Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Sep 26;71(Pt 10):o786–o787. doi: 10.1107/S2056989015017417

Crystal structure of N,N,N-tris­[(1,3-benzo­thia­zol-2-yl)meth­yl]amine

Velabo Mdluli a, James A Golen b, Arnold L Rheingold b, David R Manke a,*
PMCID: PMC4647366  PMID: 26594479

Abstract

The title compound, C24H18N4S3, exhibits three near planar benzo­thia­zole systems in a pseudo-C 3 conformation. The dihedral angles between the planes of the benzo­thia­zole groups range from 112.56 (4) to 124.68 (4)° In the crystal, mol­ecules are connected to each other through three short C—H⋯N contacts, forming an infinite chain along [100]. The molecules are also linked by π–π interactions with each of the three five-membered thiazole rings. [inter-centroid distance range: 3.614 (1)–4.074 (1) Å, inter-planar distance range: 3.4806 (17)–3.6902 (15) Å, slippage range: 0.759 (3)–1.887 (3) Å].

Keywords: crystal structure, benzo­thia­zoles, C—H⋯N inter­actions

Related literature  

For synthesis of the title compound and a structure of the ligand bound to copper, see: Thompson et al. (1980). For a related organic structure, see: Zhang et al. (2009). For other related structures, see; Bautista & Thompson (1980); Pandey & Mathur (1995). For a study of its use as a ligand in azide–alkyne cyclo­additions, see: Rodionov, Presolski, Gardinier et al. (2007); Rodionov, Presolski, Diaz et al. (2007). graphic file with name e-71-0o786-scheme1.jpg

Experimental  

Crystal data  

  • C24H18N4S3

  • M r = 495.66

  • Triclinic, Inline graphic

  • a = 6.6530 (3) Å

  • b = 14.3098 (6) Å

  • c = 14.5822 (7) Å

  • α = 61.471 (1)°

  • β = 88.474 (2)°

  • γ = 79.138 (1)°

  • V = 1194.61 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.34 mm−1

  • T = 100 K

  • 0.15 × 0.12 × 0.10 mm

Data collection  

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.951, T max = 0.967

  • 4691 measured reflections

  • 4691 independent reflections

  • 3767 reflections with I > 2σ(I)

  • R int = 0.000

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.038

  • wR(F 2) = 0.110

  • S = 1.08

  • 4691 reflections

  • 280 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.29 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S2056989015017417/ff2141sup1.cif

e-71-0o786-sup1.cif (28.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015017417/ff2141Isup2.hkl

e-71-0o786-Isup2.hkl (229.8KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015017417/ff2141Isup3.txt

e-71-0o786-Isup3.txt (561.7KB, txt)

Supporting information file. DOI: 10.1107/S2056989015017417/ff2141Isup4.cml

. DOI: 10.1107/S2056989015017417/ff2141fig1.tif

Mol­ecular structure of the title compound, showing the atom labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as spheres of arbitrary radius.

. DOI: 10.1107/S2056989015017417/ff2141fig2.tif

Mol­ecular packing of the title compound.

CCDC reference: 1425576

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
C4H4AN1i 0.95 2.47 3.376(3) 159
C12H12AN2i 0.95 2.60 3.449(2) 150
C20H20AN3i 0.95 2.54 3.490(3) 178

Symmetry code: (i) Inline graphic.

Acknowledgments

We gratefully acknowledge support from the National Science Foundation (CHE-1229339 and CHE-1429086).

supplementary crystallographic information

S1. Chemical context

Tripodal ligands with nitro­gen donors have become a common motif in coordination chemistry. Herein we report the structure of tris­(benzo­thia­zolyl­methyl)­amine. The bond distances and angles of the complex are similar to the previously reported bis­(benzo­thia­zol-2-yl­methyl)­amine (Zhang et al., 2009). Copper and cobalt complexes of this ligand have been synthesized (Bautista & Thompson, 1980; Thompson et al., 1980, Pandey & Mathur, 1995) and copper complexes have been explored as catalysts for azide-alkyne cyclo­additions (Rodionov, Presolski, Diaz, et al., 2007; Rodionov, Presolski, Gardinier, et al. 2007).

The molecular structure of the title compound is shown in Figure 1. The compound possesses three planar benzo­thia­zoles that demonstrate a pseudo-C3 configuration. The planes of the three benzo­thia­zole ligands exhibit dihedral angles of 112.555 (2), 123.744 (2) and 124.677 (3). The structure exhibits infinite chains along [100] which result from three C—H···N short contacts. The packing of the title compound is shown in Figure 2.

S2. Synthesis and crystallization

The compound was prepared by literature procedure (Thompson et al., 1980). Crystals suitable for single-crystal X-ray analysis were grown by slow evaporation of a di­ethyl ether solution.

S3. Refinement details

The structure was solved by direct methods and all non-hydrogen atoms were refined anisotropically by full matrix least squares on F2. Hydrogen atoms were placed in calculated positions and then refined with riding models with C—H lengths of 0.99 Å for (CH2) and 0.95 Å for (CH) with isotropic displacement parameters set to 1.20 times Ueq of the parent C atoms. Diffused solvent (ethyl ether) was treated using Platon (Spek, 2009) program SQUEEZE (found void 157Å3, 48 electrons) and the unit card was adjusted by C4H10O to address issues of chemical formula, molecular mass, density and F000 value.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound, showing the atom labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as spheres of arbitrary radius.

Fig. 2.

Fig. 2.

Molecular packing of the title compound.

Crystal data

C24H18N4S3 Z = 2
Mr = 495.66 F(000) = 518
Triclinic, P1 Dx = 1.378 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 6.6530 (3) Å Cell parameters from 6510 reflections
b = 14.3098 (6) Å θ = 3.1–25.7°
c = 14.5822 (7) Å µ = 0.34 mm1
α = 61.471 (1)° T = 100 K
β = 88.474 (2)° Block, yellow
γ = 79.138 (1)° 0.15 × 0.12 × 0.10 mm
V = 1194.61 (9) Å3

Data collection

Bruker APEXII CCD diffractometer 4691 independent reflections
Radiation source: fine-focus ROTATING ANODE 3767 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.0000
φ and ω scans θmax = 26.0°, θmin = 1.6°
Absorption correction: multi-scan (SADABS; Bruker, 2005) h = −8→8
Tmin = 0.951, Tmax = 0.967 k = −15→17
4691 measured reflections l = 0→17

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110 H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0612P)2 + 0.0926P] where P = (Fo2 + 2Fc2)/3
4691 reflections (Δ/σ)max < 0.001
280 parameters Δρmax = 0.28 e Å3
0 restraints Δρmin = −0.29 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.40279 (7) 0.15702 (4) 0.47208 (4) 0.04313 (15)
S2 0.27604 (8) 0.38911 (4) 0.15881 (4) 0.04461 (16)
S3 0.25502 (7) 0.44886 (4) 0.38876 (5) 0.04767 (16)
N1 0.1195 (2) 0.05355 (12) 0.57200 (13) 0.0416 (4)
N2 −0.0211 (2) 0.34050 (12) 0.08966 (12) 0.0405 (4)
N3 −0.1239 (2) 0.54789 (12) 0.36542 (12) 0.0382 (4)
N4 −0.0043 (2) 0.30973 (12) 0.34526 (12) 0.0368 (4)
C1 0.0012 (3) 0.19336 (15) 0.39103 (15) 0.0418 (5)
H1B 0.0358 0.1702 0.3375 0.050*
H1A −0.1361 0.1784 0.4139 0.050*
C2 0.1562 (3) 0.13010 (14) 0.48240 (15) 0.0384 (4)
C3 0.4652 (3) 0.05555 (14) 0.60010 (15) 0.0387 (4)
C4 0.6507 (3) 0.01905 (15) 0.66060 (18) 0.0483 (5)
H4A 0.7686 0.0480 0.6318 0.058*
C5 0.6574 (3) −0.06029 (16) 0.76342 (18) 0.0558 (6)
H5A 0.7813 −0.0853 0.8064 0.067*
C6 0.4877 (4) −0.10437 (17) 0.8055 (2) 0.0628 (6)
H6A 0.4962 −0.1581 0.8770 0.075*
C7 0.3052 (3) −0.07124 (16) 0.74462 (18) 0.0570 (6)
H7A 0.1903 −0.1035 0.7731 0.068*
C8 0.2940 (3) 0.00976 (13) 0.64160 (16) 0.0403 (4)
C9 −0.1080 (3) 0.37025 (16) 0.23985 (15) 0.0424 (5)
H9A −0.1536 0.4475 0.2214 0.051*
H9B −0.2311 0.3412 0.2388 0.051*
C10 0.0308 (3) 0.36203 (14) 0.16109 (14) 0.0374 (4)
C11 0.3140 (3) 0.37193 (14) 0.04962 (14) 0.0375 (4)
C12 0.4860 (3) 0.37765 (15) −0.00699 (15) 0.0440 (5)
H12A 0.6035 0.3968 0.0099 0.053*
C13 0.4821 (3) 0.35475 (16) −0.08855 (15) 0.0473 (5)
H13A 0.5984 0.3582 −0.1284 0.057*
C14 0.3113 (3) 0.32676 (17) −0.11319 (16) 0.0521 (5)
H14A 0.3129 0.3104 −0.1692 0.063*
C15 0.1381 (3) 0.32219 (17) −0.05775 (16) 0.0501 (5)
H15A 0.0205 0.3039 −0.0758 0.060*
C16 0.1393 (3) 0.34469 (14) 0.02442 (14) 0.0377 (4)
C17 −0.0894 (3) 0.35415 (15) 0.41340 (16) 0.0411 (4)
H17A −0.0500 0.2993 0.4875 0.049*
H17B −0.2410 0.3719 0.4032 0.049*
C18 −0.0096 (3) 0.45492 (15) 0.38820 (14) 0.0375 (4)
C19 0.2093 (3) 0.58523 (15) 0.35501 (14) 0.0385 (4)
C20 0.3495 (3) 0.65143 (16) 0.33751 (17) 0.0477 (5)
H20A 0.4930 0.6233 0.3468 0.057*
C21 0.2730 (4) 0.75976 (17) 0.30610 (18) 0.0531 (5)
H21A 0.3657 0.8073 0.2922 0.064*
C22 0.0642 (3) 0.80027 (16) 0.29458 (17) 0.0521 (5)
H22A 0.0159 0.8752 0.2726 0.062*
C23 −0.0763 (3) 0.73355 (16) 0.31451 (17) 0.0486 (5)
H23A −0.2196 0.7617 0.3073 0.058*
C24 −0.0023 (3) 0.62444 (14) 0.34531 (14) 0.0364 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0398 (3) 0.0435 (3) 0.0487 (3) −0.0190 (2) 0.0104 (2) −0.0209 (2)
S2 0.0367 (3) 0.0614 (3) 0.0469 (3) −0.0167 (2) 0.0027 (2) −0.0324 (3)
S3 0.0343 (3) 0.0435 (3) 0.0722 (4) −0.0075 (2) 0.0131 (2) −0.0339 (3)
N1 0.0365 (9) 0.0334 (8) 0.0527 (10) −0.0113 (7) 0.0097 (8) −0.0179 (8)
N2 0.0331 (8) 0.0457 (9) 0.0415 (9) −0.0078 (7) −0.0041 (7) −0.0197 (8)
N3 0.0354 (8) 0.0461 (9) 0.0381 (9) −0.0046 (7) 0.0009 (7) −0.0253 (7)
N4 0.0352 (8) 0.0386 (8) 0.0390 (9) −0.0090 (7) 0.0041 (7) −0.0201 (7)
C1 0.0392 (11) 0.0432 (10) 0.0479 (12) −0.0160 (8) 0.0061 (9) −0.0232 (9)
C2 0.0373 (10) 0.0346 (9) 0.0504 (12) −0.0123 (8) 0.0103 (9) −0.0247 (9)
C3 0.0369 (10) 0.0308 (9) 0.0528 (12) −0.0070 (8) 0.0085 (9) −0.0237 (9)
C4 0.0384 (11) 0.0405 (10) 0.0672 (15) −0.0057 (9) 0.0051 (10) −0.0277 (11)
C5 0.0469 (13) 0.0415 (11) 0.0648 (15) 0.0036 (9) −0.0063 (11) −0.0183 (11)
C6 0.0592 (15) 0.0426 (12) 0.0606 (15) 0.0021 (11) 0.0007 (12) −0.0085 (11)
C7 0.0500 (13) 0.0374 (11) 0.0658 (15) −0.0093 (9) 0.0130 (11) −0.0110 (11)
C8 0.0378 (10) 0.0288 (9) 0.0525 (12) −0.0066 (8) 0.0088 (9) −0.0184 (9)
C9 0.0331 (10) 0.0485 (11) 0.0446 (11) −0.0055 (8) −0.0005 (8) −0.0225 (9)
C10 0.0324 (10) 0.0362 (9) 0.0390 (11) −0.0056 (8) −0.0043 (8) −0.0146 (8)
C11 0.0368 (10) 0.0353 (9) 0.0334 (10) −0.0069 (8) −0.0041 (8) −0.0109 (8)
C12 0.0406 (11) 0.0473 (11) 0.0415 (11) −0.0137 (9) 0.0020 (9) −0.0176 (9)
C13 0.0490 (12) 0.0500 (12) 0.0358 (11) −0.0078 (9) 0.0037 (9) −0.0158 (9)
C14 0.0560 (14) 0.0618 (13) 0.0373 (11) −0.0071 (11) −0.0024 (10) −0.0244 (10)
C15 0.0468 (12) 0.0616 (13) 0.0448 (12) −0.0143 (10) −0.0070 (10) −0.0263 (10)
C16 0.0376 (10) 0.0362 (9) 0.0334 (10) −0.0043 (8) −0.0069 (8) −0.0126 (8)
C17 0.0345 (10) 0.0463 (11) 0.0481 (12) −0.0117 (8) 0.0106 (9) −0.0261 (9)
C18 0.0350 (10) 0.0444 (10) 0.0371 (10) −0.0087 (8) 0.0070 (8) −0.0228 (9)
C19 0.0393 (11) 0.0428 (10) 0.0401 (11) −0.0071 (8) 0.0080 (8) −0.0258 (9)
C20 0.0420 (11) 0.0521 (12) 0.0616 (13) −0.0119 (9) 0.0134 (10) −0.0368 (11)
C21 0.0573 (14) 0.0525 (12) 0.0647 (15) −0.0193 (10) 0.0162 (11) −0.0379 (11)
C22 0.0600 (14) 0.0419 (11) 0.0588 (14) −0.0065 (10) 0.0019 (11) −0.0290 (10)
C23 0.0453 (12) 0.0484 (11) 0.0535 (13) 0.0009 (9) −0.0042 (10) −0.0290 (10)
C24 0.0387 (10) 0.0426 (10) 0.0330 (10) −0.0058 (8) 0.0010 (8) −0.0230 (8)

Geometric parameters (Å, º)

S1—C3 1.729 (2) C7—H7A 0.9500
S1—C2 1.7415 (18) C9—C10 1.489 (3)
S2—C11 1.729 (2) C9—H9A 0.9900
S2—C10 1.7423 (18) C9—H9B 0.9900
S3—C19 1.7349 (18) C11—C12 1.385 (3)
S3—C18 1.7460 (18) C11—C16 1.403 (3)
N1—C2 1.297 (2) C12—C13 1.378 (3)
N1—C8 1.397 (2) C12—H12A 0.9500
N2—C10 1.290 (2) C13—C14 1.383 (3)
N2—C16 1.401 (2) C13—H13A 0.9500
N3—C18 1.292 (2) C14—C15 1.384 (3)
N3—C24 1.398 (2) C14—H14A 0.9500
N4—C1 1.462 (2) C15—C16 1.382 (3)
N4—C9 1.466 (2) C15—H15A 0.9500
N4—C17 1.466 (2) C17—C18 1.506 (2)
C1—C2 1.493 (3) C17—H17A 0.9900
C1—H1B 0.9900 C17—H17B 0.9900
C1—H1A 0.9900 C19—C20 1.386 (3)
C3—C4 1.396 (3) C19—C24 1.398 (3)
C3—C8 1.399 (3) C20—C21 1.381 (3)
C4—C5 1.377 (3) C20—H20A 0.9500
C4—H4A 0.9500 C21—C22 1.382 (3)
C5—C6 1.382 (3) C21—H21A 0.9500
C5—H5A 0.9500 C22—C23 1.388 (3)
C6—C7 1.388 (3) C22—H22A 0.9500
C6—H6A 0.9500 C23—C24 1.391 (3)
C7—C8 1.384 (3) C23—H23A 0.9500
C3—S1—C2 89.03 (9) C12—C11—C16 121.21 (18)
C11—S2—C10 89.09 (9) C12—C11—S2 129.24 (15)
C19—S3—C18 89.02 (9) C16—C11—S2 109.49 (14)
C2—N1—C8 110.35 (15) C13—C12—C11 118.16 (19)
C10—N2—C16 110.28 (15) C13—C12—H12A 120.9
C18—N3—C24 110.23 (15) C11—C12—H12A 120.9
C1—N4—C9 111.51 (14) C12—C13—C14 120.96 (19)
C1—N4—C17 112.81 (14) C12—C13—H13A 119.5
C9—N4—C17 112.20 (14) C14—C13—H13A 119.5
N4—C1—C2 110.82 (14) C13—C14—C15 121.1 (2)
N4—C1—H1B 109.5 C13—C14—H14A 119.4
C2—C1—H1B 109.5 C15—C14—H14A 119.4
N4—C1—H1A 109.5 C16—C15—C14 118.71 (19)
C2—C1—H1A 109.5 C16—C15—H15A 120.6
H1B—C1—H1A 108.1 C14—C15—H15A 120.6
N1—C2—C1 123.72 (17) C15—C16—N2 125.52 (18)
N1—C2—S1 116.22 (15) C15—C16—C11 119.80 (18)
C1—C2—S1 120.06 (13) N2—C16—C11 114.66 (16)
C4—C3—C8 120.91 (18) N4—C17—C18 109.94 (14)
C4—C3—S1 129.40 (15) N4—C17—H17A 109.7
C8—C3—S1 109.69 (14) C18—C17—H17A 109.7
C5—C4—C3 117.91 (19) N4—C17—H17B 109.7
C5—C4—H4A 121.0 C18—C17—H17B 109.7
C3—C4—H4A 121.0 H17A—C17—H17B 108.2
C4—C5—C6 121.4 (2) N3—C18—C17 124.56 (16)
C4—C5—H5A 119.3 N3—C18—S3 116.31 (14)
C6—C5—H5A 119.3 C17—C18—S3 119.13 (14)
C5—C6—C7 120.9 (2) C20—C19—C24 121.92 (17)
C5—C6—H6A 119.6 C20—C19—S3 128.84 (15)
C7—C6—H6A 119.6 C24—C19—S3 109.24 (13)
C8—C7—C6 118.6 (2) C21—C20—C19 117.64 (19)
C8—C7—H7A 120.7 C21—C20—H20A 121.2
C6—C7—H7A 120.7 C19—C20—H20A 121.2
C7—C8—N1 125.12 (18) C20—C21—C22 121.2 (2)
C7—C8—C3 120.18 (19) C20—C21—H21A 119.4
N1—C8—C3 114.70 (17) C22—C21—H21A 119.4
N4—C9—C10 111.13 (15) C21—C22—C23 121.23 (19)
N4—C9—H9A 109.4 C21—C22—H22A 119.4
C10—C9—H9A 109.4 C23—C22—H22A 119.4
N4—C9—H9B 109.4 C22—C23—C24 118.42 (19)
C10—C9—H9B 109.4 C22—C23—H23A 120.8
H9A—C9—H9B 108.0 C24—C23—H23A 120.8
N2—C10—C9 124.19 (17) C23—C24—N3 125.21 (17)
N2—C10—S2 116.46 (15) C23—C24—C19 119.57 (17)
C9—C10—S2 119.28 (14) N3—C24—C19 115.20 (16)
C9—N4—C1—C2 163.44 (15) C11—C12—C13—C14 0.0 (3)
C17—N4—C1—C2 −69.23 (19) C12—C13—C14—C15 0.8 (3)
C8—N1—C2—C1 −179.97 (16) C13—C14—C15—C16 −0.9 (3)
C8—N1—C2—S1 0.3 (2) C14—C15—C16—N2 −178.09 (17)
N4—C1—C2—N1 132.22 (18) C14—C15—C16—C11 0.3 (3)
N4—C1—C2—S1 −48.1 (2) C10—N2—C16—C15 177.63 (18)
C3—S1—C2—N1 0.28 (15) C10—N2—C16—C11 −0.8 (2)
C3—S1—C2—C1 −179.47 (15) C12—C11—C16—C15 0.5 (3)
C2—S1—C3—C4 179.89 (18) S2—C11—C16—C15 −177.11 (15)
C2—S1—C3—C8 −0.75 (14) C12—C11—C16—N2 179.05 (16)
C8—C3—C4—C5 −2.5 (3) S2—C11—C16—N2 1.42 (19)
S1—C3—C4—C5 176.78 (16) C1—N4—C17—C18 155.22 (15)
C3—C4—C5—C6 1.2 (3) C9—N4—C17—C18 −77.82 (19)
C4—C5—C6—C7 1.1 (4) C24—N3—C18—C17 −179.50 (16)
C5—C6—C7—C8 −2.2 (3) C24—N3—C18—S3 0.4 (2)
C6—C7—C8—N1 −178.05 (19) N4—C17—C18—N3 126.01 (19)
C6—C7—C8—C3 0.9 (3) N4—C17—C18—S3 −53.8 (2)
C2—N1—C8—C7 178.12 (19) C19—S3—C18—N3 0.05 (15)
C2—N1—C8—C3 −0.9 (2) C19—S3—C18—C17 179.91 (15)
C4—C3—C8—C7 1.4 (3) C18—S3—C19—C20 −179.60 (19)
S1—C3—C8—C7 −177.98 (16) C18—S3—C19—C24 −0.43 (14)
C4—C3—C8—N1 −179.48 (16) C24—C19—C20—C21 −2.3 (3)
S1—C3—C8—N1 1.1 (2) S3—C19—C20—C21 176.77 (16)
C1—N4—C9—C10 −79.28 (18) C19—C20—C21—C22 1.3 (3)
C17—N4—C9—C10 153.06 (15) C20—C21—C22—C23 0.2 (3)
C16—N2—C10—C9 176.60 (16) C21—C22—C23—C24 −0.8 (3)
C16—N2—C10—S2 −0.2 (2) C22—C23—C24—N3 −178.19 (18)
N4—C9—C10—N2 133.35 (18) C22—C23—C24—C19 −0.2 (3)
N4—C9—C10—S2 −49.92 (19) C18—N3—C24—C23 177.37 (18)
C11—S2—C10—N2 0.87 (15) C18—N3—C24—C19 −0.7 (2)
C11—S2—C10—C9 −176.10 (15) C20—C19—C24—C23 1.8 (3)
C10—S2—C11—C12 −178.60 (18) S3—C19—C24—C23 −177.46 (14)
C10—S2—C11—C16 −1.23 (13) C20—C19—C24—N3 179.98 (17)
C16—C11—C12—C13 −0.6 (3) S3—C19—C24—N3 0.7 (2)
S2—C11—C12—C13 176.48 (14)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C4—H4A···N1i 0.95 2.47 3.376 (3) 159
C12—H12A···N2i 0.95 2.60 3.449 (2) 150
C20—H20A···N3i 0.95 2.54 3.490 (3) 178

Symmetry code: (i) x+1, y, z.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: FF2141).

References

  1. Bautista, D. V. & Thompson, L. K. (1980). Inorg. Chim. Acta, 42, 203–209.
  2. Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Pandey, H. N. & Mathur, P. (1995). Indian J. Chem. Sect. A, 34, 186–190.
  4. Rodionov, V. O., Presolski, S. I., Diaz, D. D., Fokin, V. V. & Finn, M. G. (2007). J. Am. Chem. Soc. 129, 12705–12712. [DOI] [PubMed]
  5. Rodionov, V. O., Presolski, S. I., Gardinier, S., Lim, Y.-H. & Finn, G. M. (2007). J. Am. Chem. Soc. 129, 12696–12704. [DOI] [PubMed]
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  8. Thompson, L. K., Ball, R. G. & Trotter, J. (1980). Can. J. Chem. 58, 1566–1576.
  9. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  10. Zhang, Y., Zhao, B., Zhang, S., Qu, Y. & Xia, X. (2009). Acta Cryst. E65, o1674. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S2056989015017417/ff2141sup1.cif

e-71-0o786-sup1.cif (28.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015017417/ff2141Isup2.hkl

e-71-0o786-Isup2.hkl (229.8KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015017417/ff2141Isup3.txt

e-71-0o786-Isup3.txt (561.7KB, txt)

Supporting information file. DOI: 10.1107/S2056989015017417/ff2141Isup4.cml

. DOI: 10.1107/S2056989015017417/ff2141fig1.tif

Mol­ecular structure of the title compound, showing the atom labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as spheres of arbitrary radius.

. DOI: 10.1107/S2056989015017417/ff2141fig2.tif

Mol­ecular packing of the title compound.

CCDC reference: 1425576

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES