Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Sep 12;71(Pt 10):1147–1150. doi: 10.1107/S2056989015016163

Comparison crystal structure conformations of two structurally related biphenyl analogues: 4,4′-bis­[3-(pyrrolidin-1-yl)prop-1-yn-1-yl]-1,1′-biphenyl and 4,4′-bis­{3-[(S)-2-methyl­pyrrolidin-1-yl]prop-1-yn-1-yl}-1,1′-biphen­yl

Anqi Wan a, Narsimha Reddy Penthala a, E Kim Fifer a, Sean Parkin b, Peter A Crooks a,*
PMCID: PMC4647364  PMID: 26594393

The crystal structures of the two title compounds each display the chair conformation of their piperidine rings. In 4,4′-bis­[3-(pyrrolidin-1-yl)prop-1-yn-1-yl]-1,1′-biphenyl, the biphenyl rings are coplanar because the mol­ecules sit on crystallographic centres of inversion. In 4,4′-bis­{3-[(S)-2-methyl­pyrrolidin-1-yl]prop-1-yn-1-yl}-1,1′-biphenyl, the biphenyl ring system has a twisted conformation with a dihedral angle of 28.76 (11)°.

Keywords: crystal structure, bis-tertiary ammonium salt, biphenyl ring, pyrolidine ring

Abstract

The title compounds, C26H28N2, (I), and C28H32N2, (II), were designed based on the structure of the potent α9α10 nicotinic acetyl­choline receptor antagonist ZZ161C {1,1′-[[1,1′-biphen­yl]-4,4′-diylbis(prop-2-yne-3,1-di­yl)]bis­(3,4-di­methyl­pyridin-1-ium) bromide}. In order to improve the druglikeness properties of ZZ161C for potential oral administration, the title compounds (I) and (II) were prepared by coupling 4,4′-bis­(3-bromo­prop-1-yn-1-yl)-1,1′-biphenyl with pyrrol­idine, (I), and (S)-2-methyl­pyrrolidine, (II), respectively, in aceto­nitrile at room temperature. The asymmetric unit of (I) contains two half mol­ecules that each sit on sites of crystallographic inversion. As a result, the biphenyl ring systems in compound (I) are coplanar. The biphenyl ring system in compound (II), however, has a dihedral angle of 28.76 (11)°. In (I), the two independent mol­ecules differ in the orientation of the pyrrolidine ring (the nitro­gen lone pair points towards the biphenyl rings in one mol­ecule, but away from the rings in the other). The torsion angles about the ethynyl groups between the planes of the phenyl rings and the pyrrolidine ring N atoms are 84.15 (10) and −152.89 (10)°. In compound (II), the corresponding torsion angles are 122.0 (3) and 167.0 (3)°, with the nitro­gen lone pairs at both ends of the mol­ecule directed away from the central biphenyl rings.

Chemical context  

The title compounds (I) and (II) are structural analogue precursors of the bis-quaternary ammonium salt, ZZ161C {1′-[(1,1′-biphen­yl)-4,4′-diylbis(prop-2-yne-3,1-di­yl)]bis­(3,4-di­methyl­pyridin-1-ium) bromide}, designed to improve druglikeness properties. ZZ161C is a potent and selective nicotinic acetyl­choline receptor antagonist for α9α10 subunits (Zheng et al., 2007), and has shown analgesic effects in various animal pain models (Wala et al., 2012). The terminal aza-aromatic rings were replaced by pyrrolidine and (S)-2-methyl­pyrrolidine moieties in compounds (I) and (II), respectively. We report here the single-crystal X-ray structures of (I) and (II) to determine the conformations of these compounds.

Structural commentary  

The title compounds, (I) and (II) are shown in Figs. 1 and 2, respectively. X-ray crystallographic studies were carried out in order to determine the geometry of the biphenyl ring systems, as well as to obtain more detailed information about the conformation of the pyrrolidino headgroups. Structure (I) is triclinic, space group P Inline graphic, while crystal (II) is monoclinic, space group P21.graphic file with name e-71-01147-scheme1.jpg

Figure 1.

Figure 1

The mol­ecular structure of (I), with ellipsoids drawn at the 50% probability level.

Figure 2.

Figure 2

The mol­ecular structure of (II), with ellipsoids drawn at the 50% probability level.

In each compound, individual bond lengths and angles are unremarkable. For compound (I), the asymmetric unit contains two half mol­ecules (denoted A and B in Fig. 1) such that the biphenyl rings straddle crystallographic inversion centres. As a result, the biphenyl groups are coplanar. In compound (II), however, the biphenyl rings (C9–C14) and (C15–C20) are non-coplanar, with a dihedral angle of 28.76 (11)°. In crystals of (I), the two independent mol­ecules differ in the orientation of the pyrrolidine ring. In mol­ecule A, the nitro­gen lone pair points inward towards the biphenyl rings, but in mol­ecule B the nitro­gen lone pair is directed away from the rings). The torsion angles about the ethynyl groups between the planes of the phenyl rings and the pyrrolidine ring N atoms are 84.15 (10)° and −152.89 (10)° (defined by atoms N1A—C5A—C8A—C9A and N1B—C5B—C8B—C9B, respectively). In compound (II), the corresponding torsion angles are 122.0 (3)° and 167.0 (3)° (defined by atoms N1—C6—C9—C14 and N2—C23—C18—C17, respectively), with the nitro­gen lone pair directed away from the biphenyl rings at both ends of the mol­ecule.

Supra­molecular features  

Aside from weak van der Waals inter­actions, there are no noteworthy inter­molecular contacts in either (I) or (II).

Database survey  

A search of the November 2014 release of the Cambridge Structure Database (Groom & Allen, 2014), with updates through May 2015, using the program Mogul (Bruno et al., 2004) for 4,4′ substituted biphenyl fragments was conducted. The search was restricted to non-organometallic, solvent-free structures with R < 5% and Cl as the heaviest element. There were over 1000 matches, which gave a bimodal distribution of biphenyl torsion angles with a tight peak at 0° and a broader peak centred at 30°. The biphenyl torsion angles in (I) and (II) are thus not unusual.

Synthesis and crystallization  

Synthetic procedures: Compound (I), 3,3′-([1,1′-biphen­yl]-4,4′-di­yl)bis (prop-2-yn-1-ol) was synthesized by coupling 1,2,4,5-tetra­iodo­benzene with 4-pentyn-1-ol in the presence of bis-(tri­phenyl­phosphine)palladium(II)dichloride and copper(I) iodide as catalysts. A mixture of 1,2,4,5-tetra­iodo­benzene, 4-pentyn-1-ol, bis-(tri­phenyl­phosphine)palla­dium(II)dichloride and copper(I) iodide was stirred at room temperature for 24 h under argon. The obtained 3,3′-([1,1′-biphen­yl]-4,4′-di­yl)bis­(prop-2-yn-1-ol) was converted to 4,4′-bis-(3-bromo­prop-1-yn-1-yl)-1,1′-biphenyl using bromo­methane and tri­phenyl­phosphine in anhydrous methyl­ene chloride at room temperature. To a suspension of 4,4′-bis­(3-bromo­prop-1-yn-1-yl)-1,1′-biphenyl (100.0 mg, 0.26 mmol) in aceto­nitrile (7 mL) was added pyrrolidine (55.4 mg, 0.78 mmol) and the reaction mixture was stirred for 2 h at room temperature to obtain compound (I). Aceto­nitrile was removed from the reaction mixture under reduced pressure and the resulting residue was partitioned between water and di­chloro­methane. The organic layers were collected, combined, dried over anhydrous sodium sulfate, filtered, and the filtrate concentrated under reduced pressure. The resulting crude sample of (I) was purified by column chromatography (di­chloro­methane/methanol, 100:3) (yield: 80%). Compound (II) was prepared using the same experimental conditions as (I) but utilizing (S)-2-methyl­pyrrolidine (66.3 mg, 0.78 mmol) instead of pyrrolidine. Column chromatography (di­chloro­methane/methanol 100:3) was then used for purification of (II) (yield: 80%).

Crystallization: Yellow crystals of compounds (I) and (II) suitable for X-ray analysis were grown from a mixture of di­chloro­methane/methanol (2:1) by slow evaporation of the solution at room temperature over 24 h.

Compound (I)

1H NMR (400 Mz, CDCl3): δ 7.49 (q, 8H), 3.67 (s, 4H), 2.75 (s, 8H), 1.86 (s, 8H) p.p.m.

13C NMR (100 Mz, CDCl3): δ 139.94. 132.19, 126.77, 122.32, 85.67, 84.55, 52.65, 43.85, 23.83 p.p.m.

Compound (II)

1H NMR (400 Mz, CDCl3): δ 7.21 (q, 8H), 3.69 (dd, 4H), 3.16–3.11 (m, 2H), 2.69–2.59 (m, 4H), 2.01–1.43 (m, 8H), 1.15 (d, 6H) p.p.m.

13C NMR (100 Mz, CDCl3): δ 139.86, 132.18, 126.74, 122.43, 85.53, 84.61, 57.31, 53.00, 41.18, 32.79, 21.55, 18.51 p.p.m.

Refinement details  

Crystal data, data collection and structure refinement details are summarized in Table 1. In both structures, H atoms were found in difference Fourier maps, but subsequently included in the refinement using riding models. Constrained distances were set to 0.95 Å (Csp2H), 0.98 Å [RCH3, (II) only], 0.99 Å (R 2CH2) and 1.00 Å (R 3CH). U iso(H) parameters were set to values of either 1.2U eq or 1.5U eq [RCH3 in (II) only] of the attached atom.

Table 1. Experimental details.

  (I) (II)
Crystal data
Chemical formula C26H28N2 C28H32N2
M r 368.50 396.55
Crystal system, space group Triclinic, P Inline graphic Monoclinic, P21
Temperature (K) 90 90
a, b, c (Å) 6.2100 (1), 10.3089 (2), 16.3082 (3) 8.1411 (4), 7.3080 (4), 18.9840 (9)
α, β, γ (°) 86.317 (1), 81.202 (1), 76.671 (1) 90, 98.177 (3), 90
V3) 1003.49 (3) 1117.97 (10)
Z 2 2
Radiation type Cu Kα Mo Kα
μ (mm−1) 0.54 0.07
Crystal size (mm) 0.23 × 0.19 × 0.10 0.41 × 0.35 × 0.08
 
Data collection
Diffractometer Bruker X8 Proteum Nonius KappaCCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015) Multi-scan (SADABS; Krause et al., 2015)
T min, T max 0.811, 0.929 0.791, 0.971
No. of measured, independent and observed [I > 2σ(I)] reflections 13692, 3586, 3451 15874, 4705, 3548
R int 0.044 0.085
(sin θ/λ)max−1) 0.602 0.650
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.039, 0.107, 1.03 0.054, 0.144, 1.05
No. of reflections 3586 4705
No. of parameters 254 273
No. of restraints 0 1
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.22, −0.20 0.30, −0.19
Absolute structure Flack x parameter was determined using 1205 quotients of the form [(I +)−(I )]/[(I +)+(I )] (Parsons et al., 2013)
Absolute structure parameter −0.3 (10)

Computer programs: APEX2 and SAINT (Bruker, 2006), COLLECT (Nonius, 1998), SCALEPACK and DENZO-SMN (Otwinowski & Minor, 2006), SHELXS97, XP in SHELXTL and SHELX (Sheldrick, 2008) (Sheldrick, 2008), SHELXL2014/6 and SHELXL2014 (Sheldrick, 2015) and CIFFIX (Parkin, 2013).

In (II), the Flack parameter, x = −0.3 (10) is indeterminate, which is to be expected for a light-atom structure refined against Mo data. However, the synthesis used pure (S)-2-methyl­pyrrolidine, so the absolute configuration for the model of (II) was dictated by the synthesis.

Refinement progress was checked using PLATON (Spek, 2009) and by an R-tensor (Parkin, 2000). The final models were further checked with the IUCr utility checkCIF.

Supplementary Material

Crystal structure: contains datablock(s) global, I, II. DOI: 10.1107/S2056989015016163/hg5457sup1.cif

e-71-01147-sup1.cif (894.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015016163/hg5457Isup2.hkl

e-71-01147-Isup2.hkl (196.8KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989015016163/hg5457IIsup3.hkl

e-71-01147-IIsup3.hkl (258KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015016163/hg5457Isup4.cml

Supporting information file. DOI: 10.1107/S2056989015016163/hg5457IIsup5.cml

CCDC references: 1421219, 1421218

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

This investigation was supported by ARA (Arkansas Research Alliance).

supplementary crystallographic information

(I) 4,4'-Bis[3-(pyrrolidin-1-yl)prop-1-yn-1-yl]-1,1'-biphenyl. Crystal data

C26H28N2 Z = 2
Mr = 368.50 F(000) = 396
Triclinic, P1 Dx = 1.220 Mg m3
a = 6.2100 (1) Å Cu Kα radiation, λ = 1.54178 Å
b = 10.3089 (2) Å Cell parameters from 9977 reflections
c = 16.3082 (3) Å θ = 2.7–68.2°
α = 86.317 (1)° µ = 0.54 mm1
β = 81.202 (1)° T = 90 K
γ = 76.671 (1)° Shard, colourless
V = 1003.49 (3) Å3 0.23 × 0.19 × 0.10 mm

(I) 4,4'-Bis[3-(pyrrolidin-1-yl)prop-1-yn-1-yl]-1,1'-biphenyl. Data collection

Bruker X8 Proteum diffractometer 3586 independent reflections
Radiation source: fine-focus rotating anode 3451 reflections with I > 2σ(I)
Detector resolution: 5.6 pixels mm-1 Rint = 0.044
φ and ω scans θmax = 68.2°, θmin = 2.7°
Absorption correction: multi-scan (SADABS; Krause et al., 2015) h = −7→7
Tmin = 0.811, Tmax = 0.929 k = −12→6
13692 measured reflections l = −19→17

(I) 4,4'-Bis[3-(pyrrolidin-1-yl)prop-1-yn-1-yl]-1,1'-biphenyl. Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039 H-atom parameters constrained
wR(F2) = 0.107 w = 1/[σ2(Fo2) + (0.0577P)2 + 0.3125P] where P = (Fo2 + 2Fc2)/3
S = 1.03 (Δ/σ)max < 0.001
3586 reflections Δρmax = 0.22 e Å3
254 parameters Δρmin = −0.20 e Å3
0 restraints Extinction correction: SHELXL2014/6 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0061 (11)

(I) 4,4'-Bis[3-(pyrrolidin-1-yl)prop-1-yn-1-yl]-1,1'-biphenyl. Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement progress was checked using PLATON (Spek, 2009) and by an R-tensor (Parkin, 2000). The final model was further checked with the IUCr utility checkCIF.

(I) 4,4'-Bis[3-(pyrrolidin-1-yl)prop-1-yn-1-yl]-1,1'-biphenyl. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1A 0.90671 (15) 0.09727 (9) 0.80861 (5) 0.0163 (2)
C1A 1.11598 (18) 0.01531 (11) 0.83141 (7) 0.0210 (3)
H1A1 1.2346 0.0010 0.7828 0.025*
H1A2 1.0951 −0.0723 0.8555 0.025*
C2A 1.1724 (2) 0.09853 (12) 0.89584 (7) 0.0238 (3)
H2A1 1.2687 0.1582 0.8692 0.029*
H2A2 1.2500 0.0406 0.9381 0.029*
C3A 0.9430 (2) 0.17995 (12) 0.93527 (7) 0.0226 (3)
H3A1 0.9140 0.1575 0.9953 0.027*
H3A2 0.9359 0.2769 0.9280 0.027*
C4A 0.77498 (18) 0.13928 (11) 0.88842 (7) 0.0187 (2)
H4A1 0.7159 0.0651 0.9180 0.022*
H4A2 0.6486 0.2155 0.8810 0.022*
C5A 0.79816 (19) 0.02600 (11) 0.75852 (7) 0.0190 (2)
H5A1 0.7276 −0.0379 0.7948 0.023*
H5A2 0.9128 −0.0257 0.7167 0.023*
C6A 0.62761 (18) 0.11598 (10) 0.71603 (7) 0.0175 (2)
C7A 0.49421 (18) 0.18772 (10) 0.67760 (6) 0.0168 (2)
C8A 0.34803 (18) 0.27515 (10) 0.62731 (7) 0.0160 (2)
C9A 0.43797 (18) 0.32491 (10) 0.55121 (7) 0.0160 (2)
H9A 0.5942 0.2993 0.5331 0.019*
C10A 0.30252 (18) 0.41090 (10) 0.50192 (6) 0.0156 (2)
H10A 0.3677 0.4427 0.4503 0.019*
C11A 0.07141 (17) 0.45231 (9) 0.52628 (6) 0.0145 (2)
C12A −0.01727 (18) 0.39888 (10) 0.60194 (7) 0.0177 (2)
H12A −0.1738 0.4232 0.6197 0.021*
C13A 0.11676 (19) 0.31184 (11) 0.65140 (7) 0.0182 (2)
H13A 0.0513 0.2769 0.7020 0.022*
N1B 0.65099 (16) 0.52088 (9) 0.86778 (6) 0.0188 (2)
C1B 0.84890 (19) 0.56666 (12) 0.82796 (7) 0.0235 (3)
H1B1 0.8123 0.6326 0.7824 0.028*
H1B2 0.9688 0.4911 0.8056 0.028*
C2B 0.9172 (2) 0.63028 (13) 0.89876 (8) 0.0271 (3)
H2B1 0.9916 0.7035 0.8777 0.033*
H2B2 1.0199 0.5635 0.9293 0.033*
C3B 0.6947 (2) 0.68421 (12) 0.95488 (7) 0.0253 (3)
H3B1 0.7020 0.6498 1.0127 0.030*
H3B2 0.6594 0.7829 0.9546 0.030*
C4B 0.51897 (19) 0.63353 (11) 0.91723 (7) 0.0205 (3)
H4B1 0.4102 0.6041 0.9612 0.025*
H4B2 0.4373 0.7036 0.8818 0.025*
C5B 0.52980 (19) 0.47407 (11) 0.80985 (7) 0.0204 (3)
H5B1 0.4064 0.4386 0.8422 0.024*
H5B2 0.6326 0.3993 0.7790 0.024*
C6B 0.43522 (19) 0.57591 (11) 0.74928 (7) 0.0199 (3)
C7B 0.35385 (19) 0.66217 (11) 0.70308 (7) 0.0190 (3)
C8B 0.25131 (18) 0.76103 (10) 0.64637 (6) 0.0170 (2)
C9B 0.06171 (19) 0.74642 (11) 0.61458 (7) 0.0180 (2)
H9B −0.0018 0.6720 0.6322 0.022*
C10B −0.03435 (18) 0.83874 (10) 0.55795 (7) 0.0173 (2)
H10B −0.1620 0.8259 0.5369 0.021*
C11B 0.05162 (17) 0.95096 (10) 0.53077 (6) 0.0155 (2)
C12B 0.23930 (18) 0.96591 (10) 0.56433 (7) 0.0175 (2)
H12B 0.3002 1.0417 0.5481 0.021*
C13B 0.33793 (18) 0.87324 (11) 0.62041 (7) 0.0180 (2)
H13B 0.4658 0.8858 0.6415 0.022*

(I) 4,4'-Bis[3-(pyrrolidin-1-yl)prop-1-yn-1-yl]-1,1'-biphenyl. Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1A 0.0170 (5) 0.0163 (4) 0.0157 (5) −0.0032 (4) −0.0031 (4) −0.0010 (3)
C1A 0.0179 (5) 0.0229 (6) 0.0211 (6) −0.0011 (4) −0.0042 (4) −0.0021 (4)
C2A 0.0220 (6) 0.0290 (6) 0.0221 (6) −0.0076 (5) −0.0056 (5) −0.0016 (5)
C3A 0.0264 (6) 0.0233 (6) 0.0192 (6) −0.0064 (5) −0.0039 (5) −0.0032 (4)
C4A 0.0191 (5) 0.0188 (5) 0.0173 (5) −0.0037 (4) −0.0004 (4) −0.0007 (4)
C5A 0.0225 (6) 0.0151 (5) 0.0200 (5) −0.0034 (4) −0.0059 (4) −0.0013 (4)
C6A 0.0200 (5) 0.0162 (5) 0.0174 (5) −0.0064 (4) −0.0019 (4) −0.0028 (4)
C7A 0.0207 (5) 0.0143 (5) 0.0169 (5) −0.0067 (4) −0.0021 (4) −0.0028 (4)
C8A 0.0209 (6) 0.0111 (5) 0.0175 (5) −0.0051 (4) −0.0047 (4) −0.0032 (4)
C9A 0.0162 (5) 0.0133 (5) 0.0198 (5) −0.0053 (4) −0.0021 (4) −0.0034 (4)
C10A 0.0190 (5) 0.0124 (5) 0.0163 (5) −0.0062 (4) −0.0012 (4) −0.0013 (4)
C11A 0.0186 (5) 0.0099 (5) 0.0165 (5) −0.0055 (4) −0.0025 (4) −0.0037 (4)
C12A 0.0170 (5) 0.0168 (5) 0.0186 (5) −0.0035 (4) 0.0002 (4) −0.0017 (4)
C13A 0.0216 (6) 0.0167 (5) 0.0162 (5) −0.0055 (4) −0.0008 (4) −0.0002 (4)
N1B 0.0192 (5) 0.0182 (5) 0.0180 (5) −0.0030 (4) −0.0013 (4) −0.0010 (4)
C1B 0.0199 (6) 0.0284 (6) 0.0214 (6) −0.0060 (5) 0.0013 (4) −0.0028 (5)
C2B 0.0230 (6) 0.0339 (7) 0.0262 (6) −0.0102 (5) −0.0022 (5) −0.0038 (5)
C3B 0.0263 (6) 0.0267 (6) 0.0233 (6) −0.0063 (5) −0.0026 (5) −0.0054 (5)
C4B 0.0201 (6) 0.0212 (6) 0.0190 (5) −0.0029 (4) −0.0006 (4) −0.0028 (4)
C5B 0.0242 (6) 0.0171 (5) 0.0204 (6) −0.0059 (4) −0.0027 (4) −0.0002 (4)
C6B 0.0224 (6) 0.0192 (6) 0.0190 (6) −0.0073 (4) −0.0013 (4) −0.0030 (4)
C7B 0.0214 (6) 0.0180 (5) 0.0181 (5) −0.0062 (4) −0.0001 (4) −0.0041 (4)
C8B 0.0201 (5) 0.0153 (5) 0.0146 (5) −0.0026 (4) 0.0008 (4) −0.0046 (4)
C9B 0.0230 (6) 0.0141 (5) 0.0181 (5) −0.0075 (4) 0.0004 (4) −0.0037 (4)
C10B 0.0186 (5) 0.0157 (5) 0.0190 (5) −0.0061 (4) −0.0014 (4) −0.0047 (4)
C11B 0.0171 (5) 0.0131 (5) 0.0159 (5) −0.0037 (4) 0.0016 (4) −0.0054 (4)
C12B 0.0184 (5) 0.0144 (5) 0.0204 (5) −0.0067 (4) 0.0003 (4) −0.0032 (4)
C13B 0.0173 (5) 0.0179 (5) 0.0191 (5) −0.0044 (4) −0.0012 (4) −0.0047 (4)

(I) 4,4'-Bis[3-(pyrrolidin-1-yl)prop-1-yn-1-yl]-1,1'-biphenyl. Geometric parameters (Å, º)

N1A—C4A 1.4609 (13) N1B—C5B 1.4613 (14)
N1A—C5A 1.4612 (13) N1B—C1B 1.4625 (15)
N1A—C1A 1.4637 (14) N1B—C4B 1.4663 (14)
C1A—C2A 1.5264 (15) C1B—C2B 1.5228 (16)
C1A—H1A1 0.9900 C1B—H1B1 0.9900
C1A—H1A2 0.9900 C1B—H1B2 0.9900
C2A—C3A 1.5442 (16) C2B—C3B 1.5430 (17)
C2A—H2A1 0.9900 C2B—H2B1 0.9900
C2A—H2A2 0.9900 C2B—H2B2 0.9900
C3A—C4A 1.5283 (15) C3B—C4B 1.5329 (16)
C3A—H3A1 0.9900 C3B—H3B1 0.9900
C3A—H3A2 0.9900 C3B—H3B2 0.9900
C4A—H4A1 0.9900 C4B—H4B1 0.9900
C4A—H4A2 0.9900 C4B—H4B2 0.9900
C5A—C6A 1.4667 (15) C5B—C6B 1.4775 (15)
C5A—H5A1 0.9900 C5B—H5B1 0.9900
C5A—H5A2 0.9900 C5B—H5B2 0.9900
C6A—C7A 1.2012 (16) C6B—C7B 1.1987 (16)
C7A—C8A 1.4369 (15) C7B—C8B 1.4350 (15)
C8A—C9A 1.3976 (15) C8B—C9B 1.3986 (16)
C8A—C13A 1.3986 (16) C8B—C13B 1.4003 (16)
C9A—C10A 1.3825 (15) C9B—C10B 1.3815 (15)
C9A—H9A 0.9500 C9B—H9B 0.9500
C10A—C11A 1.4017 (15) C10B—C11B 1.4023 (15)
C10A—H10A 0.9500 C10B—H10B 0.9500
C11A—C12A 1.4049 (15) C11B—C12B 1.4037 (15)
C11A—C11Ai 1.487 (2) C11B—C11Bii 1.486 (2)
C12A—C13A 1.3844 (15) C12B—C13B 1.3834 (15)
C12A—H12A 0.9500 C12B—H12B 0.9500
C13A—H13A 0.9500 C13B—H13B 0.9500
C4A—N1A—C5A 114.19 (9) C5B—N1B—C1B 114.00 (9)
C4A—N1A—C1A 103.63 (8) C5B—N1B—C4B 114.41 (9)
C5A—N1A—C1A 112.60 (8) C1B—N1B—C4B 104.43 (9)
N1A—C1A—C2A 102.99 (9) N1B—C1B—C2B 102.86 (9)
N1A—C1A—H1A1 111.2 N1B—C1B—H1B1 111.2
C2A—C1A—H1A1 111.2 C2B—C1B—H1B1 111.2
N1A—C1A—H1A2 111.2 N1B—C1B—H1B2 111.2
C2A—C1A—H1A2 111.2 C2B—C1B—H1B2 111.2
H1A1—C1A—H1A2 109.1 H1B1—C1B—H1B2 109.1
C1A—C2A—C3A 104.25 (9) C1B—C2B—C3B 104.18 (9)
C1A—C2A—H2A1 110.9 C1B—C2B—H2B1 110.9
C3A—C2A—H2A1 110.9 C3B—C2B—H2B1 110.9
C1A—C2A—H2A2 110.9 C1B—C2B—H2B2 110.9
C3A—C2A—H2A2 110.9 C3B—C2B—H2B2 110.9
H2A1—C2A—H2A2 108.9 H2B1—C2B—H2B2 108.9
C4A—C3A—C2A 104.34 (9) C4B—C3B—C2B 104.86 (9)
C4A—C3A—H3A1 110.9 C4B—C3B—H3B1 110.8
C2A—C3A—H3A1 110.9 C2B—C3B—H3B1 110.8
C4A—C3A—H3A2 110.9 C4B—C3B—H3B2 110.8
C2A—C3A—H3A2 110.9 C2B—C3B—H3B2 110.8
H3A1—C3A—H3A2 108.9 H3B1—C3B—H3B2 108.9
N1A—C4A—C3A 103.36 (9) N1B—C4B—C3B 103.67 (9)
N1A—C4A—H4A1 111.1 N1B—C4B—H4B1 111.0
C3A—C4A—H4A1 111.1 C3B—C4B—H4B1 111.0
N1A—C4A—H4A2 111.1 N1B—C4B—H4B2 111.0
C3A—C4A—H4A2 111.1 C3B—C4B—H4B2 111.0
H4A1—C4A—H4A2 109.1 H4B1—C4B—H4B2 109.0
N1A—C5A—C6A 112.54 (8) N1B—C5B—C6B 115.14 (9)
N1A—C5A—H5A1 109.1 N1B—C5B—H5B1 108.5
C6A—C5A—H5A1 109.1 C6B—C5B—H5B1 108.5
N1A—C5A—H5A2 109.1 N1B—C5B—H5B2 108.5
C6A—C5A—H5A2 109.1 C6B—C5B—H5B2 108.5
H5A1—C5A—H5A2 107.8 H5B1—C5B—H5B2 107.5
C7A—C6A—C5A 176.79 (11) C7B—C6B—C5B 177.04 (11)
C6A—C7A—C8A 175.84 (11) C6B—C7B—C8B 177.29 (11)
C9A—C8A—C13A 118.34 (10) C9B—C8B—C13B 118.07 (10)
C9A—C8A—C7A 119.38 (10) C9B—C8B—C7B 120.32 (10)
C13A—C8A—C7A 122.28 (10) C13B—C8B—C7B 121.61 (10)
C10A—C9A—C8A 120.86 (10) C10B—C9B—C8B 120.86 (10)
C10A—C9A—H9A 119.6 C10B—C9B—H9B 119.6
C8A—C9A—H9A 119.6 C8B—C9B—H9B 119.6
C9A—C10A—C11A 121.62 (10) C9B—C10B—C11B 121.74 (10)
C9A—C10A—H10A 119.2 C9B—C10B—H10B 119.1
C11A—C10A—H10A 119.2 C11B—C10B—H10B 119.1
C10A—C11A—C12A 116.84 (10) C10B—C11B—C12B 116.87 (10)
C10A—C11A—C11Ai 121.06 (12) C10B—C11B—C11Bii 121.34 (12)
C12A—C11A—C11Ai 122.10 (12) C12B—C11B—C11Bii 121.79 (11)
C13A—C12A—C11A 121.94 (10) C13B—C12B—C11B 121.76 (10)
C13A—C12A—H12A 119.0 C13B—C12B—H12B 119.1
C11A—C12A—H12A 119.0 C11B—C12B—H12B 119.1
C12A—C13A—C8A 120.35 (10) C12B—C13B—C8B 120.68 (10)
C12A—C13A—H13A 119.8 C12B—C13B—H13B 119.7
C8A—C13A—H13A 119.8 C8B—C13B—H13B 119.7
C4A—N1A—C1A—C2A −45.38 (10) C5B—N1B—C1B—C2B 170.74 (9)
C5A—N1A—C1A—C2A −169.28 (9) C4B—N1B—C1B—C2B 45.18 (11)
N1A—C1A—C2A—C3A 27.96 (11) N1B—C1B—C2B—C3B −30.78 (12)
C1A—C2A—C3A—C4A −1.49 (11) C1B—C2B—C3B—C4B 6.22 (12)
C5A—N1A—C4A—C3A 167.28 (9) C5B—N1B—C4B—C3B −166.33 (9)
C1A—N1A—C4A—C3A 44.43 (10) C1B—N1B—C4B—C3B −41.02 (11)
C2A—C3A—C4A—N1A −25.57 (11) C2B—C3B—C4B—N1B 20.48 (12)
C4A—N1A—C5A—C6A 78.62 (11) C1B—N1B—C5B—C6B −62.66 (13)
C1A—N1A—C5A—C6A −163.55 (9) C4B—N1B—C5B—C6B 57.45 (13)
C13A—C8A—C9A—C10A 1.59 (15) C13B—C8B—C9B—C10B 1.28 (15)
C7A—C8A—C9A—C10A −178.97 (9) C7B—C8B—C9B—C10B −177.95 (9)
C8A—C9A—C10A—C11A 0.51 (15) C8B—C9B—C10B—C11B −0.73 (16)
C9A—C10A—C11A—C12A −2.01 (14) C9B—C10B—C11B—C12B −0.51 (15)
C9A—C10A—C11A—C11Ai 178.33 (10) C9B—C10B—C11B—C11Bii 179.42 (11)
C10A—C11A—C12A—C13A 1.47 (15) C10B—C11B—C12B—C13B 1.19 (15)
C11Ai—C11A—C12A—C13A −178.88 (11) C11Bii—C11B—C12B—C13B −178.74 (11)
C11A—C12A—C13A—C8A 0.58 (16) C11B—C12B—C13B—C8B −0.65 (16)
C9A—C8A—C13A—C12A −2.12 (15) C9B—C8B—C13B—C12B −0.60 (15)
C7A—C8A—C13A—C12A 178.46 (9) C7B—C8B—C13B—C12B 178.61 (9)

Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x, −y+2, −z+1.

(II) 4,4'-Bis{3-[(S)-2-methylpyrrolidin-1-yl]prop-1-yn-1-yl}-1,1'-biphenyl . Crystal data

C28H32N2 F(000) = 428
Mr = 396.55 Dx = 1.178 Mg m3
Monoclinic, P21 Mo Kα radiation, λ = 0.71073 Å
a = 8.1411 (4) Å Cell parameters from 2730 reflections
b = 7.3080 (4) Å θ = 1.0–27.5°
c = 18.9840 (9) Å µ = 0.07 mm1
β = 98.177 (3)° T = 90 K
V = 1117.97 (10) Å3 Cut slab, colourless
Z = 2 0.41 × 0.35 × 0.08 mm

(II) 4,4'-Bis{3-[(S)-2-methylpyrrolidin-1-yl]prop-1-yn-1-yl}-1,1'-biphenyl . Data collection

Nonius KappaCCD diffractometer 4705 independent reflections
Radiation source: fine-focus sealed-tube 3548 reflections with I > 2σ(I)
Detector resolution: 9.1 pixels mm-1 Rint = 0.085
φ and ω scans at fixed χ = 55° θmax = 27.5°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Krause et al., 2015) h = −10→10
Tmin = 0.791, Tmax = 0.971 k = −8→9
15874 measured reflections l = −24→24

(II) 4,4'-Bis{3-[(S)-2-methylpyrrolidin-1-yl]prop-1-yn-1-yl}-1,1'-biphenyl . Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054 H-atom parameters constrained
wR(F2) = 0.144 w = 1/[σ2(Fo2) + (0.0742P)2 + 0.0409P] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max < 0.001
4705 reflections Δρmax = 0.30 e Å3
273 parameters Δρmin = −0.19 e Å3
1 restraint Absolute structure: Flack x parameter was determined using 1205 quotients of the form [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methods Absolute structure parameter: −0.3 (10)

(II) 4,4'-Bis{3-[(S)-2-methylpyrrolidin-1-yl]prop-1-yn-1-yl}-1,1'-biphenyl . Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement progress was checked using PLATON (Spek, 2009) and by an R-tensor (Parkin, 2000). The final model was further checked with the IUCr utility checkCIF.Absolute structure analysis: The Flack x parameter was determined using 1205 quotients of the form [(I+)-(I-)]/[(I+)+(I-)], but since the anomalous signal was so small the result is thoroughly inconclusive. This is to be expected, and merely confirms what we already know about light atom non-centrosymmetric structures that are determined with MoKα radiation. The quotient method has been described by Parsons et al. (2013). However, the synthesis used pure (S)-2-methylpyrrolidine, so the absolute configuration for the model of (II) was dictated by the synthesis.

(II) 4,4'-Bis{3-[(S)-2-methylpyrrolidin-1-yl]prop-1-yn-1-yl}-1,1'-biphenyl . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 −0.0921 (3) 0.5633 (4) 0.18120 (12) 0.0294 (6)
N2 1.5991 (3) 0.4631 (4) 0.82088 (11) 0.0288 (6)
C1 −0.0274 (4) 0.7478 (5) 0.17326 (15) 0.0333 (7)
H1A 0.0846 0.7619 0.2008 0.040*
H1B −0.1021 0.8413 0.1892 0.040*
C2 −0.0213 (4) 0.7632 (5) 0.09382 (16) 0.0384 (8)
H2A 0.0767 0.8345 0.0845 0.046*
H2B −0.1229 0.8226 0.0692 0.046*
C3 −0.0094 (4) 0.5640 (5) 0.06935 (15) 0.0381 (8)
H3A −0.1085 0.5300 0.0354 0.046*
H3B 0.0907 0.5459 0.0460 0.046*
C4 0.0011 (3) 0.4496 (5) 0.13712 (15) 0.0327 (7)
H4A 0.1195 0.4424 0.1599 0.039*
C5 −0.0680 (5) 0.2582 (6) 0.12600 (18) 0.0533 (10)
H5A −0.0562 0.1938 0.1717 0.080*
H5B −0.0069 0.1920 0.0931 0.080*
H5C −0.1857 0.2647 0.1060 0.080*
C6 −0.0833 (3) 0.5055 (5) 0.25511 (14) 0.0336 (8)
H6A −0.1321 0.3816 0.2560 0.040*
H6B −0.1527 0.5892 0.2794 0.040*
C7 0.0854 (3) 0.5015 (4) 0.29597 (14) 0.0296 (7)
C8 0.2237 (3) 0.5035 (4) 0.32840 (13) 0.0258 (6)
C9 0.3832 (3) 0.5132 (4) 0.37271 (13) 0.0251 (6)
C10 0.5206 (3) 0.4133 (4) 0.35812 (14) 0.0263 (6)
H10A 0.5128 0.3411 0.3162 0.032*
C11 0.6689 (3) 0.4188 (4) 0.40464 (13) 0.0249 (6)
H11A 0.7614 0.3508 0.3937 0.030*
C12 0.6847 (3) 0.5219 (4) 0.46694 (13) 0.0243 (6)
C13 0.5480 (3) 0.6270 (4) 0.47988 (14) 0.0254 (6)
H13A 0.5569 0.7026 0.5210 0.030*
C14 0.4002 (3) 0.6225 (4) 0.43367 (13) 0.0257 (6)
H14A 0.3091 0.6947 0.4436 0.031*
C15 0.8386 (3) 0.5167 (4) 0.51885 (13) 0.0239 (6)
C16 0.9931 (4) 0.4757 (4) 0.49786 (15) 0.0261 (6)
H16A 1.0010 0.4593 0.4488 0.031*
C17 1.1338 (3) 0.4589 (4) 0.54754 (14) 0.0271 (7)
H17A 1.2369 0.4320 0.5319 0.033*
C18 1.1278 (3) 0.4805 (4) 0.61967 (13) 0.0247 (6)
C19 0.9756 (3) 0.5261 (4) 0.64146 (14) 0.0276 (7)
H19A 0.9690 0.5456 0.6905 0.033*
C20 0.8343 (3) 0.5429 (4) 0.59141 (14) 0.0271 (7)
H20A 0.7319 0.5731 0.6070 0.033*
C21 1.2782 (3) 0.4600 (5) 0.66923 (13) 0.0287 (7)
C22 1.4103 (3) 0.4380 (5) 0.70559 (14) 0.0318 (7)
C23 1.5765 (3) 0.4087 (6) 0.74681 (14) 0.0388 (9)
H23A 1.6034 0.2769 0.7446 0.047*
H23B 1.6583 0.4760 0.7228 0.047*
C24 1.5747 (4) 0.6593 (5) 0.83087 (16) 0.0364 (7)
H24A 1.4666 0.7004 0.8053 0.044*
H24B 1.6646 0.7315 0.8142 0.044*
C25 1.5796 (5) 0.6761 (6) 0.91101 (17) 0.0487 (10)
H25A 1.5039 0.7738 0.9229 0.058*
H25B 1.6934 0.7034 0.9346 0.058*
C26 1.5222 (4) 0.4886 (6) 0.93362 (15) 0.0439 (9)
H26A 1.6096 0.4298 0.9678 0.053*
H26B 1.4204 0.5003 0.9563 0.053*
C27 1.4879 (4) 0.3770 (5) 0.86523 (16) 0.0347 (8)
H27A 1.3706 0.3987 0.8431 0.042*
C28 1.5151 (4) 0.1744 (5) 0.8746 (2) 0.0535 (10)
H28A 1.4918 0.1137 0.8282 0.080*
H28C 1.4408 0.1262 0.9064 0.080*
H28D 1.6306 0.1513 0.8952 0.080*

(II) 4,4'-Bis{3-[(S)-2-methylpyrrolidin-1-yl]prop-1-yn-1-yl}-1,1'-biphenyl . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0231 (12) 0.0336 (16) 0.0301 (12) 0.0017 (11) −0.0014 (9) −0.0003 (11)
N2 0.0211 (12) 0.0362 (16) 0.0283 (12) −0.0022 (11) 0.0011 (9) −0.0015 (12)
C1 0.0264 (15) 0.0318 (19) 0.0403 (17) 0.0012 (14) −0.0002 (12) 0.0003 (15)
C2 0.0305 (17) 0.041 (2) 0.0421 (17) 0.0034 (15) −0.0011 (13) 0.0105 (16)
C3 0.0361 (17) 0.047 (2) 0.0307 (15) −0.0027 (16) 0.0015 (12) −0.0005 (15)
C4 0.0256 (15) 0.038 (2) 0.0336 (15) 0.0000 (14) −0.0002 (12) −0.0055 (14)
C5 0.069 (3) 0.039 (2) 0.051 (2) −0.007 (2) 0.0060 (18) −0.0085 (18)
C6 0.0225 (14) 0.044 (2) 0.0334 (15) −0.0034 (14) 0.0028 (11) 0.0003 (15)
C7 0.0272 (15) 0.0339 (19) 0.0274 (13) 0.0008 (13) 0.0034 (11) 0.0004 (14)
C8 0.0279 (14) 0.0249 (17) 0.0246 (13) 0.0006 (12) 0.0036 (11) 0.0004 (12)
C9 0.0249 (14) 0.0244 (17) 0.0259 (13) −0.0009 (12) 0.0035 (10) 0.0051 (12)
C10 0.0289 (15) 0.0260 (17) 0.0239 (13) −0.0005 (13) 0.0031 (11) −0.0023 (12)
C11 0.0223 (14) 0.0268 (17) 0.0262 (13) 0.0014 (12) 0.0053 (10) 0.0038 (12)
C12 0.0206 (13) 0.0245 (17) 0.0274 (13) −0.0017 (12) 0.0021 (10) 0.0043 (13)
C13 0.0270 (14) 0.0215 (16) 0.0279 (14) −0.0007 (12) 0.0048 (11) −0.0027 (13)
C14 0.0224 (13) 0.0252 (17) 0.0299 (14) 0.0030 (12) 0.0044 (11) 0.0011 (13)
C15 0.0196 (13) 0.0209 (17) 0.0304 (13) −0.0036 (12) 0.0009 (10) 0.0008 (13)
C16 0.0266 (13) 0.0249 (17) 0.0271 (12) −0.0010 (13) 0.0052 (10) 0.0000 (13)
C17 0.0190 (13) 0.0267 (17) 0.0358 (14) −0.0007 (12) 0.0047 (11) 0.0023 (13)
C18 0.0221 (13) 0.0191 (16) 0.0318 (14) −0.0039 (12) 0.0002 (10) −0.0002 (12)
C19 0.0245 (14) 0.0334 (19) 0.0248 (13) −0.0003 (13) 0.0024 (10) −0.0033 (13)
C20 0.0212 (13) 0.0303 (18) 0.0301 (14) 0.0008 (12) 0.0041 (10) −0.0001 (13)
C21 0.0275 (15) 0.0292 (19) 0.0296 (14) 0.0002 (13) 0.0042 (11) −0.0007 (13)
C22 0.0273 (15) 0.037 (2) 0.0301 (14) 0.0024 (14) 0.0015 (11) −0.0019 (14)
C23 0.0223 (15) 0.060 (3) 0.0331 (15) 0.0071 (15) 0.0003 (12) −0.0025 (16)
C24 0.0350 (16) 0.0319 (19) 0.0395 (17) −0.0074 (14) −0.0047 (13) 0.0015 (15)
C25 0.053 (2) 0.048 (3) 0.0425 (19) −0.0021 (18) −0.0044 (16) −0.0102 (17)
C26 0.0386 (18) 0.062 (3) 0.0307 (15) 0.0077 (17) 0.0050 (13) 0.0041 (17)
C27 0.0204 (15) 0.041 (2) 0.0423 (17) −0.0013 (13) 0.0015 (13) 0.0094 (15)
C28 0.0384 (19) 0.038 (2) 0.079 (3) −0.0052 (17) −0.0083 (17) 0.0178 (19)

(II) 4,4'-Bis{3-[(S)-2-methylpyrrolidin-1-yl]prop-1-yn-1-yl}-1,1'-biphenyl . Geometric parameters (Å, º)

N1—C6 1.457 (4) C13—C14 1.385 (3)
N1—C1 1.463 (4) C13—H13A 0.9500
N1—C4 1.465 (4) C14—H14A 0.9500
N2—C23 1.448 (3) C15—C20 1.396 (4)
N2—C27 1.463 (4) C15—C16 1.405 (4)
N2—C24 1.464 (4) C16—C17 1.381 (4)
C1—C2 1.520 (4) C16—H16A 0.9500
C1—H1A 0.9900 C17—C18 1.386 (4)
C1—H1B 0.9900 C17—H17A 0.9500
C2—C3 1.536 (5) C18—C19 1.401 (4)
C2—H2A 0.9900 C18—C21 1.442 (3)
C2—H2B 0.9900 C19—C20 1.389 (4)
C3—C4 1.526 (4) C19—H19A 0.9500
C3—H3A 0.9900 C20—H20A 0.9500
C3—H3B 0.9900 C21—C22 1.203 (4)
C4—C5 1.511 (5) C22—C23 1.479 (4)
C4—H4A 1.0000 C23—H23A 0.9900
C5—H5A 0.9800 C23—H23B 0.9900
C5—H5B 0.9800 C24—C25 1.521 (4)
C5—H5C 0.9800 C24—H24A 0.9900
C6—C7 1.479 (4) C24—H24B 0.9900
C6—H6A 0.9900 C25—C26 1.529 (6)
C6—H6B 0.9900 C25—H25A 0.9900
C7—C8 1.204 (3) C25—H25B 0.9900
C8—C9 1.445 (3) C26—C27 1.525 (5)
C9—C10 1.396 (4) C26—H26A 0.9900
C9—C14 1.397 (4) C26—H26B 0.9900
C10—C11 1.391 (3) C27—C28 1.504 (5)
C10—H10A 0.9500 C27—H27A 1.0000
C11—C12 1.393 (4) C28—H28A 0.9800
C11—H11A 0.9500 C28—H28C 0.9800
C12—C13 1.403 (4) C28—H28D 0.9800
C12—C15 1.480 (3)
C6—N1—C1 113.4 (2) C13—C14—C9 120.8 (2)
C6—N1—C4 115.3 (2) C13—C14—H14A 119.6
C1—N1—C4 103.9 (2) C9—C14—H14A 119.6
C23—N2—C27 115.9 (2) C20—C15—C16 117.2 (2)
C23—N2—C24 113.2 (3) C20—C15—C12 121.1 (2)
C27—N2—C24 103.9 (2) C16—C15—C12 121.6 (2)
N1—C1—C2 103.5 (2) C17—C16—C15 120.9 (2)
N1—C1—H1A 111.1 C17—C16—H16A 119.5
C2—C1—H1A 111.1 C15—C16—H16A 119.5
N1—C1—H1B 111.1 C16—C17—C18 121.5 (2)
C2—C1—H1B 111.1 C16—C17—H17A 119.3
H1A—C1—H1B 109.0 C18—C17—H17A 119.3
C1—C2—C3 104.0 (3) C17—C18—C19 118.4 (2)
C1—C2—H2A 111.0 C17—C18—C21 119.1 (2)
C3—C2—H2A 111.0 C19—C18—C21 122.4 (2)
C1—C2—H2B 111.0 C20—C19—C18 120.0 (2)
C3—C2—H2B 111.0 C20—C19—H19A 120.0
H2A—C2—H2B 109.0 C18—C19—H19A 120.0
C4—C3—C2 105.2 (3) C19—C20—C15 121.9 (2)
C4—C3—H3A 110.7 C19—C20—H20A 119.0
C2—C3—H3A 110.7 C15—C20—H20A 119.0
C4—C3—H3B 110.7 C22—C21—C18 174.2 (3)
C2—C3—H3B 110.7 C21—C22—C23 177.0 (3)
H3A—C3—H3B 108.8 N2—C23—C22 117.0 (2)
N1—C4—C5 113.1 (3) N2—C23—H23A 108.0
N1—C4—C3 101.5 (3) C22—C23—H23A 108.0
C5—C4—C3 114.5 (3) N2—C23—H23B 108.0
N1—C4—H4A 109.2 C22—C23—H23B 108.0
C5—C4—H4A 109.2 H23A—C23—H23B 107.3
C3—C4—H4A 109.2 N2—C24—C25 102.9 (3)
C4—C5—H5A 109.5 N2—C24—H24A 111.2
C4—C5—H5B 109.5 C25—C24—H24A 111.2
H5A—C5—H5B 109.5 N2—C24—H24B 111.2
C4—C5—H5C 109.5 C25—C24—H24B 111.2
H5A—C5—H5C 109.5 H24A—C24—H24B 109.1
H5B—C5—H5C 109.5 C24—C25—C26 104.1 (3)
N1—C6—C7 115.2 (2) C24—C25—H25A 110.9
N1—C6—H6A 108.5 C26—C25—H25A 110.9
C7—C6—H6A 108.5 C24—C25—H25B 110.9
N1—C6—H6B 108.5 C26—C25—H25B 110.9
C7—C6—H6B 108.5 H25A—C25—H25B 109.0
H6A—C6—H6B 107.5 C27—C26—C25 105.5 (2)
C8—C7—C6 177.9 (3) C27—C26—H26A 110.7
C7—C8—C9 174.7 (3) C25—C26—H26A 110.7
C10—C9—C14 118.4 (2) C27—C26—H26B 110.7
C10—C9—C8 122.5 (2) C25—C26—H26B 110.7
C14—C9—C8 119.0 (2) H26A—C26—H26B 108.8
C11—C10—C9 120.4 (2) N2—C27—C28 113.5 (3)
C11—C10—H10A 119.8 N2—C27—C26 101.9 (3)
C9—C10—H10A 119.8 C28—C27—C26 114.8 (3)
C10—C11—C12 121.5 (3) N2—C27—H27A 108.8
C10—C11—H11A 119.3 C28—C27—H27A 108.8
C12—C11—H11A 119.3 C26—C27—H27A 108.8
C11—C12—C13 117.7 (2) C27—C28—H28A 109.5
C11—C12—C15 121.3 (2) C27—C28—H28C 109.5
C13—C12—C15 121.0 (2) H28A—C28—H28C 109.5
C14—C13—C12 121.0 (2) C27—C28—H28D 109.5
C14—C13—H13A 119.5 H28A—C28—H28D 109.5
C12—C13—H13A 119.5 H28C—C28—H28D 109.5
C6—N1—C1—C2 170.4 (2) C11—C12—C15—C16 26.8 (4)
C4—N1—C1—C2 44.5 (3) C13—C12—C15—C16 −155.0 (3)
N1—C1—C2—C3 −24.3 (3) C20—C15—C16—C17 1.2 (4)
C1—C2—C3—C4 −3.3 (3) C12—C15—C16—C17 −175.5 (3)
C6—N1—C4—C5 66.3 (3) C15—C16—C17—C18 0.4 (4)
C1—N1—C4—C5 −169.0 (3) C16—C17—C18—C19 −2.1 (4)
C6—N1—C4—C3 −170.6 (2) C16—C17—C18—C21 179.5 (3)
C1—N1—C4—C3 −45.9 (3) C17—C18—C19—C20 2.0 (4)
C2—C3—C4—N1 29.5 (3) C21—C18—C19—C20 −179.6 (3)
C2—C3—C4—C5 151.6 (3) C18—C19—C20—C15 −0.4 (4)
C1—N1—C6—C7 −59.8 (3) C16—C15—C20—C19 −1.2 (4)
C4—N1—C6—C7 59.8 (4) C12—C15—C20—C19 175.5 (3)
C14—C9—C10—C11 2.0 (4) C27—N2—C23—C22 57.8 (4)
C8—C9—C10—C11 −176.2 (3) C24—N2—C23—C22 −62.1 (4)
C9—C10—C11—C12 0.5 (4) C23—N2—C24—C25 172.0 (2)
C10—C11—C12—C13 −2.8 (4) C27—N2—C24—C25 45.4 (3)
C10—C11—C12—C15 175.5 (2) N2—C24—C25—C26 −26.8 (3)
C11—C12—C13—C14 2.6 (4) C24—C25—C26—C27 −0.1 (3)
C15—C12—C13—C14 −175.7 (3) C23—N2—C27—C28 66.2 (3)
C12—C13—C14—C9 −0.1 (4) C24—N2—C27—C28 −169.0 (2)
C10—C9—C14—C13 −2.2 (4) C23—N2—C27—C26 −169.8 (3)
C8—C9—C14—C13 176.1 (3) C24—N2—C27—C26 −44.9 (3)
C11—C12—C15—C20 −149.7 (3) C25—C26—C27—N2 26.9 (3)
C13—C12—C15—C20 28.5 (4) C25—C26—C27—C28 150.0 (3)

References

  1. Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Model. 44, 2133–2144. [DOI] [PubMed]
  3. Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. [DOI] [PubMed]
  4. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
  5. Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
  6. Otwinowski, Z. & Minor, W. (2006). International Tables for Crystallography, Vol. F, ch. 11.4, pp. 226–235. Chester: International Union of Crystallography.
  7. Parkin, S. (2000). Acta Cryst. A56, 157–162. [DOI] [PubMed]
  8. Parkin, S. (2013). CIFFIX, http://xray.uky.edu/people/parkin/programs/ciffix
  9. Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  12. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  13. Wala, E. P., Crooks, P. A., McIntosh, J. M. & Holtman, J. R. (2012). Anesth. Analg. 115, 713–720. [DOI] [PMC free article] [PubMed]
  14. Zheng, G., Zhang, Z., Dowell, C., Wala, E., Dwoskin, L. P., Holton, J. R., McIntosh, J. M. & Crooks, P. A. (2007). Bioorg. Med. Chem. Lett., 21, 2476–2479. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I, II. DOI: 10.1107/S2056989015016163/hg5457sup1.cif

e-71-01147-sup1.cif (894.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015016163/hg5457Isup2.hkl

e-71-01147-Isup2.hkl (196.8KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989015016163/hg5457IIsup3.hkl

e-71-01147-IIsup3.hkl (258KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015016163/hg5457Isup4.cml

Supporting information file. DOI: 10.1107/S2056989015016163/hg5457IIsup5.cml

CCDC references: 1421219, 1421218

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES