0.4846 0.4362 0.065*
C3 0.33678 (17) 0.33590 (17) 0.39353 (10) 0.0518 (4)
C4 0.42543 (17) 0.24949 (17) 0.30202 (10) 0.0503 (4)
H4 0.5326 0.1933 0.3171 0.060*
C5 0.46745 (16) 0.37958 (17) 0.22222 (10) 0.0465 (3)
H5 0.5395 0.4532 0.2485 0.056*
C6 0.05227 (17) 0.65065 (17) 0.27059 (11) 0.0511 (4)
C7 −0.0303 (2) 0.6131 (2) 0.19207 (13) 0.0661 (5)
H7 0.0167 0.5294 0.1487 0.079*
C8 −0.1827 (2) 0.6993 (2) 0.17744 (15) 0.0808 (5)
H8 −0.2375 0.6731 0.1246 0.097*
C9 −0.2528 (2) 0.8236 (2) 0.24123 (16) 0.0825 (6)
H9 −0.3550 0.8814 0.2314 0.099*
C10 −0.1720 (2) 0.8623 (2) 0.31933 (15) 0.0730 (5)
H10 −0.2195 0.9459 0.3626 0.088*
C11 −0.01988 (19) 0.77658 (18) 0.33353 (12) 0.0607 (4)
H11 0.0348 0.8039 0.3862 0.073*
C12 0.56488 (17) 0.30391 (16) 0.12778 (10) 0.0475 (3)
C13 0.48803 (19) 0.2693 (2) 0.04674 (11) 0.0614 (4)
H13 0.3721 0.2981 0.0478 0.074*
C14 0.5812 (2) 0.1923 (2) −0.03620 (12) 0.0710 (5)
H14 0.5270 0.1690 −0.0899 0.085*
C15 0.7520 (2) 0.1501 (2) −0.03997 (13) 0.0717 (5)
H15 0.8139 0.0983 −0.0959 0.086*
C16 0.8314 (2) 0.1848 (2) 0.03951 (14) 0.0772 (5)
H16 0.9478 0.1571 0.0375 0.093*
C17 0.73838 (18) 0.2608 (2) 0.12246 (12) 0.0660 (5)
H17 0.7933 0.2837 0.1759 0.079*
C18 0.05238 (18) 0.3031 (2) 0.35037 (12) 0.0643 (4)
H18A 0.0231 0.2383 0.4087 0.077*
H18B −0.0520 0.3606 0.3343 0.077*
C19 0.12981 (19) 0.19133 (19) 0.26393 (12) 0.0634 (4)
H19A 0.1298 0.2507 0.2023 0.076*
H19B 0.0597 0.1028 0.2612 0.076*
C20 0.31190 (19) 0.12269 (17) 0.27312 (12) 0.0588 (4)
H20A 0.3635 0.0737 0.2102 0.071*
H20B 0.3080 0.0382 0.3227 0.071*
C21 0.39261 (19) 0.33330 (18) 0.48167 (11) 0.0575 (4)
H21 0.3278 0.3924 0.5339 0.069*
C22 0.5476 (2) 0.2435 (2) 0.49907 (11) 0.0613 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0458 (7) 0.0516 (7) 0.0477 (7) 0.0043 (5) −0.0046 (5) 0.0050 (6)
N2 0.0855 (11) 0.0958 (12) 0.0753 (10) 0.0097 (9) −0.0348 (8) 0.0004 (9)
C1 0.0453 (8) 0.0515 (8) 0.0503 (9) 0.0025 (6) −0.0075 (6) −0.0030 (7)
C2 0.0505 (8) 0.0635 (10) 0.0454 (8) 0.0066 (7) −0.0029 (6) −0.0003 (7)
C3 0.0515 (8) 0.0557 (9) 0.0477 (9) −0.0010 (7) −0.0084 (7) 0.0047 (7)
C4 0.0473 (8) 0.0552 (9) 0.0479 (8) 0.0069 (6) −0.0127 (6) 0.0020 (7)
C5 0.0407 (7) 0.0513 (8) 0.0474 (8) −0.0005 (6) −0.0084 (6) −0.0022 (7)
C6 0.0474 (8) 0.0488 (8) 0.0552 (9) 0.0015 (6) −0.0043 (7) 0.0033 (7)
C7 0.0596 (10) 0.0666 (10) 0.0712 (11) 0.0116 (8) −0.0180 (8) −0.0069 (9)
C8 0.0714 (11) 0.0835 (13) 0.0895 (14) 0.0119 (9) −0.0310 (10) −0.0014 (11)
C9 0.0612 (11) 0.0734 (12) 0.1101 (16) 0.0195 (9) −0.0200 (10) 0.0072 (11)
C10 0.0662 (11) 0.0580 (10) 0.0882 (13) 0.0135 (8) −0.0014 (9) −0.0027 (9)
C11 0.0609 (9) 0.0528 (9) 0.0658 (10) 0.0046 (7) −0.0068 (8) −0.0015 (8)
C12 0.0451 (8) 0.0486 (8) 0.0479 (8) −0.0007 (6) −0.0067 (6) 0.0008 (7)
C13 0.0540 (9) 0.0757 (11) 0.0533 (10) 0.0053 (8) −0.0112 (7) −0.0042 (8)
C14 0.0782 (12) 0.0826 (12) 0.0512 (10) 0.0030 (9) −0.0127 (8) −0.0090 (9)
C15 0.0770 (12) 0.0732 (11) 0.0576 (10) 0.0086 (9) 0.0052 (9) −0.0101 (9)
C16 0.0508 (9) 0.0956 (14) 0.0791 (13) 0.0118 (9) −0.0002 (9) −0.0140 (11)
C17 0.0487 (9) 0.0839 (12) 0.0641 (11) 0.0048 (8) −0.0100 (7) −0.0135 (9)
C18 0.0487 (9) 0.0721 (11) 0.0706 (11) −0.0041 (7) −0.0051 (7) 0.0172 (9)
C19 0.0581 (9) 0.0599 (10) 0.0754 (11) −0.0145 (7) −0.0147 (8) 0.0076 (9)
C20 0.0652 (10) 0.0510 (9) 0.0601 (10) −0.0017 (7) −0.0112 (7) 0.0066 (8)
C21 0.0621 (9) 0.0621 (10) 0.0472 (9) 0.0014 (7) −0.0094 (7) 0.0002 (7)
C22 0.0708 (11) 0.0681 (10) 0.0478 (9) −0.0033 (8) −0.0204 (8) 0.0011 (8)

Geometric parameters (Å, º)

N1—C1 1.4651 (17) C10—C11 1.383 (2)
N1—C5 1.4665 (16) C10—H10 0.9300
N1—H1N 0.904 (16) C11—H11 0.9300
N2—C22 1.1461 (18) C12—C13 1.379 (2)
C1—C6 1.5191 (18) C12—C17 1.3860 (18)
C1—C2 1.553 (2) C13—C14 1.385 (2)
C1—H1A 0.9800 C13—H13 0.9300
C2—C3 1.5000 (18) C14—C15 1.365 (2)
C2—C18 1.543 (2) C14—H14 0.9300
C2—H2 0.9800 C15—C16 1.373 (2)
C3—C21 1.3361 (19) C15—H15 0.9300
C3—C4 1.4939 (19) C16—C17 1.381 (2)
C4—C20 1.541 (2) C16—H16 0.9300
C4—C5 1.5529 (19) C17—H17 0.9300
C4—H4 0.9800 C18—C19 1.526 (2)
C5—C12 1.5116 (18) C18—H18A 0.9700
C5—H5 0.9800 C18—H18B 0.9700
C6—C7 1.384 (2) C19—C20 1.5286 (19)
C6—C11 1.385 (2) C19—H19A 0.9700
C7—C8 1.388 (2) C19—H19B 0.9700
C7—H7 0.9300 C20—H20A 0.9700
C8—C9 1.378 (2) C20—H20B 0.9700
C8—H8 0.9300 C21—C22 1.428 (2)
C9—C10 1.373 (3) C21—H21 0.9300
C9—H9 0.9300
C1—N1—C5 113.55 (11) C11—C10—H10 120.1
C1—N1—H1N 110.1 (10) C10—C11—C6 121.05 (16)
C5—N1—H1N 108.7 (9) C10—C11—H11 119.5
N1—C1—C6 111.71 (11) C6—C11—H11 119.5
N1—C1—C2 109.87 (11) C13—C12—C17 117.63 (14)
C6—C1—C2 110.76 (11) C13—C12—C5 123.02 (12)
N1—C1—H1A 108.1 C17—C12—C5 119.30 (12)
C6—C1—H1A 108.1 C12—C13—C14 120.89 (14)
C2—C1—H1A 108.1 C12—C13—H13 119.6
C3—C2—C18 107.86 (12) C14—C13—H13 119.6
C3—C2—C1 108.18 (11) C15—C14—C13 120.67 (15)
C18—C2—C1 115.18 (12) C15—C14—H14 119.7
C3—C2—H2 108.5 C13—C14—H14 119.7
C18—C2—H2 108.5 C14—C15—C16 119.43 (15)
C1—C2—H2 108.5 C14—C15—H15 120.3
C21—C3—C4 125.54 (13) C16—C15—H15 120.3
C21—C3—C2 123.15 (14) C15—C16—C17 119.93 (15)
C4—C3—C2 111.31 (11) C15—C16—H16 120.0
C3—C4—C20 108.48 (12) C17—C16—H16 120.0
C3—C4—C5 107.33 (11) C16—C17—C12 121.45 (15)
C20—C4—C5 115.21 (11) C16—C17—H17 119.3
C3—C4—H4 108.6 C12—C17—H17 119.3
C20—C4—H4 108.6 C19—C18—C2 113.21 (12)
C5—C4—H4 108.6 C19—C18—H18A 108.9
N1—C5—C12 111.71 (11) C2—C18—H18A 108.9
N1—C5—C4 109.50 (10) C19—C18—H18B 108.9
C12—C5—C4 111.25 (11) C2—C18—H18B 108.9
N1—C5—H5 108.1 H18A—C18—H18B 107.7
C12—C5—H5 108.1 C18—C19—C20 112.39 (13)
C4—C5—H5 108.1 C18—C19—H19A 109.1
C7—C6—C11 118.53 (14) C20—C19—H19A 109.1
C7—C6—C1 122.50 (13) C18—C19—H19B 109.1
C11—C6—C1 118.91 (13) C20—C19—H19B 109.1
C6—C7—C8 120.54 (16) H19A—C19—H19B 107.9
C6—C7—H7 119.7 C19—C20—C4 113.88 (12)
C8—C7—H7 119.7 C19—C20—H20A 108.8
C9—C8—C7 120.01 (17) C4—C20—H20A 108.8
C9—C8—H8 120.0 C19—C20—H20B 108.8
C7—C8—H8 120.0 C4—C20—H20B 108.8
C10—C9—C8 120.03 (16) H20A—C20—H20B 107.7
C10—C9—H9 120.0 C3—C21—C22 122.75 (14)
C8—C9—H9 120.0 C3—C21—H21 118.6
C9—C10—C11 119.84 (17) C22—C21—H21 118.6
C9—C10—H10 120.1 N2—C22—C21 179.18 (18)
C5—N1—C1—C6 179.66 (11) C6—C7—C8—C9 0.1 (3)
C5—N1—C1—C2 −57.00 (15) C7—C8—C9—C10 0.0 (3)
N1—C1—C2—C3 55.94 (15) C8—C9—C10—C11 0.3 (3)
C6—C1—C2—C3 179.83 (11) C9—C10—C11—C6 −0.6 (3)
N1—C1—C2—C18 −64.80 (15) C7—C6—C11—C10 0.7 (2)
C6—C1—C2—C18 59.09 (16) C1—C6—C11—C10 −176.43 (14)
C18—C2—C3—C21 −115.00 (16) N1—C5—C12—C13 −25.14 (19)
C1—C2—C3—C21 119.81 (16) C4—C5—C12—C13 97.57 (16)
C18—C2—C3—C4 64.47 (15) N1—C5—C12—C17 157.44 (13)
C1—C2—C3—C4 −60.72 (15) C4—C5—C12—C17 −79.85 (16)
C21—C3—C4—C20 116.21 (16) C17—C12—C13—C14 0.8 (2)
C2—C3—C4—C20 −63.25 (14) C5—C12—C13—C14 −176.61 (14)
C21—C3—C4—C5 −118.71 (15) C12—C13—C14—C15 −0.6 (3)
C2—C3—C4—C5 61.83 (14) C13—C14—C15—C16 0.0 (3)
C1—N1—C5—C12 −177.87 (11) C14—C15—C16—C17 0.4 (3)
C1—N1—C5—C4 58.42 (15) C15—C16—C17—C12 −0.1 (3)
C3—C4—C5—N1 −58.56 (14) C13—C12—C17—C16 −0.5 (2)
C20—C4—C5—N1 62.36 (15) C5—C12—C17—C16 177.05 (15)
C3—C4—C5—C12 177.47 (10) C3—C2—C18—C19 −55.28 (16)
C20—C4—C5—C12 −61.61 (14) C1—C2—C18—C19 65.64 (16)
N1—C1—C6—C7 25.8 (2) C2—C18—C19—C20 46.74 (17)
C2—C1—C6—C7 −97.05 (17) C18—C19—C20—C4 −45.54 (17)
N1—C1—C6—C11 −157.20 (13) C3—C4—C20—C19 52.91 (15)
C2—C1—C6—C11 79.97 (16) C5—C4—C20—C19 −67.39 (16)
C11—C6—C7—C8 −0.5 (2) C4—C3—C21—C22 −0.6 (2)
C1—C6—C7—C8 176.55 (14) C2—C3—C21—C22 178.80 (14)

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: CV5495).

References

  1. Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  3. Fatiadi, A. J. (1983). In Preparation and Synthetic Applications of Cyano Compounds in Triple bonded functional groups. Vol. 2, edited by S. Patai & Z. Rappaport, pp. 1057–1303. Chichester: John Wiley & Sons, Ltd.
  4. Fleming, F. F. & Wang, Q. (2003). Chem. Rev. 103, 2035–2078. [DOI] [PubMed]
  5. Miller, J. S. & Manson, J. L. (2001). Acc. Chem. Res. 34, 563–570. [DOI] [PubMed]
  6. Parthiban, P., Ramkumar, V., Kim, M. S., Lim, K. T. & Jeong, Y. T. (2008a). Acta Cryst. E64, o1586. [DOI] [PMC free article] [PubMed]
  7. Parthiban, P., Ramkumar, V., Kim, M. S., Lim, K. T. & Jeong, Y. T. (2008b). Acta Cryst. E64, o2332. [DOI] [PMC free article] [PubMed]
  8. Parthiban, P., Ramkumar, V., Kim, M. S., Son, S. M. & Jeong, Y. T. (2008c). Acta Cryst. E64, o2385. [DOI] [PMC free article] [PubMed]
  9. Parthiban, P., Ramkumar, V., Santan, H. D., Kim, J. T. & Jeong, Y. T. (2008d). Acta Cryst. E64, o1710. [DOI] [PMC free article] [PubMed]
  10. Parthiban, P., Thirumurugan, K., Ramkumar, V., Pazhamalai, S. & Jeong, Y. T. (2008e). Acta Cryst. E64, o1708–o1709. [DOI] [PMC free article] [PubMed]
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  13. Silver, R. F., Kerr, K. A., Frandsen, P. D., Kelley, S. J. & Holmes, H. L. (1967). Can. J. Chem. 45, 1001–1006.
  14. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989015017740/cv5495sup1.cif

e-71-0o792-sup1.cif (431.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015017740/cv5495Isup2.hkl

e-71-0o792-Isup2.hkl (304.1KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015017740/cv5495Isup3.cml

. DOI: 10.1107/S2056989015017740/cv5495fig1.tif

The mol­ecular structure of the title compound with atom labelling. Displacement ellipsoids are drawn at the 40% probability level.

CCDC reference: 1426330

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES