Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Sep 12;71(Pt 10):o735–o736. doi: 10.1107/S2056989015016102

Crystal structure of 5-chloro-1,3-bis­[2-(2-oxo-1,3-oxazolidin-3-yl)eth­yl]-1H-benz­imidazol-2(3H)-one

Kaoutar Bouayad a,*, Youssef Kandri Rodi b, Youness Ouzidan b, El Mokhtar Essassi c, Mohamed Saadi d, Lahcen El Ammari d
PMCID: PMC4647354  PMID: 26594449

Abstract

In the title compound, C17H19ClN4O5, the benzimidazole fused-ring system is essentially planar, the maximum deviation from the mean plane being 0.06 (1) Å. Both oxazolidine rings are nearly planar, the maximum deviations from the mean planes are 0.071 (13) and 0.070 (10) Å. The dihedral angle between the mean planes of the oxazolidine rings is 69.9 (7)°. The benzimidazole mean plane makes the dihedral angles of 43.9 (6) and 45.6 (6)° with the two oxazolidine rings. In the crystal, the mol­ecules are linked together by weak C—H⋯O hydrogen bonds building zigzag tapes running along the c axis. The Cl atom is split over two positions with an occupancy ratio of 0.567 (7):0.433 (7). This means that the reaction yields two isomers, A and B; the A component has the Cl-atom substituent in the 5-position of the benzimidazolone ring and the B component has the Cl atom in the 6-position. The two isomers form the disordered co-crystal, with a nearly half Cl atom in each of them, as indicated by the occupancy ratio. The crystal structure was refined as an inversion twin.

Keywords: crystal structure, benzimidazol-2-one derivative, hydrogen bonding

Related literature  

For biological properties of benzimidazol-2-one derivatives, see: Gribkoff et al. (1994); Olesen et al. (1994); Soderlind et al. (1999). For anti­bacterial activity oxazolidin-2-ones, see: Diekema & Jones (2000); Mukhtar & Wright (2005). For asymmetric reactions of oxazolidin-2-ones, see: Evans et al. (1993); Matsunaga et al. (2005). For oxazolidin-2-one derivatives, see: Ouzidan et al. (2011); Dardouri et al. (2011).graphic file with name e-71-0o735-scheme1.jpg

Experimental  

Crystal data  

  • C17H19ClN4O5

  • M r = 394.81

  • Orthorhombic, Inline graphic

  • a = 14.053 (8) Å

  • b = 13.438 (6) Å

  • c = 9.733 (4) Å

  • V = 1838.1 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 296 K

  • 0.35 × 0.31 × 0.26 mm

Data collection  

  • Bruker X8 APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.504, T max = 0.748

  • 9588 measured reflections

  • 3701 independent reflections

  • 1697 reflections with I > 2σ(I)

  • R int = 0.052

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.057

  • wR(F 2) = 0.150

  • S = 1.01

  • 3701 reflections

  • 255 parameters

  • 4 restraints

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.16 e Å−3

  • Absolute structure: Refined as an inversion twin

  • Absolute structure parameter: 0.5 (5)

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT-Plus (Bruker, 2009); data reduction: SAINT-Plus ; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: ORTEP-3 (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989015016102/xu5863sup1.cif

e-71-0o735-sup1.cif (459.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015016102/xu5863Isup2.hkl

e-71-0o735-Isup2.hkl (295.3KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015016102/xu5863Isup3.cml

. DOI: 10.1107/S2056989015016102/xu5863fig1.tif

Mol­ecular plot the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small circles.

c . DOI: 10.1107/S2056989015016102/xu5863fig2.tif

Inter­molecular inter­actions in the title compound building a zigzag tape along c axis. Hydrogen bonds are shown as dashed lines.

CCDC reference: 1421051

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
C4H4AO2i 0.97 2.42 3.247(13) 143
C14H14AO4ii 0.97 2.48 3.315(13) 144

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

supplementary crystallographic information

S1. Comment

Benzimidazol-2-one derivatives are useful heterocyclic building blocks and are prominent structural elements of compounds demonstrating a wide variety of pharmacological and biochemical properties(Gribkoff et al., 1994; Olesen et al., 1994; Soderlind et al., 1999).

Also, oxazolidin-2-ones are a very important class of heterocyclic compounds and their derivatives have attracted attention in various areas of drug development for antibacterial activity (Diekema & Jones, 2000; Mukhtar & Wright, 2005). Some oxazolidin-2-ones have been used as chiral auxiliaries in a wide range of asymmetric reactions (Evans et al., 1993; Matsunaga et al., 2005). In a previous study, we reacted 1H-benzo[d]imidazol-2(3H)-one with bis(2-chloroethyl)amine hydrochloride in the presence of a catalytic quantity of tetra-n-butylammonium bromide to form 1,3-bis(2-(2-oxooxazolidin-3-yl)ethyl)-1H-benzo[d]imidazol-2(3H)-one (Ouzidan et al., 2011). The study is extended to the synthesis of the 5-chloro analog to furnish the title compound (Scheme 1).

The molecule of title compound is build up from a fused five- and six-membered rings linked through ethyl groups, on opposite side, to two 2-oxo-oxazolidin- 3-yl rings as shown in Fig. 1. The chlorine in 5-chloro-benzo[d]imidazol-2(3H) -one is splited in two positions with an occupancy ratio of Cl1B = 0.567 (7) and Cl1A = 0.433 (7). As a matter of fact, we have two isomers that form a disordered co-crystal, like in the 5-Chloro-1-[(E)-3-(dimethylamino)acryloyl]- 3-methyl-1H-benzimidazol-2(3H)-one-6-chloro-1-[(E)-3-(dimethylamino)acryloyl]- 3-methyl-1H-benzimidazol-2(3H)-one(4/1) (Dardouri et al., 2011), but with a nearly half chlorine atom in each of them as shown in the occupancy ratio of Cl1A and Cl1B. The fused rings system (N2N3C6 – C12) is essentially planar with the largest deviation from the mean plane being 0.06 (1) Å at C8 atom. The benzimidazole plane makes dihedral angles of 43.9 (6)° and 45.6 (6)° with the two 2-oxo-oxazolidin-3-yl rings, (O1N1C1-C3) and (O5N4C15-C17), respectively. The dihedral angle between the two 2-oxo-oxazolidin-3-yl rings is of 69.9 (7)°. In the crystal, the molecules are linked together by C4–H4A···O2 and C14–H14A···O4 hydrogen bonds in the way to build a zigzag tape along c axis as shown in Fig. 2 and Table 2.

S2. Experimental

To 5-chloro-1H-benzo[d]imidazol-2(3H)-one (0,2 g, 1.18 mmol), potassium carbonate (0.65 g, 4.74 mmol), and tetra-n-butylammonium bromide (0.05 g, 0,1 mmol) in DMF (15 ml) was added bis(2-chloroethyl)amine hydrochloride (0.52 g, 3 mmol). The mixture was heated for 48 h. After the completion of the reaction (as monitored by TLC), the inorganic material salt was filtered and the solvent was removed under reduced pressure. The residue was purified by column chromatography on silica gel by using (ethanol/ethylacetate: 1/4) as eluent to furnish colourless crystals.

S3. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. In the molecule there is a pseudo center of symmetry but the results of the structure refinement in the centro symmetric Pbcn space group are not satisfactory. The absolute structure cannot be determined reliably and the structure is refined as a 2-component inversion twin.

All H atoms could be located in a difference Fourier map. However, they were placed in calculated positions with C—H = 0.93 Å (aromatic), and C—H = 0.97 Å (methylene) and refined as riding on their parent atoms with Uiso(H) = 1.2 Ueq (C).

The chlorine atom is disordered over two positions so that leads to two isomers: 5-chloro-3-methylbenzimidazol-2-one component and a 6-chloro-3-methylbenzimidazol-2-one. The occupancy refined to an 0.567 (7): 0.433 (7) ratio. The C7–C8, C8–C9 and C9–C10 distances were restrained to 1.38 (1) Å.

Figures

Fig. 1.

Fig. 1.

: Molecular plot the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small circles.

Fig. 2.

Fig. 2.

: Intermolecular interactions in the title compound building a zigzag tape along c axis. Hydrogen bonds are shown as dashed lines.

Crystal data

C17H19ClN4O5 Dx = 1.423 Mg m3
Mr = 394.81 Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pca21 Cell parameters from 3701 reflections
a = 14.053 (8) Å θ = 1.5–26.4°
b = 13.438 (6) Å µ = 0.25 mm1
c = 9.733 (4) Å T = 296 K
V = 1838.1 (15) Å3 Block, colourless
Z = 4 0.35 × 0.31 × 0.26 mm
F(000) = 820

Data collection

Bruker X8 APEX diffractometer 3701 independent reflections
Radiation source: fine-focus sealed tube 1697 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.052
φ and ω scans θmax = 26.4°, θmin = 1.5°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −13→17
Tmin = 0.504, Tmax = 0.748 k = −16→16
9588 measured reflections l = −12→12

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.057 w = 1/[σ2(Fo2) + (0.0473P)2 + 0.3226P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.150 (Δ/σ)max < 0.001
S = 1.01 Δρmax = 0.21 e Å3
3701 reflections Δρmin = −0.16 e Å3
255 parameters Absolute structure: Refined as an inversion twin.
4 restraints Absolute structure parameter: 0.5 (5)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
C1 0.5061 (11) 0.6238 (11) 0.3946 (17) 0.141 (6)
H1A 0.5660 0.5943 0.3660 0.169*
H1B 0.5119 0.6955 0.3879 0.169*
C2 0.4284 (10) 0.5885 (9) 0.3051 (13) 0.094 (4)
H2A 0.3888 0.6431 0.2737 0.113*
H2B 0.4527 0.5523 0.2264 0.113*
C3 0.4066 (8) 0.5371 (8) 0.5275 (13) 0.060 (3)
C4 0.2918 (6) 0.4698 (6) 0.3603 (12) 0.068 (3)
H4A 0.2585 0.5066 0.2894 0.082*
H4B 0.2501 0.4650 0.4395 0.082*
C5 0.3133 (7) 0.3677 (7) 0.3089 (10) 0.074 (3)
H5A 0.2552 0.3394 0.2721 0.089*
H5B 0.3582 0.3733 0.2336 0.089*
C6 0.4456 (8) 0.2814 (7) 0.4386 (11) 0.058 (3)
C7 0.5213 (9) 0.3189 (9) 0.3704 (15) 0.093 (4)
H7 0.5100 0.3570 0.2923 0.111*
C8 0.6121 (8) 0.3041 (8) 0.4091 (11) 0.093 (3)
H8 0.6648 0.3351 0.3704 0.112* 0.567 (7)
C9 0.6151 (7) 0.2357 (7) 0.5151 (15) 0.085 (4)
H9 0.6762 0.2161 0.5395 0.102* 0.433 (7)
C10 0.5401 (8) 0.1888 (8) 0.5959 (13) 0.087 (4)
H10 0.5521 0.1462 0.6692 0.104*
C11 0.4446 (10) 0.2151 (7) 0.5506 (11) 0.067 (3)
C12 0.2912 (5) 0.2497 (9) 0.5031 (13) 0.0513 (14)
C13 0.3124 (7) 0.1304 (6) 0.6914 (9) 0.071 (3)
H13A 0.2538 0.1570 0.7293 0.085*
H13B 0.3582 0.1240 0.7654 0.085*
C14 0.2935 (7) 0.0280 (6) 0.6264 (11) 0.067 (3)
H14A 0.2558 −0.0113 0.6898 0.080*
H14B 0.2560 0.0373 0.5437 0.080*
C15 0.4330 (8) −0.0839 (8) 0.6883 (11) 0.068 (3)
H15A 0.3959 −0.1385 0.7256 0.081*
H15B 0.4552 −0.0423 0.7632 0.081*
C16 0.5157 (7) −0.1221 (8) 0.6022 (10) 0.075 (3)
H16A 0.5743 −0.0876 0.6247 0.090*
H16B 0.5248 −0.1931 0.6146 0.090*
C17 0.4082 (9) −0.0368 (8) 0.4637 (11) 0.066 (3)
N1 0.3770 (6) 0.5234 (5) 0.3986 (8) 0.052 (2)
N2 0.3510 (7) 0.3007 (6) 0.4064 (9) 0.064 (2)
N3 0.3503 (6) 0.1993 (5) 0.5834 (8) 0.0473 (19)
N4 0.3790 (6) −0.0276 (6) 0.5914 (9) 0.059 (2)
O1 0.4858 (6) 0.5965 (7) 0.5304 (9) 0.094 (3)
O2 0.3747 (6) 0.4989 (7) 0.6326 (8) 0.094 (3)
O3 0.2045 (3) 0.2489 (6) 0.4997 (11) 0.0705 (11)
O4 0.3742 (6) −0.0045 (6) 0.3617 (8) 0.096 (3)
O5 0.4846 (6) −0.0991 (6) 0.4629 (8) 0.087 (3)
Cl1A 0.7305 (5) 0.2867 (5) 0.4090 (11) 0.103 (4) 0.433 (7)
Cl1B 0.7313 (5) 0.2114 (5) 0.5813 (11) 0.140 (4) 0.567 (7)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.139 (13) 0.160 (14) 0.123 (13) −0.094 (11) 0.019 (12) 0.004 (12)
C2 0.131 (13) 0.087 (10) 0.064 (8) −0.026 (9) 0.012 (9) 0.007 (7)
C3 0.053 (8) 0.066 (7) 0.060 (7) −0.007 (5) −0.007 (6) −0.006 (6)
C4 0.067 (9) 0.056 (7) 0.082 (8) −0.004 (5) −0.033 (6) 0.012 (6)
C5 0.104 (10) 0.066 (8) 0.053 (6) −0.031 (6) −0.025 (7) 0.003 (6)
C6 0.040 (7) 0.060 (6) 0.074 (8) −0.013 (6) 0.008 (6) −0.028 (6)
C7 0.070 (8) 0.105 (9) 0.103 (8) −0.019 (7) 0.012 (7) −0.040 (7)
C8 0.076 (8) 0.106 (9) 0.097 (7) −0.015 (6) 0.012 (6) −0.010 (6)
C9 0.047 (5) 0.071 (8) 0.137 (11) 0.024 (5) −0.028 (8) −0.047 (7)
C10 0.099 (10) 0.077 (7) 0.084 (7) 0.048 (8) −0.036 (7) −0.051 (6)
C11 0.099 (11) 0.044 (5) 0.058 (7) 0.009 (6) −0.012 (7) −0.020 (6)
C12 0.070 (4) 0.041 (3) 0.043 (3) −0.013 (7) 0.002 (7) −0.003 (2)
C13 0.120 (11) 0.045 (6) 0.047 (5) 0.003 (6) 0.021 (6) 0.008 (5)
C14 0.102 (10) 0.046 (6) 0.052 (6) 0.018 (6) 0.018 (6) 0.007 (5)
C15 0.083 (9) 0.063 (8) 0.056 (6) 0.014 (6) −0.006 (6) 0.013 (6)
C16 0.089 (8) 0.082 (7) 0.055 (6) 0.023 (6) −0.013 (6) −0.007 (6)
C17 0.079 (10) 0.080 (8) 0.038 (6) 0.000 (7) 0.006 (7) −0.003 (6)
N1 0.075 (6) 0.037 (5) 0.042 (4) −0.019 (4) 0.000 (5) −0.004 (4)
N2 0.090 (7) 0.048 (5) 0.055 (5) −0.005 (5) 0.005 (6) −0.007 (4)
N3 0.054 (5) 0.041 (5) 0.047 (4) 0.003 (4) 0.001 (4) 0.010 (4)
N4 0.079 (7) 0.059 (6) 0.040 (4) 0.004 (5) 0.015 (5) 0.013 (4)
O1 0.096 (7) 0.120 (7) 0.064 (5) −0.036 (6) −0.001 (5) −0.019 (5)
O2 0.097 (7) 0.135 (7) 0.051 (5) −0.013 (5) 0.005 (4) 0.012 (5)
O3 0.055 (3) 0.068 (2) 0.090 (3) −0.008 (5) 0.002 (7) −0.0005 (19)
O4 0.098 (7) 0.151 (8) 0.038 (4) 0.031 (5) 0.003 (4) 0.019 (5)
O5 0.082 (6) 0.113 (7) 0.066 (5) 0.037 (5) 0.015 (5) −0.008 (5)
Cl1A 0.067 (6) 0.075 (5) 0.166 (8) −0.006 (4) 0.006 (5) 0.010 (5)
Cl1B 0.071 (5) 0.123 (5) 0.226 (9) 0.038 (4) −0.040 (5) 0.020 (6)

Geometric parameters (Å, º)

C1—O1 1.401 (15) C9—Cl1A 2.042 (15)
C1—C2 1.475 (17) C9—H9 0.9300
C1—H1A 0.9700 C10—C11 1.456 (15)
C1—H1B 0.9700 C10—H10 0.9300
C2—N1 1.454 (13) C11—N3 1.379 (14)
C2—H2A 0.9700 C12—O3 1.219 (6)
C2—H2B 0.9700 C12—N3 1.326 (12)
C3—O2 1.230 (14) C12—N2 1.436 (13)
C3—N1 1.334 (14) C13—N3 1.499 (11)
C3—O1 1.369 (12) C13—C14 1.538 (12)
C4—N1 1.447 (11) C13—H13A 0.9700
C4—C5 1.491 (12) C13—H13B 0.9700
C4—H4A 0.9700 C14—N4 1.455 (11)
C4—H4B 0.9700 C14—H14A 0.9700
C5—N2 1.411 (12) C14—H14B 0.9700
C5—H5A 0.9700 C15—N4 1.428 (12)
C5—H5B 0.9700 C15—C16 1.522 (13)
C6—C7 1.352 (16) C15—H15A 0.9700
C6—N2 1.391 (13) C15—H15B 0.9700
C6—C11 1.408 (8) C16—O5 1.458 (11)
C7—C8 1.345 (10) C16—H16A 0.9700
C7—H7 0.9300 C16—H16B 0.9700
C8—C9 1.383 (11) C17—O4 1.183 (14)
C8—Cl1A 1.680 (13) C17—N4 1.315 (14)
C8—H8 0.9300 C17—O5 1.362 (13)
C9—C10 1.458 (10) Cl1A—Cl1B 1.959 (6)
C9—Cl1B 1.786 (10)
O1—C1—C2 108.8 (11) N3—C11—C6 106.6 (12)
O1—C1—H1A 109.9 N3—C11—C10 141.1 (11)
C2—C1—H1A 109.9 C6—C11—C10 112.2 (14)
O1—C1—H1B 109.9 O3—C12—N3 129.7 (12)
C2—C1—H1B 109.9 O3—C12—N2 124.8 (12)
H1A—C1—H1B 108.3 N3—C12—N2 105.3 (5)
N1—C2—C1 101.1 (10) N3—C13—C14 109.0 (7)
N1—C2—H2A 111.6 N3—C13—H13A 109.9
C1—C2—H2A 111.6 C14—C13—H13A 109.9
N1—C2—H2B 111.6 N3—C13—H13B 109.9
C1—C2—H2B 111.6 C14—C13—H13B 109.9
H2A—C2—H2B 109.4 H13A—C13—H13B 108.3
O2—C3—N1 127.6 (10) N4—C14—C13 114.4 (8)
O2—C3—O1 121.5 (11) N4—C14—H14A 108.7
N1—C3—O1 110.7 (11) C13—C14—H14A 108.7
N1—C4—C5 112.2 (8) N4—C14—H14B 108.7
N1—C4—H4A 109.2 C13—C14—H14B 108.7
C5—C4—H4A 109.2 H14A—C14—H14B 107.6
N1—C4—H4B 109.2 N4—C15—C16 102.8 (8)
C5—C4—H4B 109.2 N4—C15—H15A 111.2
H4A—C4—H4B 107.9 C16—C15—H15A 111.2
N2—C5—C4 115.9 (8) N4—C15—H15B 111.2
N2—C5—H5A 108.3 C16—C15—H15B 111.2
C4—C5—H5A 108.3 H15A—C15—H15B 109.1
N2—C5—H5B 108.3 O5—C16—C15 102.2 (8)
C4—C5—H5B 108.3 O5—C16—H16A 111.3
H5A—C5—H5B 107.4 C15—C16—H16A 111.3
C7—C6—N2 124.9 (12) O5—C16—H16B 111.3
C7—C6—C11 128.7 (15) C15—C16—H16B 111.3
N2—C6—C11 106.4 (12) H16A—C16—H16B 109.2
C8—C7—C6 123.6 (14) O4—C17—N4 129.3 (12)
C8—C7—H7 118.2 O4—C17—O5 122.5 (11)
C6—C7—H7 118.2 N4—C17—O5 108.0 (10)
C7—C8—C9 109.6 (11) C3—N1—C4 124.7 (9)
C7—C8—Cl1A 163.7 (10) C3—N1—C2 110.5 (9)
C9—C8—Cl1A 83.0 (9) C4—N1—C2 123.4 (9)
C7—C8—H8 125.2 C6—N2—C5 129.0 (10)
C9—C8—H8 125.2 C6—N2—C12 108.8 (9)
Cl1A—C8—H8 43.4 C5—N2—C12 121.7 (10)
C8—C9—C10 131.9 (10) C12—N3—C11 112.8 (8)
C8—C9—Cl1B 114.8 (10) C12—N3—C13 120.4 (9)
C10—C9—Cl1B 112.8 (9) C11—N3—C13 126.7 (9)
C8—C9—Cl1A 54.8 (8) C17—N4—C15 114.1 (10)
C10—C9—Cl1A 172.8 (7) C17—N4—C14 121.8 (10)
Cl1B—C9—Cl1A 61.2 (4) C15—N4—C14 123.8 (8)
C8—C9—H9 114.0 C3—O1—C1 107.4 (10)
C10—C9—H9 114.0 C17—O5—C16 111.2 (8)
Cl1B—C9—H9 8.4 C8—Cl1A—Cl1B 94.4 (5)
Cl1A—C9—H9 59.3 C8—Cl1A—C9 42.2 (4)
C11—C10—C9 113.4 (10) Cl1B—Cl1A—C9 53.0 (4)
C11—C10—H10 123.3 C9—Cl1B—Cl1A 65.9 (6)
C9—C10—H10 123.3

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C4—H4A···O2i 0.97 2.42 3.247 (13) 143
C14—H14A···O4ii 0.97 2.48 3.315 (13) 144

Symmetry codes: (i) −x+1/2, y, z−1/2; (ii) −x+1/2, y, z+1/2.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: XU5863).

References

  1. Bruker (2009). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  3. Dardouri, R., Rodi, Y. K., Saffon, N., Essassi, E. M. & Ng, S. W. (2011). Acta Cryst. E67, o1853. [DOI] [PMC free article] [PubMed]
  4. Diekema, D. J. & Jones, R. N. (2000). Drugs, 59, 7–16. [DOI] [PubMed]
  5. Evans, D. A., Ng, H. P. & Rieger, D. L. (1993). J. Am. Chem. Soc. 115, 11446–11459.
  6. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  7. Gribkoff, V. K., Champigny, G., Barbry, P., Dworetzky, S. I., Meanwell, N. A. & Lazdunski, M. (1994). J. Biol. Chem. 269, 10983–10986. [PubMed]
  8. Matsunaga, H., Ishizuka, T. & Kunieda, T. (2005). Tetrahedron, 61, 8073–8094.
  9. Mukhtar, T. A. & Wright, G. D. (2005). Chem. Rev. 105, 529–542. [DOI] [PubMed]
  10. Olesen, S. P., Munch, E., Moldt, P. & Drejer, J. (1994). Eur. J. Pharmacol. 251, 53–59. [DOI] [PubMed]
  11. Ouzidan, Y., Kandri Rodi, Y., Fronczek, F. R., Venkatraman, R., El Ammari, L. & Essassi, E. M. (2011). Acta Cryst. E67, o362–o363. [DOI] [PMC free article] [PubMed]
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  14. Soderlind, K. J., Gorodetsky, B., Singh, A. K., Bachur, N., Miller, G. G. & Lown, J. W. (1999). Anticancer Drug. Des. 14, 19–36. [PubMed]
  15. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  16. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989015016102/xu5863sup1.cif

e-71-0o735-sup1.cif (459.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015016102/xu5863Isup2.hkl

e-71-0o735-Isup2.hkl (295.3KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015016102/xu5863Isup3.cml

. DOI: 10.1107/S2056989015016102/xu5863fig1.tif

Mol­ecular plot the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small circles.

c . DOI: 10.1107/S2056989015016102/xu5863fig2.tif

Inter­molecular inter­actions in the title compound building a zigzag tape along c axis. Hydrogen bonds are shown as dashed lines.

CCDC reference: 1421051

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES