Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Sep 12;71(Pt 10):o731–o732. doi: 10.1107/S2056989015016709

Crystal structure of (S)-2-amino-2-methyl­succinic acid

Isao Fujii a,*
PMCID: PMC4647375  PMID: 26594447

Abstract

The title compound, C5H9NO4, crystallized as a zwitterion. There is an intra­molecular N—H⋯O hydrogen bond involving the trans-succinic acid and the ammonium group, forming an S(6) ring motif. In the crystal, mol­ecules are linked by O—H⋯O hydrogen bonds, forming C(7) chains along the c-axis direction. The chains are linked by N—H⋯O and C—H⋯O hydrogen bonds, forming sheets parallel to the bc plane. Further N—H⋯O hydrogen bonds link the sheets to form a three-dimensional framework.

Keywords: crystal structure, succinic acid, zwitterion, hydrogen bonding, three-dimensional framework

Related literature  

For general background and biological properties of 2-methyl­aspartic acid (MeASP), see: Pfeiffer & Heinrich (1936); Delbaere et al. (1989); Nobe et al. (1998). For the absolute configuration and synthesis of the title compound, see: Terashima et al. (1966). For the crystal structure of related racemic compounds, see: Derricott et al. (1979); Brewer et al. (2013). For the crystal structure of dl-ASP, see: Flaig et al. (1998).graphic file with name e-71-0o731-scheme1.jpg

Experimental  

Crystal data  

  • C5H9NO4

  • M r = 147.13

  • Monoclinic, Inline graphic

  • a = 8.3398 (12) Å

  • b = 9.6725 (10) Å

  • c = 8.0671 (10) Å

  • β = 95.175 (5)°

  • V = 648.09 (14) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 1.14 mm−1

  • T = 297 K

  • 0.4 × 0.2 × 0.2 mm

Data collection  

  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968) T min = 0.76, T max = 0.81

  • 843 measured reflections

  • 700 independent reflections

  • 699 reflections with I > 2σ(I)

  • R int = 0.019

  • 3 standard reflections every 300 reflections intensity decay: none

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.034

  • wR(F 2) = 0.096

  • S = 1.27

  • 700 reflections

  • 109 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: PLATON (Spek, 2003) and WinGX (Farrugia, 2012).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989015016709/su5203sup1.cif

e-71-0o731-sup1.cif (150.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015016709/su5203Isup2.hkl

e-71-0o731-Isup2.hkl (57.9KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015016709/su5203Isup3.cml

. DOI: 10.1107/S2056989015016709/su5203fig1.tif

A view of the mol­ecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level. The dashed line indicates the intra­molecular N—H⋯O hydrogen bond (see Table 1).

. DOI: 10.1107/S2056989015016709/su5203fig2.tif

A partial view of the crystal packing of the title compound. Dashed lines indicate the O—H⋯O and N—H⋯O hydrogen bonds (see Table 1).

c . DOI: 10.1107/S2056989015016709/su5203fig3.tif

A view along the c axis of the crystal packing of the title compound. Dashed lines indicate the O—H⋯O and N—H⋯O hydrogen bonds (see Table 1), and C-bound H atoms have been omitted for clarity.

CCDC reference: 1422827

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
N1H7O4 0.79(4) 2.23(4) 2.798(3) 130(3)
O3H6O1i 0.84(4) 1.70(4) 2.543(2) 177(5)
N1H7O3ii 0.79(4) 2.53(4) 3.093(3) 130(3)
N1H8O2iii 0.86(3) 1.90(4) 2.754(3) 170(3)
N1H9O1iv 0.93(3) 1.93(4) 2.844(3) 168(4)
C3H3BO4v 0.97 2.52 3.279(4) 135

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Acknowledgments

The author thanks Tokai University for a research grant, which partially supported this work.

supplementary crystallographic information

S1. Comment

Solid-phase synthesis is now the accepted method to synthesis peptides, in which protected natural or non-natural amino acids are widely used; for example, 2-methyl­aspartic acid (MeASP) a non-natural amino acid. It has attracted attention as a substrate analog of aspartate amino­transferase (EC 2.6.1.1), and acts as a competitive inhibitor in the external aldimine (Delbaere et al., 1989; Nobe et al., 1998). Despite the biological and pharmaceutical inter­est, no crystal structures of MeASP derivatives have been reported except for the structure of DL-MeASP monohydrate (Brewer et al., 2013).

In the title compound, Fig. 1, the succinic acid group has a trans-conformation [C1—C2—C3—C4 = -177.1 (2)°] versus. a cis-conformation [48.8 (4) °] in DL-MeASP. The carb­oxy group and the amino group make a hydrogen bonded half-chair S(6) ring motif (Table 1 and Fig. 1). The S(6) ring half-chair conformation and the trans-succinic acid arrangement are similar to the situation found in for DL-ASP (DLASPA03: Flaig et al. 1998).

In the crystal, molecules are linked by O—H···O hydrogen bonds, involving the succinic acid groups, to form C(7) chains along the c axis direction (Table 1 and Fig. 2). This is in contrast to the N—H···O hydrogen bonded C(5) chains observed in the crystal structure of DL-MeASP. The chains are linked by N—H···O and C—H···O hydrogen bonds forming sheets parallel to the bc plane. Further N—H···O hydrogen bonds link the sheets to form a three-dimensional framework (Table 1 and Fig. 3). The methyl groups are surrounded by the hydro­philic planes and make a columnar structure (Fig. 3).

S2. Synthesis and crystallization

The title compound was purchased from Nagase-Sangyo Co. Ltd. The absolute configuration could not be established by anomalous-dispersion effects. The (S) enanti­omer has been chosen by referring the sign of known polarity in the synthetic procedure (Terashima et al., 1966). Rod-like colourless crystals of the title compound were obtained by vapour-phase diffusion of an ethanol-chloro­form mixture at room temperature.

S3. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. All the H atoms were located in difference Fourier maps. The NH2 and OH H atoms were freely refined. The C-bound H atoms were included in calculated positions and treated as riding atoms: C–H = 0.96-0.97 Å with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for other H atoms.

Figures

Fig. 1.

Fig. 1.

A view of the molecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level. The dashed line indicates the intramolecular N—H···O hydrogen bond (see Table 1).

Fig. 2.

Fig. 2.

A partial view of the crystal packing of the title compound. Dashed lines indicate the O—H···O and N—H···O hydrogen bonds (see Table 1).

Fig. 3.

Fig. 3.

A view along the c axis of the crystal packing of the title compound. Dashed lines indicate the O—H···O and N—H···O hydrogen bonds (see Table 1), and C-bound H atoms have been omitted for clarity.

Crystal data

C5H9NO4 F(000) = 312
Mr = 147.13 Dx = 1.508 Mg m3
Monoclinic, C2 Cu Kα radiation, λ = 1.54178 Å
Hall symbol: C 2y Cell parameters from 25 reflections
a = 8.3398 (12) Å θ = 20–28°
b = 9.6725 (10) Å µ = 1.14 mm1
c = 8.0671 (10) Å T = 297 K
β = 95.175 (5)° Rod, colorless
V = 648.09 (14) Å3 0.4 × 0.2 × 0.2 mm
Z = 4

Data collection

Enraf–Nonius CAD-4 diffractometer 699 reflections with I > 2σ(I)
Radiation source: sealed X-ray tube Rint = 0.019
Graphite monochromator θmax = 74.0°, θmin = 5.5°
ω/2θ scans h = −10→1
Absorption correction: ψ scan (North et al., 1968) k = −12→0
Tmin = 0.76, Tmax = 0.81 l = −10→10
843 measured reflections 3 standard reflections every 300 reflections
700 independent reflections intensity decay: none

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.034 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.096 w = 1/[σ2(Fo2) + (0.0559P)2 + 0.2563P] where P = (Fo2 + 2Fc2)/3
S = 1.27 (Δ/σ)max < 0.001
700 reflections Δρmax = 0.29 e Å3
109 parameters Δρmin = −0.21 e Å3
2 restraints Extinction correction: SHELXL2014 (Sheldrick, 2014), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.045 (4)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
H8 0.155 (3) 0.434 (4) 0.122 (4) 0.026 (7)*
H7 0.126 (4) 0.416 (4) 0.275 (5) 0.040 (9)*
H6 0.207 (5) 0.170 (5) 0.725 (4) 0.071 (14)*
H9 0.022 (4) 0.340 (4) 0.164 (4) 0.040 (9)*
C1 0.2417 (3) 0.1802 (3) 0.0388 (3) 0.0273 (5)
C2 0.2485 (3) 0.2608 (2) 0.2046 (3) 0.0238 (5)
C3 0.2132 (3) 0.1603 (3) 0.3436 (3) 0.0305 (6)
H3A 0.1108 0.1156 0.3124 0.037*
H3B 0.2954 0.0891 0.3512 0.037*
C4 0.2069 (3) 0.2244 (3) 0.5137 (3) 0.0284 (6)
C5 0.4148 (3) 0.3267 (4) 0.2343 (4) 0.0386 (7)
H5A 0.4277 0.3947 0.1498 0.058*
H5B 0.4959 0.2567 0.2301 0.058*
H5C 0.4254 0.3702 0.3417 0.058*
N1 0.1250 (3) 0.3741 (2) 0.1916 (3) 0.0248 (5)
O1 0.1677 (2) 0.2358 (2) −0.0871 (2) 0.0378 (5)
O2 0.3164 (3) 0.0705 (2) 0.0427 (3) 0.0525 (7)
O3 0.2242 (3) 0.1339 (2) 0.6334 (2) 0.0392 (6)
O4 0.1831 (4) 0.3463 (2) 0.5370 (2) 0.0554 (7)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0384 (11) 0.0263 (12) 0.0177 (10) 0.0010 (10) 0.0051 (8) −0.0020 (9)
C2 0.0349 (10) 0.0220 (11) 0.0147 (10) 0.0029 (9) 0.0028 (8) −0.0013 (8)
C3 0.0520 (14) 0.0239 (13) 0.0157 (10) 0.0039 (11) 0.0039 (9) −0.0005 (9)
C4 0.0436 (13) 0.0252 (12) 0.0164 (10) 0.0015 (10) 0.0025 (9) −0.0014 (9)
C5 0.0342 (12) 0.0476 (17) 0.0338 (13) −0.0022 (12) 0.0020 (10) −0.0065 (12)
N1 0.0368 (11) 0.0213 (10) 0.0164 (9) 0.0008 (8) 0.0036 (7) −0.0007 (8)
O1 0.0510 (10) 0.0455 (11) 0.0167 (8) 0.0152 (9) 0.0011 (7) −0.0039 (8)
O2 0.0930 (17) 0.0383 (13) 0.0257 (10) 0.0290 (13) 0.0023 (10) −0.0082 (9)
O3 0.0721 (13) 0.0304 (10) 0.0162 (9) 0.0085 (9) 0.0096 (8) 0.0010 (8)
O4 0.118 (2) 0.0290 (12) 0.0200 (9) 0.0126 (12) 0.0102 (10) −0.0024 (8)

Geometric parameters (Å, º)

C1—O2 1.229 (3) C4—O4 1.213 (4)
C1—O1 1.261 (3) C4—O3 1.301 (3)
C1—C2 1.545 (3) C5—H5A 0.9600
C2—N1 1.502 (3) C5—H5B 0.9600
C2—C5 1.525 (3) C5—H5C 0.9600
C2—C3 1.532 (3) N1—H8 0.86 (4)
C3—C4 1.511 (3) N1—H7 0.78 (4)
C3—H3A 0.9700 N1—H9 0.93 (4)
C3—H3B 0.9700 O3—H6 0.84 (2)
O2—C1—O1 126.8 (2) O4—C4—C3 124.0 (2)
O2—C1—C2 115.7 (2) O3—C4—C3 112.8 (2)
O1—C1—C2 117.3 (2) C2—C5—H5A 109.5
N1—C2—C5 108.3 (2) C2—C5—H5B 109.5
N1—C2—C3 109.79 (18) H5A—C5—H5B 109.5
C5—C2—C3 112.5 (2) C2—C5—H5C 109.5
N1—C2—C1 109.67 (18) H5A—C5—H5C 109.5
C5—C2—C1 107.98 (18) H5B—C5—H5C 109.5
C3—C2—C1 108.60 (19) C2—N1—H8 107 (2)
C4—C3—C2 115.4 (2) C2—N1—H7 112 (3)
C4—C3—H3A 108.4 H8—N1—H7 104 (3)
C2—C3—H3A 108.4 C2—N1—H9 112 (3)
C4—C3—H3B 108.4 H8—N1—H9 113 (3)
C2—C3—H3B 108.4 H7—N1—H9 109 (3)
H3A—C3—H3B 107.5 C4—O3—H6 111 (4)
O4—C4—O3 123.2 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H7···O4 0.79 (4) 2.23 (4) 2.798 (3) 130 (3)
O3—H6···O1i 0.84 (4) 1.70 (4) 2.543 (2) 177 (5)
N1—H7···O3ii 0.79 (4) 2.53 (4) 3.093 (3) 130 (3)
N1—H8···O2iii 0.86 (3) 1.90 (4) 2.754 (3) 170 (3)
N1—H9···O1iv 0.93 (3) 1.93 (4) 2.844 (3) 168 (4)
C3—H3B···O4v 0.97 2.52 3.279 (4) 135

Symmetry codes: (i) x, y, z+1; (ii) −x+1/2, y+1/2, −z+1; (iii) −x+1/2, y+1/2, −z; (iv) −x, y, −z; (v) −x+1/2, y−1/2, −z+1.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: SU5203).

References

  1. Brewer, G., Burton, A. S., Dworkin, J. P. & Butcher, R. J. (2013). Acta Cryst. E69, o1856–o1857. [DOI] [PMC free article] [PubMed]
  2. Delbaere, L. T., Kallen, J., Markovic-Housley, Z., Khomutov, A. R., Khomutov, R. M., Karpeisky, M. Y. & Jansonius, J. N. (1989). Biochimie, 71, 449–459. [DOI] [PubMed]
  3. Derricott, C. & Trotter, J. (1979). Acta Cryst. B35, 2230–2232.
  4. Enraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.
  5. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  6. Flaig, R., Koritsanszky, T., Zobel, D. & Luger, P. (1998). J. Am. Chem. Soc. 120, 2227–2238.
  7. Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
  8. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  9. Nobe, Y., Kawaguchi, S., Ura, H., Nakai, T., Hirotsu, K., Kato, R. & Kuramitsu, S. (1998). J. Biol. Chem. 273, 29554–29564. [DOI] [PubMed]
  10. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  11. Pfeiffer, P. & Heinrich, E. (1936). J. Prakt. Chem. 146, 105–112.
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  14. Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13.
  15. Terashima, S., Achiwa, K. & Yamada, S. (1966). Chem. Pharm. Bull. 14, 572–578. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989015016709/su5203sup1.cif

e-71-0o731-sup1.cif (150.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015016709/su5203Isup2.hkl

e-71-0o731-Isup2.hkl (57.9KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015016709/su5203Isup3.cml

. DOI: 10.1107/S2056989015016709/su5203fig1.tif

A view of the mol­ecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level. The dashed line indicates the intra­molecular N—H⋯O hydrogen bond (see Table 1).

. DOI: 10.1107/S2056989015016709/su5203fig2.tif

A partial view of the crystal packing of the title compound. Dashed lines indicate the O—H⋯O and N—H⋯O hydrogen bonds (see Table 1).

c . DOI: 10.1107/S2056989015016709/su5203fig3.tif

A view along the c axis of the crystal packing of the title compound. Dashed lines indicate the O—H⋯O and N—H⋯O hydrogen bonds (see Table 1), and C-bound H atoms have been omitted for clarity.

CCDC reference: 1422827

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES