Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Sep 12;71(Pt 10):1155–1158. doi: 10.1107/S2056989015016801

Redetermination of the crystal structure of catena-poly[[[bis­(ethyl­enedi­amine)­platinum(II)]-μ-iodido-[bis­(ethyl­enedi­amine)­platinum(IV)]-μ-iodido] tetra­kis­(octane-1-sulfonate) dihydrate]

Nobuyuki Matsushita a,*
PMCID: PMC4647367  PMID: 26594395

The redetermination of the structure of the title compound with the original measurement data revealed a centrosymmetric model in space group Pmcn, in contrast to the previous model in space group P21 cn.

Keywords: crystal structure, redetermination, MX-chain structure, PtII/PtIV mixed-valence

Abstract

The structure of the title compound, which represents a mixed-valence platinum(II,IV) complex, {[PtIIPtIVI2(C2H8N2)4][CH3(CH2)7SO3]4·2H2O}n, has been redetermined in a different space group. In contrast to the previously reported determination in the space group P21 cn [Matsushita & Taira (1999). Synth. Met. 102, 1787–1788], the current model was refined in the centrosymmetric space group Pmcn using the original diffraction data. The title compound has a linear chain structure composed of square-planar [Pt(en)2]2+ and elongated octa­hedral trans-[PtI2(en)2]2+ cations (en is ethyl­enedi­amine) stacked alternately, bridged by the I atoms, parallel to the c axis. Inorganic layers aligned parallel to the bc plane, composed of the Pt-complex columns, the –SO3 part of the octane-1-sulfonate anion, and the water mol­ecule of crystallization, are stacked alternately with organic layers composed of the long-chain alkyl groups along the a axis. The Pt and I sites are located on the same mirror plane whereby the I site is equally disordered over two positions. The Pt and I atoms form a slight zigzag ⋯I—PtIV—I⋯PtII⋯ chain, with PtIV—I bond lengths of 2.6888 (17) and 2.7239 (17) Å, PtII⋯I contacts of 3.2065 (17) and 3.1732 (16) Å, and PtIV—I⋯PtII angles of 178.3 (3) and 176.7 (2)°. The mixed-valence state of the Pt site is expressed by the structural parameter δ = (PtIV—I)/(PtII⋯I), with values of 0.839 and 0.858 for the two independent I atoms. In the crystal, N—H⋯O hydrogen bonds involving the cationic chains, the sulfonate groups and water mol­ecules of crystallization, stabilize the columnar structure.

Chemical context  

The title compound, [Pt(en)2][PtI2(en)2](CH3(CH2)7SO3)4·2H2O (en is ethyl­enedi­amine, C2N2H8), (I), is a member of the family of one-dimensional halogen-bridged mixed-valence metal complexes, formulated as [M II(AA)2][M IV X 2(AA)2]Y 4 [M II/M IV = PtII/PtIV, PdII/PdIV, NiII/NiIV, PdII/PtIV, NiII/PtIV; X = Cl, Br, I; AA = NH2(CH2)2NH2, etc; Y = ClO4 , HSO4 , X , etc], hereafter abbreviated as MX-chain compounds, which are typical mixed-valence compounds belonging to class II in the classification of Robin & Day (1967), as described in previous reports (Matsushita et al., 1989, 1995; Matsushita, 1993).

The metal–halogen distances in crystals of MX-chain compounds characterize the physical properties based on the mixed-valence state. Compound (I) is one of the first examples of MX-chain structures including a long-chain alkyl group as an organic part. In a previous article (Matsushita & Taira, 1999), we have briefly reported the crystal data of (I), i.e. lattice parameter, space group, reliability indices, and have presented a view of the crystal packing; atomic coordinates and further structure data were not deposited at that time. The reported structure was originally refined in the non-centrosymmetric space group P21 cn. However, close examination of the atomic coordinates strongly suggests that the crystal packing has an inversion center at (1/4, 1/2, 1/2). Therefore, the structure of (I) was redetermined in the centrosymmetric space group Pmcn and is reported here.graphic file with name e-71-01155-scheme1.jpg

Structural comments  

As shown in Fig. 1, the structure of (I) is built up of columns composed of square-planar [Pt(en)2]2+ and elongated octa­hedral trans-[PtI2(en)2]2+ cations stacked alternately, bridged by the I atoms, parallel to the c axis. The Pt and I sites lie on the same mirror plane, and form an infinite slight zigzag ⋯I—PtIV—I⋯PtII⋯ chain. The I atoms are not located at the exact midpoint between adjacent Pt atoms and are equally disordered over two sites close to the midpoint. Thus, the Pt site is occupationally disordered by PtII and PtIV atoms. The valence ordering of the Pt site in (I) belongs to one of three different classes of the order–disorder problem pointed out by Keller (1982). The structure of (I) can be regarded as being of the one-dimensionally ordered structure type, with the other two directions being in a disordered state. The structural order–disorder situation of the Pt site in (I) has also been observed in a number of other MX-chain compounds (Beauchamp et al., 1982; Yamashita et al., 1985; Toriumi et al., 1993; Matsushita et al., 1992; Huckett et al., 1993; Matsushita, 2003, 2006).

Figure 1.

Figure 1

A view of the columnar structure of the title compound, showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 40% probability level for non-H atoms. The violet-line ellipsoids and dashed-line bonds represent the disordered part of the Pt—I chain. Blue dashed lines represent the hydrogen bonds.

With respect to the two sites for the disordered I atoms, the shorter Pt—I distances are assigned to PtIV—I and the longer ones to PtII⋯I, as follows: I—PtIV—I; Pt—I1 = 2.6888 (17), Pt—I2 = 2.7239 (17) Å, and I1—PtIV–I2 = 179.1 (3)°. I⋯PtII⋯I; Pt⋯I1 = 3.2065 (17), Pt⋯I2 = 3.1732 (16) Å, and I1⋯PtII⋯I2 = 177.5 (2). Bond angles of the Pt—I chain are Pt—I1⋯Pt = 178.3 (3) and Pt—I2⋯Pt = 176.7 (2)°. Other bond lengths and angles are given in Table 1.

Table 1. Selected geometric parameters (, ).

PtN1 2.052(8) PtN2 2.052(8)
       
N1iPtN1 96.8(5) N1PtI1 92.1(2)
N1iPtN2 179.4(4) N2PtI1 88.3(3)
N1PtN2 82.7(2) N1PtI2ii 87.3(2)
N2iPtN2 97.7(5) N2PtI2ii 92.2(3)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

The structural parameters indicating the mixed-valence state of the Pt atom, expressed by δ = (PtIV–I)/(PtII⋯I), are 0.839 and 0.858 for I1 and I2, respectively. These values are smaller than those of [Pt(pn)2][PtI2(pn)2](ClO4)4 (pn is 1,2-di­amino­propane) (0.937; Breer et al., 1978); [Pt(pn)2][PtI2(pn)2]I4 (0.940; Endres et al., 1980); [Pt(tn)2][PtI2(tn)2](ClO4)4 (tn is 1,3-di­amino­propane) (0.95; Cannas et al., 1984); [Pt(en)2][PtI2(en)2](ClO4)4 (0.919; Endres et al., 1979), comparable with that of [Pt(NH3)4][PtI2(NH3)4](HSO4)4·2H2O (0.834; Tanaka et al., 1986), and somewhat larger than that of [Pt(en)2][PtI2(en)2](HPO4)(H2PO4)I·3H2O (0.812 and 0.818; Matsushita, 2006).

Supra­molecular features  

Table 2 lists the N—H⋯O hydrogen bonds which stabilize the columnar structure composed only of cationic complexes, as shown in Fig. 1. A [PtII/IV(en)2] unit is bound to an adjacent Pt-complex unit in the column by the hydrogen-bond linkages, NH⋯counter-anion/(water mol­ecule)⋯HN. The hydrogen-bond linkages are a common structural characteristics of MX-chain compounds.

Table 2. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
N1H1AO2iii 0.90 2.16 2.983(11) 152
N1H1BO4iv 0.90 2.27 3.103(11) 154
N2H2AO1v 0.90 2.21 2.975(10) 142
N2H2BO2vi 0.90 2.19 2.971(11) 145
O4H4O1v 0.83(2) 2.23(3) 2.853(8) 132(4)
O4H4O2v 0.83(2) 2.44(7) 3.175(9) 148(11)

Symmetry codes: (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic.

As a result of the inter­columnar hydrogen-bond linkages, as shown in Figs. 2 and 3, the columns form in layers parallel to the bc plane. The inorganic layer composed of the Pt-complex columns, –SO3 part of the octane-1-sulfonate ion and the water mol­ecule of crystallization, are stacked alternately with organic layers composed of the long-chain alkyl groups along the direction of the a axis. The layer of the long-alkyl chain adopts an inter­digitating structure.

Figure 2.

Figure 2

The crystal packing of the title compound, viewed along the c axis. Blue dashed lines represent the hydrogen bonds. Orange solid lines indicate the unit cell.

Figure 3.

Figure 3

The crystal packing of the title compound viewed along the b axis. Blue dashed lines represent the hydrogen bonds. Orange solid lines indicate the unit cell.

Synthesis and crystallization  

The title compound was prepared by a procedure previously reported (Matsushita & Taira, 1999). Metallic bronze plate-like crystals were obtained by recrystallization from an aqueous solution on slow evaporation.

Refinement  

Although the refinement was performed on F in the previous report (Matsushita & Taira, 1999), the present refinement on basis of the original diffraction data was performed on F 2. For better comparison with the previous model in space group P21 cn, the non-standard setting Pmcn of space group No. 62 (standard setting Pnma) was chosen. The present model converged with improved reliability factors, and the s.u. values for the bond lengths and angles also decreased.

The arrangements of both the Pt-complex cations and the anions with the long-alkyl chain suggest that the repeat unit is half of the c-axis dimension. However, the different orientations of the cations and the anions cause the repeat unit to be the c axis. Therefore, reflections with an index of l = odd are very weak. As the result, a rather low percentage of reflections with [I > 2σ(I)] are observed.

The H atoms were placed in geometrically calculated positions and refined as riding (C—H = 0.97 Å and N—H = 0.90 Å), with the constraint U iso(H) = 1.5U eq(C, N). The H atoms of the water mol­ecule were located from a Fourier map and restrained with a distance of O—H = 0.82 (2) Å and U iso(H) = 1.5U eq(O). The maximum and minimum electron-density peaks lie within 0.75 Å of the Pt atom.

Crystal data, data collection and structure refinement details are summarized in Table 3.

Table 3. Experimental details.

Crystal data
Chemical formula [Pt(C2H8N2)4][PtI2(C2H8N2)4](C8H17SO3)42H2O
M r 1693.53
Crystal system, space group Orthorhombic, P m c n
Temperature (K) 301
a, b, c () 36.997(3), 7.118(2), 11.788(3)
V (3) 3104.3(11)
Z 2
Radiation type Mo K
(mm1) 5.69
Crystal size (mm) 0.17 0.15 0.05
 
Data collection
Diffractometer Rigaku AFC-5S
Absorption correction Gaussian (Coppens et al., 1965)
T min, T max 0.467, 0.757
No. of measured, independent and observed [I > 2(I)] reflections 5883, 5688, 2039
R int 0.006
(sin /)max (1) 0.756
 
Refinement
R[F 2 > 2(F 2)], wR(F 2), S 0.044, 0.112, 0.92
No. of reflections 5688
No. of parameters 174
No. of restraints 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
max, min (e 3) 1.66, 2.12

Computer programs: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1988), local program F2-AFC (Matsushita, 1998), SHELXS97 and SHELXL97 (Sheldrick, 2008) and DIAMOND (Brandenburg, 2006).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989015016801/wm5192sup1.cif

e-71-01155-sup1.cif (26KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015016801/wm5192Isup2.hkl

e-71-01155-Isup2.hkl (278.6KB, hkl)

CCDC reference: 1423010

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was partly supported by a MEXT-Supported Program for the Strategic Research Foundation at Private Universities (project No. S1311027) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan.

supplementary crystallographic information

Crystal data

[Pt2I2(C2H8N2)4](C8H17SO3)4·2H2O F(000) = 1676
Mr = 1693.53 Dx = 1.812 Mg m3
Orthorhombic, Pmcn Mo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2n 2a Cell parameters from 25 reflections
a = 36.997 (3) Å θ = 10.0–14.0°
b = 7.118 (2) Å µ = 5.69 mm1
c = 11.788 (3) Å T = 301 K
V = 3104.3 (11) Å3 Plate, metallic bronze
Z = 2 0.17 × 0.15 × 0.05 mm

Data collection

Rigaku AFC-5S diffractometer 2039 reflections with I > 2σ(I)
Radiation source: X-ray sealed tube Rint = 0.006
Graphite monochromator θmax = 32.5°, θmin = 2.9°
ω scans h = 0→55
Absorption correction: gaussian (Coppens et al., 1965) k = 0→10
Tmin = 0.467, Tmax = 0.757 l = 0→17
5883 measured reflections 3 standard reflections every 100 reflections
5688 independent reflections intensity decay: none

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.112 w = 1/[σ2(Fo2) + (0.0247P)2] where P = (Fo2 + 2Fc2)/3
S = 0.92 (Δ/σ)max < 0.001
5688 reflections Δρmax = 1.66 e Å3
174 parameters Δρmin = −2.12 e Å3
2 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: heavy-atom method Extinction coefficient: 0.00020 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Pt 0.2500 0.25626 (11) 0.18219 (3) 0.02517 (11)
I1 0.2500 0.2445 (9) 0.41018 (13) 0.0337 (5) 0.50
I2 0.2500 0.2378 (9) 0.45114 (13) 0.0344 (6) 0.50
N1 0.2915 (2) 0.0656 (11) 0.1722 (6) 0.036 (2)
H1A 0.2941 0.0071 0.2394 0.053*
H1B 0.2862 −0.0217 0.1194 0.053*
N2 0.2918 (3) 0.4454 (12) 0.1908 (7) 0.043 (3)
H2A 0.2934 0.5098 0.1253 0.064*
H2B 0.2878 0.5277 0.2474 0.064*
C1 0.3255 (3) 0.1620 (14) 0.1418 (8) 0.050 (3)
H1C 0.3260 0.1911 0.0614 0.075*
H1D 0.3462 0.0836 0.1598 0.075*
C2 0.3261 (3) 0.3405 (14) 0.2118 (8) 0.048 (3)
H2C 0.3283 0.3100 0.2917 0.072*
H2D 0.3467 0.4173 0.1903 0.072*
O4 0.2500 0.7653 (16) 0.0327 (9) 0.073 (3)
H4 0.2677 (5) 0.718 (13) 0.000 (7) 0.109*
S1 0.66363 (7) 0.3288 (3) 0.07740 (19) 0.0466 (6)
O1 0.6733 (2) 0.2765 (13) −0.0376 (5) 0.080 (2)
O2 0.69019 (16) 0.2676 (13) 0.1594 (4) 0.0525 (16)
O3 0.65542 (19) 0.5260 (9) 0.0862 (6) 0.068 (2)
C11 0.6225 (3) 0.2054 (12) 0.1073 (7) 0.053 (3)
H11A 0.6059 0.2242 0.0448 0.079*
H11B 0.6277 0.0721 0.1119 0.079*
C12 0.6044 (2) 0.2663 (17) 0.2159 (7) 0.048 (2)
H12A 0.6020 0.4020 0.2165 0.072*
H12B 0.6192 0.2303 0.2801 0.072*
C13 0.5670 (3) 0.1764 (14) 0.2275 (8) 0.058 (3)
H13A 0.5534 0.1998 0.1585 0.087*
H13B 0.5699 0.0416 0.2349 0.087*
C14 0.5457 (2) 0.246 (2) 0.3255 (7) 0.056 (2)
H14A 0.5445 0.3824 0.3212 0.084*
H14B 0.5585 0.2144 0.3947 0.084*
C15 0.5077 (3) 0.1697 (15) 0.3330 (7) 0.056 (3)
H15A 0.5091 0.0344 0.3419 0.084*
H15B 0.4955 0.1945 0.2617 0.084*
C16 0.4847 (2) 0.2488 (16) 0.4288 (7) 0.058 (2)
H16A 0.4968 0.2239 0.5002 0.087*
H16B 0.4832 0.3840 0.4198 0.087*
C17 0.4468 (3) 0.1704 (13) 0.4350 (9) 0.060 (3)
H17A 0.4344 0.1988 0.3645 0.090*
H17B 0.4483 0.0347 0.4414 0.090*
C18 0.4244 (3) 0.244 (2) 0.5322 (8) 0.078 (3)
H18A 0.4356 0.2109 0.6028 0.117*
H18B 0.4006 0.1902 0.5290 0.117*
H18C 0.4226 0.3784 0.5268 0.117*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Pt 0.0375 (2) 0.02157 (17) 0.01644 (15) 0.000 0.000 0.0004 (3)
I1 0.0448 (11) 0.0391 (9) 0.0173 (7) 0.000 0.000 0.002 (2)
I2 0.0552 (12) 0.0308 (11) 0.0173 (8) 0.000 0.000 −0.0001 (18)
N1 0.035 (6) 0.036 (5) 0.036 (5) 0.007 (4) 0.012 (4) 0.000 (3)
N2 0.068 (9) 0.034 (5) 0.026 (4) −0.020 (5) 0.006 (4) 0.003 (3)
C1 0.044 (7) 0.069 (7) 0.037 (5) 0.015 (5) 0.010 (5) 0.002 (5)
C2 0.041 (6) 0.055 (6) 0.048 (5) −0.009 (5) −0.005 (5) 0.013 (5)
O4 0.100 (8) 0.036 (5) 0.081 (7) 0.000 0.000 −0.023 (6)
S1 0.0548 (15) 0.0516 (13) 0.0334 (11) −0.0170 (11) −0.0039 (12) 0.0021 (10)
O1 0.099 (6) 0.099 (6) 0.041 (3) −0.040 (6) 0.009 (4) 0.002 (5)
O2 0.048 (3) 0.064 (4) 0.045 (3) −0.009 (5) −0.004 (3) 0.008 (4)
O3 0.064 (5) 0.048 (4) 0.091 (5) −0.019 (3) −0.016 (4) 0.014 (4)
C11 0.058 (6) 0.050 (6) 0.049 (5) −0.017 (5) −0.003 (5) 0.012 (4)
C12 0.045 (5) 0.052 (6) 0.048 (4) −0.023 (6) −0.019 (4) 0.003 (6)
C13 0.055 (7) 0.062 (6) 0.057 (6) −0.010 (5) 0.007 (6) 0.012 (5)
C14 0.056 (5) 0.055 (5) 0.058 (5) −0.022 (8) −0.007 (5) 0.000 (7)
C15 0.042 (6) 0.063 (6) 0.064 (7) −0.014 (5) 0.006 (5) 0.017 (5)
C16 0.053 (5) 0.056 (5) 0.064 (5) −0.017 (7) −0.005 (5) 0.021 (9)
C17 0.045 (6) 0.054 (5) 0.081 (7) −0.008 (5) 0.014 (7) 0.015 (6)
C18 0.066 (7) 0.086 (7) 0.083 (7) −0.004 (10) 0.005 (6) −0.009 (10)

Geometric parameters (Å, º)

Pt—N1i 2.052 (8) C11—C12 1.509 (11)
Pt—N1 2.052 (8) C11—H11A 0.9700
Pt—N2i 2.052 (8) C11—H11B 0.9700
Pt—N2 2.052 (8) C12—C13 1.531 (12)
Pt—I1 2.6888 (17) C12—H12A 0.9700
Pt—I2ii 2.7239 (17) C12—H12B 0.9700
Pt—I2 3.1732 (16) C13—C14 1.483 (12)
Pt—I1iii 3.2065 (17) C13—H13A 0.9700
N1—C1 1.479 (11) C13—H13B 0.9700
N1—H1A 0.9000 C14—C15 1.513 (12)
N1—H1B 0.9000 C14—H14A 0.9700
N2—C2 1.495 (12) C14—H14B 0.9700
N2—H2A 0.9000 C15—C16 1.522 (12)
N2—H2B 0.9000 C15—H15A 0.9700
C1—C2 1.515 (12) C15—H15B 0.9700
C1—H1C 0.9700 C16—C17 1.511 (12)
C1—H1D 0.9700 C16—H16A 0.9700
C2—H2C 0.9700 C16—H16B 0.9700
C2—H2D 0.9700 C17—C18 1.510 (12)
O4—H4 0.83 (2) C17—H17A 0.9700
S1—O3 1.440 (7) C17—H17B 0.9700
S1—O2 1.446 (6) C18—H18A 0.9600
S1—O1 1.451 (7) C18—H18B 0.9600
S1—C11 1.791 (9) C18—H18C 0.9600
N1i—Pt—N1 96.8 (5) O3—S1—O2 112.9 (5)
N1i—Pt—N2i 82.7 (2) O3—S1—O1 111.7 (5)
N1—Pt—N2i 179.4 (4) O2—S1—O1 112.3 (4)
N1i—Pt—N2 179.4 (4) O3—S1—C11 106.5 (5)
N1—Pt—N2 82.7 (2) O2—S1—C11 107.3 (4)
N2i—Pt—N2 97.7 (5) O1—S1—C11 105.5 (4)
N1i—Pt—I1 92.1 (2) C12—C11—S1 113.8 (6)
N1—Pt—I1 92.1 (2) C12—C11—H11A 108.8
N2i—Pt—I1 88.3 (3) S1—C11—H11A 108.8
N2—Pt—I1 88.3 (3) C12—C11—H11B 108.8
N1i—Pt—I2ii 87.3 (2) S1—C11—H11B 108.8
N1—Pt—I2ii 87.3 (2) H11A—C11—H11B 107.7
N2i—Pt—I2ii 92.2 (3) C11—C12—C13 111.0 (8)
N2—Pt—I2ii 92.2 (3) C11—C12—H12A 109.4
I1—Pt—I2ii 179.1 (3) C13—C12—H12A 109.4
N1i—Pt—I2 91.7 (2) C11—C12—H12B 109.4
N1—Pt—I2 91.7 (2) C13—C12—H12B 109.4
N2i—Pt—I2 88.7 (2) H12A—C12—H12B 108.0
N2—Pt—I2 88.7 (2) C14—C13—C12 114.1 (8)
I1—Pt—I2 0.6 (2) C14—C13—H13A 108.7
I2ii—Pt—I2 178.52 (4) C12—C13—H13A 108.7
N1i—Pt—I1iii 86.6 (2) C14—C13—H13B 108.7
N1—Pt—I1iii 86.6 (2) C12—C13—H13B 108.7
N2i—Pt—I1iii 92.9 (2) H13A—C13—H13B 107.6
N2—Pt—I1iii 92.9 (2) C13—C14—C15 114.6 (9)
I1—Pt—I1iii 178.12 (4) C13—C14—H14A 108.6
I2ii—Pt—I1iii 1.0 (2) C15—C14—H14A 108.6
I2—Pt—I1iii 177.5 (2) C13—C14—H14B 108.6
Pt—I1—Ptiv 178.3 (3) C15—C14—H14B 108.6
Ptiv—I2—Pt 176.7 (2) H14A—C14—H14B 107.6
C1—N1—Pt 110.1 (6) C14—C15—C16 115.5 (8)
C1—N1—H1A 109.6 C14—C15—H15A 108.4
Pt—N1—H1A 109.6 C16—C15—H15A 108.4
C1—N1—H1B 109.6 C14—C15—H15B 108.4
Pt—N1—H1B 109.6 C16—C15—H15B 108.4
H1A—N1—H1B 108.1 H15A—C15—H15B 107.5
C2—N2—Pt 108.7 (6) C17—C16—C15 114.7 (9)
C2—N2—H2A 109.9 C17—C16—H16A 108.6
Pt—N2—H2A 109.9 C15—C16—H16A 108.6
C2—N2—H2B 109.9 C17—C16—H16B 108.6
Pt—N2—H2B 109.9 C15—C16—H16B 108.6
H2A—N2—H2B 108.3 H16A—C16—H16B 107.6
N1—C1—C2 105.7 (8) C18—C17—C16 114.7 (9)
N1—C1—H1C 110.6 C18—C17—H17A 108.6
C2—C1—H1C 110.6 C16—C17—H17A 108.6
N1—C1—H1D 110.6 C18—C17—H17B 108.6
C2—C1—H1D 110.6 C16—C17—H17B 108.6
H1C—C1—H1D 108.7 H17A—C17—H17B 107.6
N2—C2—C1 108.4 (8) C17—C18—H18A 109.5
N2—C2—H2C 110.0 C17—C18—H18B 109.5
C1—C2—H2C 110.0 H18A—C18—H18B 109.5
N2—C2—H2D 110.0 C17—C18—H18C 109.5
C1—C2—H2D 110.0 H18A—C18—H18C 109.5
H2C—C2—H2D 108.4 H18B—C18—H18C 109.5

Symmetry codes: (i) −x+1/2, y, z; (ii) x, −y+1/2, z−1/2; (iii) −x+1/2, −y+1/2, z−1/2; (iv) x, −y+1/2, z+1/2.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1A···O2v 0.90 2.16 2.983 (11) 152
N1—H1B···O4vi 0.90 2.27 3.103 (11) 154
N2—H2A···O1vii 0.90 2.21 2.975 (10) 142
N2—H2B···O2viii 0.90 2.19 2.971 (11) 145
O4—H4···O1vii 0.83 (2) 2.23 (3) 2.853 (8) 132 (4)
O4—H4···O2vii 0.83 (2) 2.44 (7) 3.175 (9) 148 (11)

Symmetry codes: (v) −x+1, y−1/2, −z+1/2; (vi) x, y−1, z; (vii) −x+1, −y+1, −z; (viii) −x+1, y+1/2, −z+1/2.

References

  1. Beauchamp, A. L., Layek, D. & Theophanides, T. (1982). Acta Cryst. B38, 1158–1164.
  2. Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  3. Breer, H., Endres, H., Keller, H. J. & Martin, R. (1978). Acta Cryst. B34, 2295–2297.
  4. Cannas, M., Marongiu, G., Keller, H. J., Müller, B. & Martin, R. (1984). Z. Naturforsch. Teil B, 39, 197–200.
  5. Coppens, P., Leiserowitz, L. & Rabinovich, D. (1965). Acta Cryst. 18, 1035–1038.
  6. Endres, H., Keller, H. J., Martin, R., Hae Nam Gung, & Traeger, J. (1979). Acta Cryst. B35, 1885–1887.
  7. Endres, H., Keller, H. J., Martin, R., Traeger, U. & Novotny, M. (1980). Acta Cryst. B36, 35–39.
  8. Huckett, S. C., Scott, B., Love, S. P., Donohoe, R. J., Burns, C. J., Garcia, E., Frankcom, T. & Swanson, B. I. (1993). Inorg. Chem. 32, 2137–2144.
  9. Keller, H. J. (1982). Extended Linear Chain Compounds, edited by J. S. Miller, pp. 357–407. New York: Plenum.
  10. Matsushita, N. (1993). Synth. Met. 56, 3401–3406.
  11. Matsushita, N. (1998). F2-AFC. University of Tokyo, Japan.
  12. Matsushita, N. (2003). Acta Cryst. E59, m26–m28.
  13. Matsushita, N. (2006). Acta Cryst. C62, m33–m36. [DOI] [PubMed]
  14. Matsushita, N., Kitagawa, H. & Mitani, T. (1995). Synth. Met. 71, 1933–1934.
  15. Matsushita, N., Kojima, N., Ban, T. & Tsujikawa, I. (1989). Bull. Chem. Soc. Jpn, 62, 1785–1790.
  16. Matsushita, N., Taga, T. & Tsujikawa, I. (1992). Acta Cryst. C48, 1936–1939.
  17. Matsushita, N. & Taira, A. (1999). Synth. Met. 102, 1787–1788.
  18. Molecular Structure Corporation (1988). MSC/AFC Diffractometer Control Software. MSC, The Woodlands, Texas, USA.
  19. Robin, M. B. & Day, P. (1967). Advances Inorganic Chemistry and Radiochemistry, edited by H. J. Emeléus & A. G. Sharpe, Vol. 10, pp. 247–422. New York: Academic Press.
  20. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  21. Tanaka, M., Tsujikawa, I., Toriumi, K. & Ito, T. (1986). Acta Cryst. C42, 1105–1109.
  22. Toriumi, K., Yamashita, M., Kurita, S., Murase, I. & Ito, T. (1993). Acta Cryst. B49, 497–506.
  23. Yamashita, M., Toriumi, K. & Ito, T. (1985). Acta Cryst. C41, 876–878.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989015016801/wm5192sup1.cif

e-71-01155-sup1.cif (26KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015016801/wm5192Isup2.hkl

e-71-01155-Isup2.hkl (278.6KB, hkl)

CCDC reference: 1423010

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES