Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Sep 26;71(Pt 10):1222–1225. doi: 10.1107/S2056989015017053

Synthesis, characterization and crystal structure of a 2-(diethylaminomethyl)indole ligated dimethyl­aluminium complex

Logan E Shephard a, Nicholas B Kingsley a,*
PMCID: PMC4647369  PMID: 26594412

The title aluminium complex was prepared by methane elimination from the reaction of 2-(di­ethyl­amino­meth­yl)indole and tri­methyl­aluminium. Each of the two crystallographically independent mol­ecules has a four-coordinate aluminium center that has pseudo-tetra­hedral geometry.

Keywords: crystal structure, aluminium, indol­yl, C—H⋯π inter­actions

Abstract

The title compound, [Al(CH3)2(C13H17N2)] (systematic name; {2-[(di­ethyl­amino)­meth­yl]indol-1-yl-κ2 N,N′}di­methyl­aluminium), was prepared by methane elimination from the reaction of 2-(di­ethyl­amino­meth­yl)indole and tri­methyl­aluminium. The complex crystallizes readily from a concentrated toluene solution in high yield. The asymmetric unit contains two crystallographically independent mol­ecules. Each mol­ecule has a four-coordinate aluminium atom that has pseudo-tetra­hedral geometry. C—H⋯π inter­actions link the independent mol­ecules into chains extending along the b-axis direction.

Chemical context  

Organoaluminium chemistry has a long history of active research that has led to numerous applications in industry (Mason, 2005). Organoaluminium compounds have garnered much attention in recent years for their use in the formation of polyactides, (Liu et al., 2010; Chisholm et al., 2003, 2005; Zhang et al., 2014; Chen et al., 2012; Schwarz et al., 2010) and hydro­amination (Koller & Bergman, 2010a ,b ; Khandelwal & Wehmschulte, 2012). While many varieties of ancillary ligands on aluminium have been employed in such reactions, a majority of these systems have nitro­gen-donor arms as a component. Our group is inter­ested in particular in the use of 2-(di­alkyl­amino­meth­yl)indoles (Nagarathnam, 1992) as ligands for organoaluminium complexes. Herein we report the synthesis, characterization and crystal structure of the first 2-(di­alkyl­amino­meth­yl)indol­yl–aluminium complex, [Al(CH3)2(C13H17N2)].graphic file with name e-71-01222-scheme1.jpg

Structural commentary  

The asymmetric unit of the title complex contains two independent mol­ecules (Fig. 1). They are structurally different with regard to the chelate rings that are formed around the aluminium atoms by the indolyl moiety. The most obvious difference between the two crystallographically independent mol­ecules is the displacement of the Al atom from the plane of the chelate ring. Al1 deviates by 0.6831 (5) Å from the plane defined by atoms N1/C10/C1/N2 while Al1A deviates by 0.6150 (5) Å from the plane N1A/C10A/C1A/N2A. Each mol­ecule contains a four-coordinate, pseudo-tetra­hedral, aluminium atom. There are two distinct bond lengths for the Al—N bonds in the mol­ecule. The Al—Nindol­yl bond lengths are 1.8879 (14) Å for Al1—N1 and 1.8779 (15) Å for Al1A—N1A. These lengths are in the range expected for anionically bound indolyl or pyrrolyl moieties (Huang et al., 2001). As expected, these lengths are significantly shorter than those found for the dative Al—Nimine bonds, 2.0355 (15) Å for Al1—N2 and 2.0397 (16) Å for Al1A—N2A [see Huang et al. (2001) for typical values].

Figure 1.

Figure 1

A view of the asymmetric unit of the title compound, showing the atom labeling. Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted for clarity.

Supra­molecular features  

The crystal packing is illustrated in Fig. 2. In the crystal, mol­ecules associate via three different types of C—H⋯π inter­actions, as shown in Figs. 3 and 4. There is one inter­action between the methyl proton H5A and the centroid of the (C12A–C17A) aromatic ring of 2.57 Å (Table 1) and another between the methyl­ene proton H4D and the aromatic C14 of 2.88 Å. The third inter­action is between H2B and the centroid of C12A i–C17A i [Table 1; symmetry code: (i) 1 − x, −Inline graphic + y, 1 − z]. This inter­action links the two independent mol­ecules in the asymmetric unit into chains that extend along the b-axis direction.

Figure 2.

Figure 2

Crystal packing diagram of the title compound viewed along the a axis.

Figure 3.

Figure 3

C—H⋯π inter­actions between mol­ecules in the asymmetric unit.

Figure 4.

Figure 4

All C—H⋯π inter­actions between mol­ecules of the title compound. [Symmetry code: (i) 1 − x, −Inline graphic + y, 1 − z.]

Table 1. CH interactions (, ).

Cg1 is the centroid of the C12AC17A ring.

DHA DH HA D A DHA
C5H5A Cg1 0.98 2.57 3.470(2) 153
C2H2B Cg1i 0.99 2.55 3.434(2) 149

Symmetry code: (i) Inline graphic.

Database survey  

A search of the Cambridge Structural Database (CSD, Version 5.36; Groom & Allen, 2014) for indolyl gave 500 hits. A search for indolide generated 18 hits. Neither of these sets of hits included structures involving indolyl moieties bound to aluminium. A substructure search for N-bound indolyl-coordinating aluminium complexes resulted in only five hits (Kingsley et al., 2010), all of which contained bridging μ211 coordination modes. The title compound is the first struct­urally characterized complex with a monomeric μ11-coordinating indole moiety to aluminium.

Synthesis and crystallization  

To a 100 mL side-arm flask was added 2-(di­ethyl­amino­meth­yl)indole (0.402 g, 2.0 mmol) and 25 mL of toluene. A toluene solution of tri­methyl­aluminium (1.0 mL, 2.0 M, 2.0 mmol) was added via syringe. The reaction solution turned bright yellow, which darkened as the solution was stirred for 12 h. The solvent was then removed in vacuo resulting in a yellow solid, which was dissolved in a mixture of 10 mL of hot toluene, followed by cooling to 243 K for 48 h. The resulting yellow crystalline material was isolated by filtration. Yield: 0.462 g, 1.78 mmol, 90%. 1H NMR (CDCl3, 600 MHz): δ 7.55 (d, 3 J HH = 7.8 Hz, 1H, H16), 7.36 (d, 3 J HH = 7.8 Hz, 1H, H13), 7.07 (t, 3 J HH = 7.8 Hz, 1H, H15), 7.00 (t, 3 J HH = 7.8 Hz, 1H, H14), 6.31 (s, 1H, H11), 4.00 (s, 2H, indole CH2), 2.88 (q, 3 J HH = 7.2 Hz, 4H, amino CH2CH3), 1.13 (t, 3 J HH = 7.2 Hz, 6H, amino CH2 CH3), −0.59 (s, 6H, AlCH3). 13C{1H} NMR (CDCl3, 150.8 MHz): δ 141.7 (C17), 139.4 (C10), 131.8 (C12), 120.2 (C15), 119.6 (C16), 118.5 (C15), 113.7 (C14), 98.1 (C11), 53.2 (indole CH2), 44.7 (amino CH2CH3), 8.3 (amino CH2 CH3), −11.10 (br, AlCH3) (Kingsley et al., 2010). Analysis calculated for C15H23N2Al: C, 69.74; H, 8.97; N, 10.84. Found: C, 69.67; H, 8.70; N, 10.63.graphic file with name e-71-01222-scheme2.jpg

X-ray quality crystals were grown from a concentrated solution in hot toluene followed by slow cooling to room temperature followed by storage at 243 K for 72 h.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. All H atoms were positioned geometrically and refined using a riding model with C—H = 0.05–0.99 Å and U iso(H) = 1.2 or 1.5U eq(C).

Table 2. Experimental details.

Crystal data
Chemical formula [Al(CH3)2(C13H17N2)]
M r 258.33
Crystal system, space group Monoclinic, P21
Temperature (K) 150
a, b, c () 9.7467(5), 14.1245(7), 10.9866(5)
() 94.206(1)
V (3) 1508.42(13)
Z 4
Radiation type Mo K
(mm1) 0.12
Crystal size (mm) 0.20 0.20 0.15
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2003)
T min, T max 0.697, 0.745
No. of measured, independent and observed [I > 2(I)] reflections 13157, 5440, 5366
R int 0.025
(sin /)max (1) 0.624
 
Refinement
R[F 2 > 2(F 2)], wR(F 2), S 0.024, 0.068, 1.05
No. of reflections 5440
No. of parameters 333
No. of restraints 1
H-atom treatment H-atom parameters constrained
max, min (e 3) 0.21, 0.19
Absolute structure Flack x determined using 2203 quotients [(I +)(I )]/[(I +)+(I )] (Parsons et al., 2013)
Absolute structure parameter 0.05(3)

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), DIAMOND (Brandenburg, 2010) and publCIF (Westrip, 2010)..

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015017053/zl2630sup1.cif

e-71-01222-sup1.cif (406KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015017053/zl2630Isup2.hkl

e-71-01222-Isup2.hkl (432.7KB, hkl)

CCDC reference: 1423793

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors would like to thank the University of Michigan-Flint Office of Research and Sponsored Programs for their support of this project. Special acknowledgement is given to Dr Chris Gianopoulos for assistance in data collection and structure refinement and to the University of Toledo Instrumentation Center for the use of their Bruker APEXII diffractometer.

supplementary crystallographic information

Crystal data

[Al(CH3)2(C13H17N2)] F(000) = 560
Mr = 258.33 Dx = 1.138 Mg m3
Monoclinic, P21 Mo Kα radiation, λ = 0.71073 Å
a = 9.7467 (5) Å Cell parameters from 5904 reflections
b = 14.1245 (7) Å θ = 2.4–26.4°
c = 10.9866 (5) Å µ = 0.12 mm1
β = 94.206 (1)° T = 150 K
V = 1508.42 (13) Å3 Irregular, yellow
Z = 4 0.20 × 0.20 × 0.15 mm

Data collection

Bruker APEXII CCD diffractometer 5366 reflections with I > 2σ(I)
Radiation source: sealed tube Rint = 0.025
φ and ω scans θmax = 26.3°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Bruker, 2003) h = −12→10
Tmin = 0.697, Tmax = 0.745 k = −16→17
13157 measured reflections l = −13→12
5440 independent reflections

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.024 w = 1/[σ2(Fo2) + (0.0388P)2 + 0.2513P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.068 (Δ/σ)max < 0.001
S = 1.05 Δρmax = 0.21 e Å3
5440 reflections Δρmin = −0.19 e Å3
333 parameters Absolute structure: Flack x determined using 2203 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraint Absolute structure parameter: 0.05 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Al1 0.49235 (5) 0.10530 (4) 0.05845 (4) 0.01712 (12)
Al1A 0.00034 (5) 0.32156 (4) 0.44114 (4) 0.01652 (12)
N1 0.29822 (14) 0.10862 (11) 0.04241 (13) 0.0187 (3)
N1A 0.19261 (14) 0.30931 (11) 0.44801 (12) 0.0185 (3)
N2 0.46863 (14) 0.02289 (10) 0.20745 (13) 0.0166 (3)
N2A 0.02362 (15) 0.42016 (11) 0.30859 (12) 0.0185 (3)
C1 0.33910 (17) −0.03044 (13) 0.16893 (16) 0.0194 (3)
H1A 0.3588 −0.0811 0.1105 0.023*
H1B 0.3005 −0.0598 0.2408 0.023*
C2 0.58090 (17) −0.04771 (13) 0.23735 (16) 0.0210 (4)
H2A 0.5922 −0.0876 0.1647 0.025*
H2B 0.5532 −0.0896 0.3035 0.025*
C3 0.7178 (2) −0.00237 (15) 0.2769 (2) 0.0311 (4)
H3A 0.7883 −0.0516 0.2893 0.047*
H3B 0.7099 0.0322 0.3534 0.047*
H3C 0.7439 0.0417 0.2136 0.047*
C4 0.44570 (18) 0.08681 (13) 0.31419 (15) 0.0201 (3)
H4A 0.3664 0.1285 0.2912 0.024*
H4B 0.5276 0.1278 0.3291 0.024*
C5 0.4190 (2) 0.03699 (15) 0.43275 (17) 0.0319 (4)
H5A 0.4053 0.0843 0.4960 0.048*
H5B 0.4981 −0.0030 0.4585 0.048*
H5C 0.3365 −0.0025 0.4202 0.048*
C6 0.57142 (19) 0.23092 (14) 0.09103 (18) 0.0263 (4)
H6A 0.6534 0.2252 0.1478 0.039*
H6B 0.5035 0.2713 0.1272 0.039*
H6C 0.5969 0.2592 0.0144 0.039*
C7 0.58197 (19) 0.02303 (15) −0.05668 (16) 0.0254 (4)
H7A 0.6789 0.0143 −0.0284 0.038*
H7B 0.5760 0.0524 −0.1377 0.038*
H7C 0.5357 −0.0386 −0.0613 0.038*
C10 0.23890 (17) 0.03923 (13) 0.11001 (15) 0.0190 (3)
C11 0.10054 (18) 0.05168 (13) 0.11525 (16) 0.0215 (4)
H11 0.0391 0.0126 0.1559 0.026*
C12 0.06711 (17) 0.13596 (14) 0.04673 (16) 0.0204 (4)
C13 −0.05440 (18) 0.18738 (15) 0.01868 (16) 0.0256 (4)
H13 −0.1397 0.1651 0.0442 0.031*
C14 −0.0484 (2) 0.27035 (16) −0.04612 (17) 0.0283 (4)
H14 −0.1304 0.3053 −0.0655 0.034*
C15 0.0767 (2) 0.30439 (15) −0.08420 (16) 0.0281 (4)
H15 0.0783 0.3624 −0.1277 0.034*
C16 0.19806 (19) 0.25458 (14) −0.05925 (16) 0.0238 (4)
H16 0.2827 0.2777 −0.0852 0.029*
C17 0.19268 (17) 0.16992 (13) 0.00483 (15) 0.0188 (3)
C1A 0.14884 (18) 0.38445 (14) 0.24981 (15) 0.0219 (4)
H1D 0.1228 0.3324 0.1924 0.026*
H1E 0.1900 0.4361 0.2037 0.026*
C2A 0.05447 (18) 0.51442 (13) 0.36912 (15) 0.0216 (4)
H2D 0.1376 0.5072 0.4258 0.026*
H2E −0.0229 0.5309 0.4187 0.026*
C3A 0.0777 (2) 0.59665 (15) 0.28370 (18) 0.0299 (4)
H3D 0.0966 0.6543 0.3317 0.045*
H3E −0.0047 0.6061 0.2284 0.045*
H3F 0.1563 0.5826 0.2359 0.045*
C4A −0.09529 (19) 0.42606 (15) 0.21401 (16) 0.0252 (4)
H4D −0.1106 0.3629 0.1764 0.030*
H4E −0.0714 0.4704 0.1490 0.030*
C5A −0.2272 (2) 0.45879 (17) 0.26472 (19) 0.0327 (5)
H5D −0.3030 0.4539 0.2013 0.049*
H5E −0.2173 0.5248 0.2914 0.049*
H5F −0.2470 0.4190 0.3343 0.049*
C6A −0.0962 (2) 0.21207 (14) 0.36621 (17) 0.0259 (4)
H6D −0.1936 0.2277 0.3485 0.039*
H6E −0.0880 0.1582 0.4225 0.039*
H6F −0.0553 0.1955 0.2902 0.039*
C7A −0.06954 (18) 0.37556 (15) 0.58896 (16) 0.0234 (4)
H7D −0.1698 0.3820 0.5775 0.035*
H7E −0.0281 0.4380 0.6048 0.035*
H7F −0.0456 0.3337 0.6585 0.035*
C10A 0.25049 (18) 0.34955 (13) 0.34895 (15) 0.0198 (3)
C11A 0.39089 (18) 0.34640 (14) 0.36008 (16) 0.0223 (4)
H11A 0.4520 0.3707 0.3042 0.027*
C12A 0.42739 (18) 0.29896 (12) 0.47316 (16) 0.0202 (4)
C13A 0.55142 (18) 0.27146 (14) 0.53626 (18) 0.0261 (4)
H13A 0.6369 0.2843 0.5032 0.031*
C14A 0.54780 (19) 0.22547 (15) 0.64699 (18) 0.0284 (4)
H14A 0.6316 0.2067 0.6899 0.034*
C15A 0.4220 (2) 0.20598 (14) 0.69735 (17) 0.0256 (4)
H15A 0.4225 0.1744 0.7737 0.031*
C16A 0.29816 (18) 0.23198 (13) 0.63774 (16) 0.0205 (3)
H16A 0.2135 0.2192 0.6723 0.025*
C17A 0.30091 (17) 0.27766 (13) 0.52507 (15) 0.0179 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Al1 0.0165 (2) 0.0158 (3) 0.0194 (2) 0.00128 (19) 0.00356 (18) 0.00057 (19)
Al1A 0.0162 (2) 0.0184 (3) 0.0150 (2) −0.00063 (19) 0.00145 (18) −0.00094 (19)
N1 0.0183 (6) 0.0191 (8) 0.0189 (7) 0.0012 (6) 0.0020 (5) 0.0021 (6)
N1A 0.0193 (7) 0.0195 (8) 0.0168 (6) 0.0008 (6) 0.0031 (5) 0.0009 (6)
N2 0.0177 (6) 0.0129 (7) 0.0192 (6) 0.0013 (6) 0.0003 (5) −0.0014 (6)
N2A 0.0219 (7) 0.0181 (7) 0.0152 (6) 0.0007 (6) 0.0000 (5) −0.0016 (5)
C1 0.0208 (8) 0.0148 (8) 0.0225 (8) −0.0028 (7) 0.0007 (6) 0.0005 (6)
C2 0.0212 (8) 0.0159 (9) 0.0258 (8) 0.0046 (7) −0.0001 (7) 0.0011 (7)
C3 0.0231 (9) 0.0283 (11) 0.0409 (11) 0.0037 (8) −0.0039 (8) 0.0035 (9)
C4 0.0265 (8) 0.0148 (9) 0.0191 (8) 0.0010 (7) 0.0022 (6) −0.0021 (6)
C5 0.0516 (12) 0.0236 (10) 0.0216 (9) −0.0026 (9) 0.0099 (8) −0.0019 (8)
C6 0.0255 (9) 0.0194 (10) 0.0348 (10) −0.0016 (7) 0.0083 (8) 0.0002 (8)
C7 0.0277 (9) 0.0250 (10) 0.0241 (9) 0.0055 (8) 0.0061 (7) 0.0005 (7)
C10 0.0209 (8) 0.0165 (8) 0.0194 (7) −0.0024 (7) 0.0012 (6) −0.0009 (6)
C11 0.0194 (8) 0.0227 (10) 0.0225 (8) −0.0037 (7) 0.0024 (6) −0.0004 (7)
C12 0.0194 (8) 0.0235 (9) 0.0182 (8) 0.0007 (7) 0.0011 (6) −0.0046 (7)
C13 0.0211 (8) 0.0341 (11) 0.0216 (8) 0.0050 (8) 0.0013 (7) −0.0061 (7)
C14 0.0283 (9) 0.0345 (11) 0.0216 (8) 0.0148 (8) −0.0018 (7) −0.0042 (8)
C15 0.0390 (10) 0.0253 (10) 0.0201 (8) 0.0117 (8) 0.0026 (7) 0.0031 (7)
C16 0.0275 (9) 0.0256 (10) 0.0189 (8) 0.0042 (7) 0.0048 (7) 0.0027 (7)
C17 0.0206 (8) 0.0206 (9) 0.0152 (7) 0.0024 (7) 0.0011 (6) −0.0019 (6)
C1A 0.0253 (8) 0.0244 (9) 0.0166 (8) 0.0014 (7) 0.0053 (6) 0.0000 (7)
C2A 0.0268 (8) 0.0181 (9) 0.0197 (8) −0.0009 (7) 0.0006 (7) −0.0026 (7)
C3A 0.0372 (10) 0.0223 (10) 0.0301 (9) −0.0035 (8) 0.0034 (8) 0.0017 (8)
C4A 0.0296 (9) 0.0271 (10) 0.0177 (8) −0.0012 (8) −0.0064 (7) 0.0010 (7)
C5A 0.0275 (9) 0.0354 (12) 0.0338 (10) 0.0040 (8) −0.0064 (8) 0.0004 (9)
C6A 0.0291 (9) 0.0246 (10) 0.0237 (9) −0.0051 (8) −0.0004 (7) −0.0022 (8)
C7A 0.0211 (8) 0.0295 (10) 0.0198 (8) −0.0006 (7) 0.0034 (6) −0.0037 (7)
C10A 0.0239 (8) 0.0183 (8) 0.0177 (8) −0.0005 (7) 0.0063 (6) −0.0015 (6)
C11A 0.0225 (8) 0.0211 (9) 0.0244 (8) −0.0027 (7) 0.0097 (7) −0.0041 (7)
C12A 0.0209 (8) 0.0158 (9) 0.0242 (8) −0.0003 (6) 0.0050 (7) −0.0067 (6)
C13A 0.0182 (8) 0.0244 (10) 0.0358 (10) 0.0015 (7) 0.0040 (7) −0.0085 (8)
C14A 0.0227 (9) 0.0277 (10) 0.0335 (10) 0.0079 (7) −0.0063 (7) −0.0081 (8)
C15A 0.0307 (9) 0.0213 (10) 0.0239 (8) 0.0056 (8) −0.0031 (7) −0.0024 (7)
C16A 0.0226 (8) 0.0172 (9) 0.0218 (8) 0.0021 (7) 0.0028 (6) −0.0024 (6)
C17A 0.0188 (8) 0.0148 (8) 0.0203 (8) 0.0008 (6) 0.0021 (6) −0.0047 (7)

Geometric parameters (Å, º)

Al1—N1 1.8879 (14) C12—C17 1.422 (2)
Al1—C6 1.957 (2) C13—C14 1.375 (3)
Al1—C7 1.9686 (19) C13—H13 0.9500
Al1—N2 2.0355 (15) C14—C15 1.403 (3)
Al1A—N1A 1.8779 (15) C14—H14 0.9500
Al1A—C6A 1.960 (2) C15—C16 1.386 (3)
Al1A—C7A 1.9610 (18) C15—H15 0.9500
Al1A—N2A 2.0397 (16) C16—C17 1.391 (3)
N1—C10 1.382 (2) C16—H16 0.9500
N1—C17 1.384 (2) C1A—C10A 1.501 (2)
N1A—C17A 1.378 (2) C1A—H1D 0.9900
N1A—C10A 1.384 (2) C1A—H1E 0.9900
N2—C2 1.499 (2) C2A—C3A 1.521 (3)
N2—C1 1.504 (2) C2A—H2D 0.9900
N2—C4 1.510 (2) C2A—H2E 0.9900
N2A—C4A 1.501 (2) C3A—H3D 0.9800
N2A—C2A 1.509 (2) C3A—H3E 0.9800
N2A—C1A 1.509 (2) C3A—H3F 0.9800
C1—C10 1.500 (2) C4A—C5A 1.511 (3)
C1—H1A 0.9900 C4A—H4D 0.9900
C1—H1B 0.9900 C4A—H4E 0.9900
C2—C3 1.515 (3) C5A—H5D 0.9800
C2—H2A 0.9900 C5A—H5E 0.9800
C2—H2B 0.9900 C5A—H5F 0.9800
C3—H3A 0.9800 C6A—H6D 0.9800
C3—H3B 0.9800 C6A—H6E 0.9800
C3—H3C 0.9800 C6A—H6F 0.9800
C4—C5 1.520 (2) C7A—H7D 0.9800
C4—H4A 0.9900 C7A—H7E 0.9800
C4—H4B 0.9900 C7A—H7F 0.9800
C5—H5A 0.9800 C10A—C11A 1.366 (2)
C5—H5B 0.9800 C11A—C12A 1.433 (3)
C5—H5C 0.9800 C11A—H11A 0.9500
C6—H6A 0.9800 C12A—C13A 1.404 (2)
C6—H6B 0.9800 C12A—C17A 1.428 (2)
C6—H6C 0.9800 C13A—C14A 1.382 (3)
C7—H7A 0.9800 C13A—H13A 0.9500
C7—H7B 0.9800 C14A—C15A 1.409 (3)
C7—H7C 0.9800 C14A—H14A 0.9500
C10—C11 1.365 (2) C15A—C16A 1.380 (2)
C11—C12 1.433 (3) C15A—H15A 0.9500
C11—H11 0.9500 C16A—C17A 1.398 (2)
C12—C13 1.404 (2) C16A—H16A 0.9500
N1—Al1—C6 111.91 (8) C14—C13—C12 119.17 (18)
N1—Al1—C7 116.33 (8) C14—C13—H13 120.4
C6—Al1—C7 117.73 (8) C12—C13—H13 120.4
N1—Al1—N2 85.25 (6) C13—C14—C15 121.16 (17)
C6—Al1—N2 115.96 (7) C13—C14—H14 119.4
C7—Al1—N2 105.14 (7) C15—C14—H14 119.4
N1A—Al1A—C6A 113.03 (8) C16—C15—C14 120.99 (19)
N1A—Al1A—C7A 114.12 (7) C16—C15—H15 119.5
C6A—Al1A—C7A 118.00 (8) C14—C15—H15 119.5
N1A—Al1A—N2A 85.91 (6) C15—C16—C17 118.25 (17)
C6A—Al1A—N2A 108.30 (7) C15—C16—H16 120.9
C7A—Al1A—N2A 112.91 (8) C17—C16—H16 120.9
C10—N1—C17 105.83 (13) N1—C17—C16 129.35 (16)
C10—N1—Al1 112.84 (11) N1—C17—C12 109.32 (16)
C17—N1—Al1 139.57 (13) C16—C17—C12 121.28 (16)
C17A—N1A—C10A 106.15 (14) C10A—C1A—N2A 108.11 (13)
C17A—N1A—Al1A 140.50 (12) C10A—C1A—H1D 110.1
C10A—N1A—Al1A 113.18 (11) N2A—C1A—H1D 110.1
C2—N2—C1 108.22 (13) C10A—C1A—H1E 110.1
C2—N2—C4 112.02 (12) N2A—C1A—H1E 110.1
C1—N2—C4 110.43 (13) H1D—C1A—H1E 108.4
C2—N2—Al1 115.63 (10) N2A—C2A—C3A 115.85 (14)
C1—N2—Al1 101.69 (10) N2A—C2A—H2D 108.3
C4—N2—Al1 108.35 (10) C3A—C2A—H2D 108.3
C4A—N2A—C2A 112.02 (14) N2A—C2A—H2E 108.3
C4A—N2A—C1A 109.27 (13) C3A—C2A—H2E 108.3
C2A—N2A—C1A 110.02 (13) H2D—C2A—H2E 107.4
C4A—N2A—Al1A 114.30 (11) C2A—C3A—H3D 109.5
C2A—N2A—Al1A 108.47 (10) C2A—C3A—H3E 109.5
C1A—N2A—Al1A 102.31 (11) H3D—C3A—H3E 109.5
C10—C1—N2 107.43 (14) C2A—C3A—H3F 109.5
C10—C1—H1A 110.2 H3D—C3A—H3F 109.5
N2—C1—H1A 110.2 H3E—C3A—H3F 109.5
C10—C1—H1B 110.2 N2A—C4A—C5A 113.37 (15)
N2—C1—H1B 110.2 N2A—C4A—H4D 108.9
H1A—C1—H1B 108.5 C5A—C4A—H4D 108.9
N2—C2—C3 113.28 (15) N2A—C4A—H4E 108.9
N2—C2—H2A 108.9 C5A—C4A—H4E 108.9
C3—C2—H2A 108.9 H4D—C4A—H4E 107.7
N2—C2—H2B 108.9 C4A—C5A—H5D 109.5
C3—C2—H2B 108.9 C4A—C5A—H5E 109.5
H2A—C2—H2B 107.7 H5D—C5A—H5E 109.5
C2—C3—H3A 109.5 C4A—C5A—H5F 109.5
C2—C3—H3B 109.5 H5D—C5A—H5F 109.5
H3A—C3—H3B 109.5 H5E—C5A—H5F 109.5
C2—C3—H3C 109.5 Al1A—C6A—H6D 109.5
H3A—C3—H3C 109.5 Al1A—C6A—H6E 109.5
H3B—C3—H3C 109.5 H6D—C6A—H6E 109.5
N2—C4—C5 115.68 (15) Al1A—C6A—H6F 109.5
N2—C4—H4A 108.4 H6D—C6A—H6F 109.5
C5—C4—H4A 108.4 H6E—C6A—H6F 109.5
N2—C4—H4B 108.4 Al1A—C7A—H7D 109.5
C5—C4—H4B 108.4 Al1A—C7A—H7E 109.5
H4A—C4—H4B 107.4 H7D—C7A—H7E 109.5
C4—C5—H5A 109.5 Al1A—C7A—H7F 109.5
C4—C5—H5B 109.5 H7D—C7A—H7F 109.5
H5A—C5—H5B 109.5 H7E—C7A—H7F 109.5
C4—C5—H5C 109.5 C11A—C10A—N1A 112.32 (15)
H5A—C5—H5C 109.5 C11A—C10A—C1A 132.80 (16)
H5B—C5—H5C 109.5 N1A—C10A—C1A 114.84 (14)
Al1—C6—H6A 109.5 C10A—C11A—C12A 106.03 (15)
Al1—C6—H6B 109.5 C10A—C11A—H11A 127.0
H6A—C6—H6B 109.5 C12A—C11A—H11A 127.0
Al1—C6—H6C 109.5 C13A—C12A—C17A 118.82 (17)
H6A—C6—H6C 109.5 C13A—C12A—C11A 135.04 (17)
H6B—C6—H6C 109.5 C17A—C12A—C11A 106.14 (15)
Al1—C7—H7A 109.5 C14A—C13A—C12A 119.22 (17)
Al1—C7—H7B 109.5 C14A—C13A—H13A 120.4
H7A—C7—H7B 109.5 C12A—C13A—H13A 120.4
Al1—C7—H7C 109.5 C13A—C14A—C15A 121.12 (17)
H7A—C7—H7C 109.5 C13A—C14A—H14A 119.4
H7B—C7—H7C 109.5 C15A—C14A—H14A 119.4
C11—C10—N1 112.64 (15) C16A—C15A—C14A 121.18 (18)
C11—C10—C1 132.87 (16) C16A—C15A—H15A 119.4
N1—C10—C1 114.36 (14) C14A—C15A—H15A 119.4
C10—C11—C12 105.78 (15) C15A—C16A—C17A 118.04 (17)
C10—C11—H11 127.1 C15A—C16A—H16A 121.0
C12—C11—H11 127.1 C17A—C16A—H16A 121.0
C13—C12—C17 119.11 (18) N1A—C17A—C16A 129.05 (16)
C13—C12—C11 134.47 (17) N1A—C17A—C12A 109.34 (15)
C17—C12—C11 106.40 (15) C16A—C17A—C12A 121.61 (16)

Hydrogen-bond geometry (Å, º)

Cg1 is the centroid of the C12A–C17A ring.

D—H···A D—H H···A D···A D—H···A
C5—H5A···Cg1 0.98 2.57 3.470 (2) 153
C2—H2B···Cg1i 0.99 2.55 3.434 (2) 149

Symmetry code: (i) −x+1, y−1/2, −z+1.

References

  1. Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  2. Bruker (2003). SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Chen, H.-L., Dutta, S., Huang, P.-Y. & Lin, C.-C. (2012). Organo­metallics, 31, 2016–2025.
  5. Chisholm, M. H., Lin, C.-C., Gallucci, J. C. & Ko, B. T. (2003). Dalton Trans. pp. 406–412.
  6. Chisholm, M. H., Patmore, N. J. & Zhou, Z. (2005). Chem. Commun. pp. 127–129. [DOI] [PubMed]
  7. Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. [DOI] [PubMed]
  8. Huang, J., Chen, H., Chang, C., Zhou, C., Lee, G. & Peng, S. (2001). Organometallics, 20, 2647–2650.
  9. Khandelwal, M. & Wehmschulte, R. J. (2012). J. Organomet. Chem. 696, 4179–4183.
  10. Kingsley, N. B., Kirschbaum, K. & Mason, M. R. (2010). Organomet­allics, 29, 5927–5935.
  11. Koller, J. & Bergman, R. G. (2010a). Chem. Commun 46, 4577–4579. [DOI] [PubMed]
  12. Koller, J. & Bergman, R. G. (2010b). Organometallics, 29, 5946–5952.
  13. Liu, Z., Gao, W., Zhang, J., Cui, D., Wu, Q. & Mu, Y. (2010). Organometallics, 29, 5783–5790.
  14. Mason, M. R. (2005). Encyclopedia of Inorganic Chemistry, Vol. 1, 2nd ed., edited by B. King, pp. 185–210. Hoboken, NJ: Wiley.
  15. Nagarathnam, D. (1992). Synthesis, pp. 743–745.
  16. Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
  17. Schwarz, A. D., Chu, Z. & Mountford, P. (2010). Organometallics, 29, 1246–1260.
  18. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  19. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  20. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  21. Zhang, W., Wang, Y., Wang, L., Redshaw, C. & Sun, W.-H. (2014). J. Organomet. Chem. 750, 65–73.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015017053/zl2630sup1.cif

e-71-01222-sup1.cif (406KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015017053/zl2630Isup2.hkl

e-71-01222-Isup2.hkl (432.7KB, hkl)

CCDC reference: 1423793

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES