Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Sep 12;71(Pt 10):o733–o734. doi: 10.1107/S2056989015015972

Crystal structure of (2R)-1-[(methyl­sulfon­yl)­oxy]propan-2-aminium chloride: a chiral mol­ecular salt

H R Rajegowda a, B S Palakshamurthy b, N K Lokanath c, S Naveen d, P Raghavendra Kumar a,*
PMCID: PMC4647372  PMID: 26594448

Abstract

In the title chiral mol­ecular salt, C4H12NO3S+·Cl, the cation is protonated at the N atom, producing [RNH3]+, where R is CH3SO2OCH2C(H)CH3. The N atom in the cation is sp 3-hybridized. In the crystal, cations and anions are connected by strong N—H⋯Cl hydrogen bonds to generate edge-shared 12-membered rings of the form {⋯Cl⋯HNH}3. This pattern of hydrogen bonding gives rise to zigzag supra­molecular layers in the ab plane. The layers are connected into a three-dimensional architecture by C—H⋯O hydrogen bonds. The structure was refined as an inversion twin.

Keywords: crystal structure, chiral methane­sulfonate, hydrogen bonding, salt

Related literature  

For background to chiral 2-amino-2-(alk­yl/ar­yl/aralk­yl)ethyl methane­sulfonate hydro­chlorides, see: Braghiroli & Di Bella (1996); Higashiura et al. (1989); Morgan et al. (1991); Pollack et al. (1989); Xu (2002).graphic file with name e-71-0o733-scheme1.jpg

Experimental  

Crystal data  

  • C4H12ClNO3S+·Cl

  • M r = 189.66

  • Monoclinic, Inline graphic

  • a = 5.4012 (1) Å

  • b = 8.2178 (2) Å

  • c = 10.2713 (2) Å

  • β = 94.534 (1)°

  • V = 454.48 (2) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 5.57 mm−1

  • T = 296 K

  • 0.24 × 0.20 × 0.16 mm

Data collection  

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2013) T min = 0.302, T max = 0.410

  • 2476 measured reflections

  • 1387 independent reflections

  • 1385 reflections with I > 2σ(I)

  • R int = 0.029

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.031

  • wR(F 2) = 0.078

  • S = 1.11

  • 1387 reflections

  • 96 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.42 e Å−3

  • Absolute structure: Refined as an inversion twin

  • Absolute structure parameter: 0.08 (3)

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014.

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015015972/tk5365sup1.cif

e-71-0o733-sup1.cif (88.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015015972/tk5365Isup2.hkl

e-71-0o733-Isup2.hkl (112KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015015972/tk5365Isup3.cml

. DOI: 10.1107/S2056989015015972/tk5365fig1.tif

Mol­ecular structure of the title mol­ecular salt showing displacement ellipsoids drawn at the 50% probability level.

ab . DOI: 10.1107/S2056989015015972/tk5365fig2.tif

The mol­ecular packing of the title mol­ecular salt with N—H⋯Cl hydrogen bonds (aqua bonds) leading to a supra­molecular assembly in the ab plane.

CCDC reference: 1420721

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
N1H1ECl1 0.89 2.33 3.169(3) 156
C3H3AO3i 0.97 2.58 3.428(4) 147
N1H1DCl1ii 0.89 2.24 3.116(3) 169
N1H1FCl1iii 0.89 2.26 3.139(3) 171
C2H2AO2iv 0.98 2.44 3.186(4) 133
C4H4BO3v 0.96 2.50 3.250(4) 135
C4H4CO2vi 0.96 2.51 3.438(5) 163

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic.

Acknowledgments

PRK thanks the DST–SERB, Government of India, for financial support to carry out the project No. DST/SR/S-1/IC-76/2010(G).

supplementary crystallographic information

S1. Chemical context

The chiral 2-amino-2-(alkyl/aryl/aralkyl)­ethyl methane­sulfonate hydro­chlorides are useful starting materials for the preparation of amines, benzoates, thio­benzoates, sulfonic acids, etc., as methane­sulfonate is a very good leaving group in nucleophilic substitution reactions. The chiral 2-(alkyl/aryl/aralkyl)­ethane­sulfonic acid derivatives and sulfono­peptides (Higashiura et al., 1989) occur in high concentrations in many mammalian tissues. These compounds are involved in various important physiological processes and are used as enzyme inhibitors and heptans in the development of catalytic anti-bodies (Braghiroli & Di Bella, 1996). The enanti­omers of chiral 2-(alkyl/aryl/aralkyl)­ethane­sulfonic acid derivatives mimic the hypotensive effect of taurine (2-amino­ethane­sulfonic acid), one of the most abundant amino acids in mammals that seems to exhibit a special affinity for excitable tissues, such as brain, nerve and muscle (Xu et al., 2002; Pollack et al., 1989; Morgan et al., 1991). In particular, the title compound was used in the synthesis of chiral amines by our group and as a part of our on-going research the structure of the title compound was determined.

S2. Structural commentary

In the title chiral molecular salt, C4H12NO3S+.Cl-, the N atom is protonated resulting the cation [RNH3]+ where R is CH3SO2OCH2CH(CH3)- and the anion is chloride ion [Cl]-. The N atom in the cation is sp3 hybridized and the bond angles represents that the cation has tetra­hedral structure around N (Fig. 1). In the crystal packing N—H···Cl hydrogen bonds connect ions into a supra­molecular assembly in the ab plane (Fig. 2 and Table 1). Further, there exist C—H···O hydrogen bonds that connect the layers into a three-dimensional architecture.

S3. Synthesis and crystallization

The title chiral molecular salt was synthesised as per the literature procedure (Higashiura et al., 1989). An aqueous solution of HCl (4 M, 12 ml) was added to a stirred solution of (2R)-2-[(tert-but­oxy­carbonyl)­amino] propyl methane­sulfonate (2.53 g, 10 mmol ) in dioxane (15 ml). The resulting mixture was stirred for a further 1 h. The solution was then concentrated under reduced pressure and the residue obtained was recrystallized from hot ethanol to afford colourless single crystals suitable for single crystal X-ray diffraction.

S4. Refinement details

The H atom of the NH3 group was located in a difference map but refined with N—H = 0.89, and with Uiso(H) = 1.2Ueq(N). Similarly, the other H atoms were positioned with idealized geometry using a riding model with C—H = 0.96–0.98 Å, and with Uiso(H) = 1.2–1.5Ueq(C). The structure was refined as an inversion twin with a Flack parameter of 0.08 (3)

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title molecular salt showing displacement ellipsoids drawn at the 50% probability level.

Fig. 2.

Fig. 2.

The molecular packing of the title molecular salt with N—H···Cl hydrogen bonds (aqua bonds) leading to a supramolecular assembly in the ab plane.

Crystal data

C4H12ClNO3S+·Cl prism
Mr = 189.66 Dx = 1.386 Mg m3
Monoclinic, P21 Melting point: 354 K
Hall symbol: P 2yb Cu Kα radiation, λ = 1.54178 Å
a = 5.4012 (1) Å Cell parameters from 830 reflections
b = 8.2178 (2) Å θ = 4.3–64.7°
c = 10.2713 (2) Å µ = 5.57 mm1
β = 94.534 (1)° T = 296 K
V = 454.48 (2) Å3 Prism, colourless
Z = 2 0.24 × 0.20 × 0.16 mm
F(000) = 200

Data collection

Bruker APEXII CCD diffractometer 1387 independent reflections
Radiation source: fine-focus sealed tube 1385 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.029
Detector resolution: 2.01 pixels mm-1 θmax = 64.7°, θmin = 4.3°
φ and ω scans h = −6→2
Absorption correction: multi-scan (SADABS; Bruker, 2013) k = −9→9
Tmin = 0.302, Tmax = 0.410 l = −11→12
2476 measured reflections

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.031 w = 1/[σ2(Fo2) + (0.0448P)2 + 0.0553P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.078 (Δ/σ)max < 0.001
S = 1.11 Δρmax = 0.29 e Å3
1387 reflections Δρmin = −0.42 e Å3
96 parameters Extinction correction: SHELXL2014 (Sheldrick, 2014), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraint Extinction coefficient: 0.120 (8)
0 constraints Absolute structure: Refined as an inversion twin
Primary atom site location: structure-invariant direct methods Absolute structure parameter: 0.08 (3)
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 −0.0227 (7) 0.1587 (5) 0.7527 (4) 0.0204 (8)
H1A −0.1807 0.2029 0.7211 0.031*
H1B −0.0282 0.1268 0.8423 0.031*
H1C 0.0142 0.0655 0.7013 0.031*
Cl1 0.67754 (13) 0.51693 (10) 0.53323 (7) 0.0149 (3)
S1 0.33444 (13) 0.70873 (9) 0.88988 (7) 0.0118 (3)
O1 0.3212 (4) 0.5513 (3) 0.8028 (2) 0.0190 (6)
N1 0.1849 (5) 0.3392 (4) 0.6037 (3) 0.0111 (6)
H1D 0.2153 0.2535 0.5544 0.013*
H1E 0.3047 0.4127 0.5982 0.013*
H1F 0.0395 0.3828 0.5759 0.013*
C2 0.1771 (6) 0.2864 (4) 0.7423 (3) 0.0119 (7)
H2A 0.3383 0.2394 0.7725 0.014*
O3 0.0905 (4) 0.7735 (4) 0.8958 (3) 0.0225 (6)
C3 0.1271 (6) 0.4323 (5) 0.8265 (3) 0.0140 (7)
H3B −0.0362 0.4770 0.8021 0.017*
H3A 0.1358 0.4019 0.9180 0.017*
C4 0.5119 (6) 0.8308 (5) 0.7941 (3) 0.0159 (7)
H4B 0.6647 0.7763 0.7801 0.024*
H4C 0.5475 0.9323 0.8380 0.024*
H4A 0.4212 0.8512 0.7116 0.024*
O2 0.4703 (5) 0.6718 (4) 1.0115 (2) 0.0241 (7)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0242 (19) 0.0177 (18) 0.0211 (17) −0.0055 (15) 0.0130 (14) −0.0007 (15)
Cl1 0.0110 (4) 0.0182 (5) 0.0161 (4) −0.0006 (3) 0.0051 (3) 0.0047 (3)
S1 0.0117 (4) 0.0156 (5) 0.0085 (4) −0.0016 (3) 0.0030 (3) −0.0020 (3)
O1 0.0205 (13) 0.0198 (14) 0.0186 (12) −0.0093 (10) 0.0134 (9) −0.0075 (11)
N1 0.0094 (13) 0.0128 (15) 0.0118 (13) −0.0016 (11) 0.0051 (10) −0.0004 (11)
C2 0.0117 (15) 0.0138 (17) 0.0110 (15) 0.0003 (13) 0.0052 (12) 0.0003 (13)
O3 0.0138 (12) 0.0264 (14) 0.0283 (14) 0.0026 (11) 0.0088 (10) −0.0058 (11)
C3 0.0120 (15) 0.0159 (17) 0.0152 (17) −0.0047 (15) 0.0076 (12) −0.0014 (16)
C4 0.0158 (16) 0.0165 (17) 0.0158 (16) −0.0032 (15) 0.0044 (12) 0.0020 (15)
O2 0.0278 (14) 0.0330 (17) 0.0107 (12) −0.0060 (12) −0.0040 (9) 0.0035 (11)

Geometric parameters (Å, º)

C1—C2 1.515 (5) N1—H1D 0.8900
C1—H1A 0.9600 N1—H1E 0.8900
C1—H1B 0.9600 N1—H1F 0.8900
C1—H1C 0.9600 C2—C3 1.515 (5)
S1—O3 1.427 (3) C2—H2A 0.9800
S1—O2 1.430 (3) C3—H3B 0.9700
S1—O1 1.571 (3) C3—H3A 0.9700
S1—C4 1.744 (4) C4—H4B 0.9600
O1—C3 1.468 (4) C4—H4C 0.9600
N1—C2 1.491 (4) C4—H4A 0.9600
C2—C1—H1A 109.5 N1—C2—C1 110.1 (3)
C2—C1—H1B 109.5 N1—C2—C3 109.5 (3)
H1A—C1—H1B 109.5 C1—C2—C3 110.3 (3)
C2—C1—H1C 109.5 N1—C2—H2A 109.0
H1A—C1—H1C 109.5 C1—C2—H2A 109.0
H1B—C1—H1C 109.5 C3—C2—H2A 109.0
O3—S1—O2 116.97 (15) O1—C3—C2 105.7 (2)
O3—S1—O1 109.32 (15) O1—C3—H3B 110.6
O2—S1—O1 108.65 (17) C2—C3—H3B 110.6
O3—S1—C4 111.10 (17) O1—C3—H3A 110.6
O2—S1—C4 110.34 (16) C2—C3—H3A 110.6
O1—S1—C4 98.91 (16) H3B—C3—H3A 108.7
C3—O1—S1 117.07 (19) S1—C4—H4B 109.5
C2—N1—H1D 109.5 S1—C4—H4C 109.5
C2—N1—H1E 109.5 H4B—C4—H4C 109.5
H1D—N1—H1E 109.5 S1—C4—H4A 109.5
C2—N1—H1F 109.5 H4B—C4—H4A 109.5
H1D—N1—H1F 109.5 H4C—C4—H4A 109.5
H1E—N1—H1F 109.5

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1E···Cl1 0.89 2.33 3.169 (3) 156
C3—H3A···O3i 0.97 2.58 3.428 (4) 147
N1—H1D···Cl1ii 0.89 2.24 3.116 (3) 169
N1—H1F···Cl1iii 0.89 2.26 3.139 (3) 171
C2—H2A···O2iv 0.98 2.44 3.186 (4) 133
C4—H4B···O3v 0.96 2.50 3.250 (4) 135
C4—H4C···O2vi 0.96 2.51 3.438 (5) 163

Symmetry codes: (i) −x, y−1/2, −z+2; (ii) −x+1, y−1/2, −z+1; (iii) x−1, y, z; (iv) −x+1, y−1/2, −z+2; (v) x+1, y, z; (vi) −x+1, y+1/2, −z+2.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: TK5365).

References

  1. Braghiroli, D. & Di Bella, M. (1996). Tetrahedron Asymmetry, 7, 2145–2150.
  2. Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Higashiura, H., Morino, H., Matsuura, H., Toyomaki, Y. & Ienaga, K. (1989). J. Chem. Soc. Perkin Trans. 1, pp. 1479–1481.
  4. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  5. Morgan, B. P., Scholtz, J. M., Ballinger, M. D., Zipkin, I. D. & Bartlett, P. A. (1991). J. Am. Chem. Soc. 113, 297–307.
  6. Pollack, S. J., Hsiun, P. & Schultz, P. G. (1989). J. Am. Chem. Soc. 111, 5961–5962.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  9. Xu, J. (2002). Tetrahedron Asymmetry, 13, 1129–1134.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015015972/tk5365sup1.cif

e-71-0o733-sup1.cif (88.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015015972/tk5365Isup2.hkl

e-71-0o733-Isup2.hkl (112KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015015972/tk5365Isup3.cml

. DOI: 10.1107/S2056989015015972/tk5365fig1.tif

Mol­ecular structure of the title mol­ecular salt showing displacement ellipsoids drawn at the 50% probability level.

ab . DOI: 10.1107/S2056989015015972/tk5365fig2.tif

The mol­ecular packing of the title mol­ecular salt with N—H⋯Cl hydrogen bonds (aqua bonds) leading to a supra­molecular assembly in the ab plane.

CCDC reference: 1420721

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES