Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Sep 12;71(Pt 10):1143–1146. doi: 10.1107/S2056989015016382

Crystal structure of [μ2-1,1′-bis­(di­phenyl­phos­phanyl)ferrocene-κ2 P:P′]bis­[(pyrrolidine-1-carbo­dithioato-κS)gold(I)]

Yee Seng Tan a, Edward R T Tiekink a,b,*
PMCID: PMC4647382  PMID: 26594392

The centrosymmetric mol­ecule features a linearly coordinated AuI atom within an S(di­thio­carbamate) and P(phosphane) donor set.

Keywords: crystal structure, gold(I), phosphane, di­thio­carbamate

Abstract

The asymmetric unit of the title compound, {(C34H28FeP2)[Au(C5H8NS2)]2}, comprises half a mol­ecule, with the full mol­ecule being generated by the application of a centre of inversion. The independent AuI atom is coordinated by thiol­ate S and phosphane P atoms that define an approximate linear geometry [S—Au—P = 169.35 (3)°]. The deviation from the ideal linear is traced to the close approach of the (intra­molecular) non-coordinating thione S atom [Au⋯S = 3.1538 (8) Å]. Supra­molecular layers parallel to (100) feature in the crystal packing, being sustained by phen­yl–thione C—H⋯S inter­actions, with the non-coordinating thione S atom in the role of a dual acceptor. Layers stack with no specific inter­actions between them.

Chemical context  

Investigations into the potential anti-cancer activity of phosphanegold(I) di­thio­carbamates, R 3PAu(S2CNR2), date back over a decade (de Vos et al., 2004; Vergara et al., 2007; Jamaludin et al., 2013). These investigations are complemented by the recently reported impressive anti-microbial activity for this class of compound (Sim et al., 2014) whereby R 3PAu[S2CN(iPr)CH2CH2OH], R = Ph and Cy, exhibited specific activity against Gram-positive bacteria while the R = Et derivative displayed broad-range activity against both Gram-positive and Gram-negative bacteria. Motivated by observations that 1,1′-bis­(di­phenyl­phosphan­yl)ferrocene (dppf) derivatives also possess biological activity (Ornelas, 2011; Braga & Silva, 2013), it was thought of inter­est to couple dppf with AuI di­thio­carbamates. This led to the isolation of the broadly insoluble title compound, dppf{Au[S2CN(CH2)4]}2, (I), which was subjected to a crystal structure determination. The results of this study are reported herein along with a comparison to related species.

Structural commentary  

The FeII atom in dppf{Au[S2CN(CH2)4]}2, (I), is located on a centre of inversion, Fig. 1. The AuI central atom exists in the anti­cipated linear geometry defined by thiol­ate-S and phosphane-P atoms. The Au—S1 bond length is considerably longer than the Au—P1 bond, i.e. 2.3378 (8) cf. 2.2580 (8) Å. The di­thio­carbamate ligand is orientated to place the S2 atom in close proximity to the AuI atom. However, the resulting intra­molecular Au⋯S2 inter­action is long at 3.1538 (8) Å, consistent with a monodentate mode of coordination for the di­thio­carbamate ligand. The pattern of C1—S1, S2 bond lengths supports this conclusion in that the strongly bound S1 atom forms a longer, i.e. weaker, C1—S1 bond [1.757 (3) Å] cf. with C1—S2 of 1.689 (3) Å. Nevertheless, the close approach of the S2 atom to the AuI central atom is correlated with the deviation from the ideal linear geometry, i.e. S1—Au—P1 is 169.35 (3)°. graphic file with name e-71-01143-scheme1.jpg

Figure 1.

Figure 1

The mol­ecular structure of (I), showing the atom-labelling scheme and displacement ellipsoids at the 70% probability level. Unlabelled atoms are related by the symmetry operation (−x + 1, −y, −z + 2).

Similar features are noted in related structures as outlined below in the Database survey. The pyrrolidine ring is twisted about the C2—C3 bond. Owing to being located on a centre of inversion, the FeII atom is equidistant from the ring centroids of the Cp rings [Fe⋯Cg, Cg i = 1.6566 (13) Å] and the Cg—Fe—Cg i angle is constrained by symmetry to be 180°; symmetry operation (i): 1 − x, −y, 2 − z. Again, from symmetry, the Cp rings have a staggered relationship.

Supra­molecular features  

In the crystal packing, the most prominent inter­actions are of the type C—H⋯S. Data for the phenyl-C—H⋯S(thione) inter­actions are collected in Table 1. These inter­actions, involving the dual acceptor S2 atom, serve to assemble mol­ecules into supra­molecular layers in the bc plane, Fig. 2. The thickness of each layer corresponds to the length of the a axis, i.e. 10.9635 (4) Å, and the layers stack along this axis with no directional inter­actions between them, Fig. 3.

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
C13H13S2i 0.95 2.86 3.680(3) 144
C20H20S2ii 0.95 2.84 3.628(3) 141

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Figure 2.

Figure 2

A view of the supra­molecular layer in the bc plane sustained by phen­yl–thione C—H⋯S inter­actions, shown as orange dashed lines. H atoms not involved in inter­molecular inter­actions have been omitted for clarity.

Figure 3.

Figure 3

Unit-cell contents shown in projection down the c axis, showing the stacking of supra­molecular layers. The phen­yl–thione C—H⋯S inter­actions are shown as orange dashed lines. One layer is shown in space-filling mode.

Database survey  

It has been approximately 40 years since the first report of a structure related to (I), i.e. Ph3PAu(S2CNEt2), by Wijnhoven et al. (1972). This serves as the archetype for approximately 20 other neutral phosphanegold(I) di­thio­carbamate structures in the crystallographic literature (Groom & Allen, 2014), each having a more or less linear P—Au—S arrangement. There are two structures containing the pyrrolinedi­thio­carbamate ligand, as in (I), but with phosphane ligands Ph3P [(II); Ho & Tiekink, 2004] and Cy3P [(III); Ho & Tiekink, 2002]. From the data collated for (I)–(III) in Table 2, it is evident that the basic structural features in all three compounds are similar. There is also a closely related dppf-type structure whereby a methyl­ene bridge has been inserted between one P atom and the Cp ring, i.e. (Ph2PCH2C5H4FeC5H4PPh2)[Au(S2CNEt2)]2·2CHCl3, [(IV); Štěpnička & Císařová, 2012]. In this analogue of (I), the FeII atom is in a general position. While the Au2P2 entity in (IV) remains approximately co-planar, as is crystallo­graphically imposed in (I), i.e. the Au—P⋯P—Au pseudo torsion angle is 161.82 (5)°, the AuI atoms lie approximately to the same side of the mol­ecule as opposed to the strictly anti conformation found in (I). As seen in Table 2, the selected geometric parameters in (I) and (IV) are comparable. Despite having the shortest intra­molecular Au⋯S2 contact in (IV), the deviation of the S—Au—P angle from linearity is not the greatest in this structure.

Table 2. Geometric details (, ) for (I) and related literature structures.

Structure AuS AuP SAuP AuS2 CSD Refcodea Reference
(I) 2.3378(8) 2.2580(8) 169.35(3) 3.1538(8)   This work
(II) 2.3333(11) 2.2447(10) 173.82(4) 3.0440(10) AYIYAI Ho Tiekink (2004)
(III) 2.3256(16) 2.2547(15) 176.55(5) 3.1067(17) XUMRIG Ho Tiekink (2002)
(IV) 2.3365(11) 2.2495(10) 171.98(3) 3.0472(10) GICZAV tpnika Csaov (2012)
  2.3559(8) 2.2459(8) 172.12(3) 2.9178(12)    

Reference: (a) Groom Allen (2014).

Synthesis and crystallization  

Two solutions were prepared. Firstly, a solution of the sodium salt of pyrrolidine di­thio­carbamate (Aldrich, 1.6 mmol) was prepared by dissolving this (0.2628 g) in methanol (25 ml). A second solution containing [1,1′-bis­(di­phenyl­phosphan­yl)ferrocene]bis­[chlorido­gold(I)] (synthesized by the reduction of KAuCl4 by Na2SO3 followed by the addition of a stoichiometric amount of 1,1′-bis­(di­phenyl­phosphan­yl)ferrocene; 0.8154 g, 0.8 mmol) was prepared by dissolution in di­chloro­methane (75 ml). The solution containing the di­thio­carbamate salt was added to the gold precursor solution. The resulting mixture was stirred for 3 h at room condition and then filtered. After a week of slow evaporation in a refrigerator, some dark-yellow blocks appeared that were characterized crystallographically. M. p. 378–379 K. IR (cm−1): 1435 s ν(C—N); 1152 m, 996 m ν(C—S).

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. Carbon-bound H-atoms were placed in calculated positions (C—H = 0.95–0.99 Å) and were included in the refinement in the riding-model approximation, with U iso(H) set to 1.2U eq(C). The maximum and minimum residual electron density peaks of 1.57 and 1.11 e Å−3, respectively, were located 0.92 and 0.79 Å from the Au atom.

Table 3. Experimental details.

Crystal data
Chemical formula [Au2Fe(C5H8NS2)2(C34H28P2)]
M r 1240.77
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c () 10.9635(4), 14.9720(5), 13.0087(4)
() 102.977(3)
V (3) 2080.78(12)
Z 2
Radiation type Mo K
(mm1) 7.69
Crystal size (mm) 0.20 0.20 0.20
 
Data collection
Diffractometer Agilent SuperNova Dual diffractometer with an Atlas detector
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2014)
T min, T max 0.294, 1.000
No. of measured, independent and observed [I > 2(I)] reflections 24384, 4777, 4363
R int 0.048
(sin /)max (1) 0.650
 
Refinement
R[F 2 > 2(F 2)], wR(F 2), S 0.022, 0.051, 1.06
No. of reflections 4777
No. of parameters 250
H-atom treatment H-atom parameters constrained
max, min (e 3) 1.57, 1.11

Computer programs: CrysAlis PRO (Agilent, 2014), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012), DIAMOND (Brandenburg, 2006) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989015016382/vn2097sup1.cif

e-71-01143-sup1.cif (790.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015016382/vn2097Isup2.hkl

e-71-01143-Isup2.hkl (380.4KB, hkl)

CCDC reference: 1421954

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

This research was supported by the Trans-disciplinary Research Grant Scheme (TR002-2014A) provided by the Ministry of Education, Malaysia.

supplementary crystallographic information

Crystal data

[Au2Fe(C5H8NS2)2(C34H28P2)] F(000) = 1200
Mr = 1240.77 Dx = 1.980 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 10.9635 (4) Å Cell parameters from 10685 reflections
b = 14.9720 (5) Å θ = 3.5–30.2°
c = 13.0087 (4) Å µ = 7.69 mm1
β = 102.977 (3)° T = 100 K
V = 2080.78 (12) Å3 Block, dark-yellow
Z = 2 0.20 × 0.20 × 0.20 mm

Data collection

Agilent SuperNova Dual diffractometer with an Atlas detector 4777 independent reflections
Radiation source: SuperNova (Mo) X-ray Source 4363 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.048
Detector resolution: 10.4041 pixels mm-1 θmax = 27.5°, θmin = 3.1°
ω scan h = −14→14
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014) k = −19→19
Tmin = 0.294, Tmax = 1.000 l = −16→16
24384 measured reflections

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.022 H-atom parameters constrained
wR(F2) = 0.051 w = 1/[σ2(Fo2) + (0.0208P)2 + 0.4001P] where P = (Fo2 + 2Fc2)/3
S = 1.06 (Δ/σ)max = 0.002
4777 reflections Δρmax = 1.57 e Å3
250 parameters Δρmin = −1.11 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Au 0.81601 (2) 0.02934 (2) 0.87927 (2) 0.01301 (5)
Fe 0.5000 0.0000 1.0000 0.01445 (13)
S1 0.94626 (7) −0.09602 (5) 0.89801 (6) 0.01689 (16)
S2 0.79416 (8) −0.08799 (5) 0.67459 (6) 0.02172 (18)
P1 0.67514 (7) 0.13829 (5) 0.88458 (6) 0.01219 (15)
N1 0.9156 (2) −0.23029 (16) 0.76400 (18) 0.0145 (5)
C1 0.8858 (3) −0.1454 (2) 0.7746 (2) 0.0139 (6)
C2 0.9848 (3) −0.2871 (2) 0.8506 (2) 0.0203 (7)
H2A 0.9382 −0.2934 0.9072 0.024*
H2B 1.0686 −0.2619 0.8812 0.024*
C3 0.9954 (3) −0.3769 (2) 0.7971 (3) 0.0232 (7)
H3A 1.0746 −0.3806 0.7727 0.028*
H3B 0.9924 −0.4270 0.8461 0.028*
C4 0.8842 (3) −0.3795 (2) 0.7050 (3) 0.0245 (7)
H4A 0.8084 −0.4004 0.7273 0.029*
H4B 0.9001 −0.4194 0.6488 0.029*
C5 0.8690 (3) −0.2827 (2) 0.6669 (2) 0.0206 (7)
H5A 0.9193 −0.2708 0.6140 0.025*
H5B 0.7802 −0.2688 0.6356 0.025*
C6 0.5997 (3) 0.1135 (2) 0.9904 (2) 0.0141 (6)
C7 0.6606 (3) 0.0625 (2) 1.0801 (2) 0.0211 (7)
H7 0.7432 0.0391 1.0924 0.025*
C8 0.5766 (4) 0.0528 (2) 1.1475 (2) 0.0268 (8)
H8 0.5932 0.0220 1.2130 0.032*
C9 0.4649 (3) 0.0963 (2) 1.1010 (3) 0.0254 (8)
H9 0.3926 0.0996 1.1296 0.030*
C10 0.4771 (3) 0.1346 (2) 1.0040 (2) 0.0202 (7)
H10 0.4152 0.1682 0.9568 0.024*
C11 0.7323 (3) 0.25218 (19) 0.9075 (2) 0.0131 (6)
C12 0.7027 (3) 0.3055 (2) 0.9856 (2) 0.0187 (7)
H12 0.6518 0.2826 1.0298 0.022*
C13 0.7478 (3) 0.3923 (2) 0.9990 (3) 0.0231 (7)
H13 0.7283 0.4286 1.0531 0.028*
C14 0.8207 (3) 0.4265 (2) 0.9344 (3) 0.0241 (7)
H14 0.8513 0.4860 0.9442 0.029*
C15 0.8494 (3) 0.3739 (2) 0.8554 (3) 0.0245 (7)
H15 0.8993 0.3972 0.8107 0.029*
C16 0.8048 (3) 0.2874 (2) 0.8419 (3) 0.0205 (7)
H16 0.8238 0.2515 0.7874 0.025*
C17 0.5506 (3) 0.1478 (2) 0.7674 (2) 0.0133 (6)
C18 0.4616 (3) 0.2152 (2) 0.7586 (2) 0.0170 (6)
H18 0.4699 0.2595 0.8120 0.020*
C19 0.3606 (3) 0.2183 (2) 0.6723 (2) 0.0191 (7)
H19 0.2980 0.2629 0.6680 0.023*
C20 0.3520 (3) 0.1557 (2) 0.5924 (2) 0.0214 (7)
H20 0.2837 0.1579 0.5329 0.026*
C21 0.4414 (3) 0.0906 (2) 0.5986 (2) 0.0222 (7)
H21 0.4355 0.0488 0.5428 0.027*
C22 0.5405 (3) 0.0857 (2) 0.6862 (2) 0.0175 (6)
H22 0.6015 0.0399 0.6907 0.021*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Au 0.01259 (7) 0.00937 (7) 0.01715 (7) 0.00067 (4) 0.00346 (5) −0.00134 (4)
Fe 0.0201 (3) 0.0098 (3) 0.0150 (3) −0.0028 (3) 0.0070 (2) −0.0025 (2)
S1 0.0171 (4) 0.0131 (4) 0.0180 (4) 0.0029 (3) −0.0011 (3) −0.0037 (3)
S2 0.0292 (5) 0.0162 (4) 0.0168 (4) 0.0070 (3) −0.0012 (3) 0.0001 (3)
P1 0.0129 (4) 0.0093 (4) 0.0148 (3) 0.0002 (3) 0.0038 (3) −0.0006 (3)
N1 0.0164 (13) 0.0101 (13) 0.0159 (12) −0.0008 (10) 0.0011 (10) −0.0027 (10)
C1 0.0117 (15) 0.0142 (16) 0.0160 (14) −0.0017 (12) 0.0040 (11) 0.0003 (12)
C2 0.0243 (18) 0.0133 (16) 0.0220 (16) 0.0060 (14) 0.0025 (13) 0.0023 (13)
C3 0.032 (2) 0.0107 (16) 0.0297 (17) 0.0047 (14) 0.0126 (14) 0.0027 (13)
C4 0.0259 (19) 0.0113 (16) 0.0380 (19) −0.0026 (14) 0.0111 (15) −0.0110 (14)
C5 0.0192 (17) 0.0177 (17) 0.0247 (16) −0.0033 (14) 0.0043 (13) −0.0101 (13)
C6 0.0175 (16) 0.0097 (15) 0.0159 (14) −0.0034 (12) 0.0056 (12) −0.0016 (11)
C7 0.0257 (19) 0.0187 (17) 0.0166 (15) −0.0066 (14) −0.0001 (13) −0.0019 (13)
C8 0.041 (2) 0.0240 (18) 0.0164 (16) −0.0154 (17) 0.0084 (15) −0.0058 (14)
C9 0.035 (2) 0.0177 (18) 0.0297 (17) −0.0134 (15) 0.0205 (15) −0.0107 (14)
C10 0.0226 (17) 0.0105 (16) 0.0306 (17) −0.0002 (13) 0.0124 (14) −0.0038 (13)
C11 0.0111 (15) 0.0078 (14) 0.0189 (14) 0.0008 (12) 0.0002 (11) −0.0008 (11)
C12 0.0199 (17) 0.0158 (17) 0.0211 (15) −0.0014 (13) 0.0061 (13) −0.0016 (12)
C13 0.0233 (18) 0.0165 (17) 0.0302 (17) 0.0005 (14) 0.0076 (14) −0.0072 (14)
C14 0.0231 (18) 0.0093 (16) 0.041 (2) −0.0039 (14) 0.0095 (15) −0.0031 (14)
C15 0.0226 (18) 0.0179 (18) 0.0370 (19) −0.0027 (14) 0.0153 (15) 0.0029 (14)
C16 0.0222 (18) 0.0153 (17) 0.0259 (16) 0.0003 (14) 0.0095 (13) −0.0039 (13)
C17 0.0150 (15) 0.0108 (15) 0.0151 (13) −0.0017 (12) 0.0054 (11) 0.0033 (11)
C18 0.0177 (16) 0.0116 (16) 0.0217 (15) −0.0010 (12) 0.0045 (12) 0.0021 (12)
C19 0.0177 (17) 0.0170 (17) 0.0230 (16) 0.0002 (13) 0.0055 (13) 0.0038 (13)
C20 0.0174 (17) 0.0299 (19) 0.0155 (14) −0.0050 (15) 0.0007 (12) 0.0041 (13)
C21 0.0252 (18) 0.0285 (19) 0.0137 (14) −0.0022 (15) 0.0058 (13) −0.0049 (13)
C22 0.0206 (17) 0.0159 (16) 0.0175 (14) 0.0019 (13) 0.0074 (12) −0.0018 (12)

Geometric parameters (Å, º)

Au—P1 2.2580 (8) C6—C7 1.430 (4)
Au—S1 2.3378 (8) C6—C10 1.430 (4)
Fe—C10i 2.033 (3) C7—C8 1.414 (5)
Fe—C10 2.033 (3) C7—H7 0.9500
Fe—C6i 2.039 (3) C8—C9 1.399 (5)
Fe—C6 2.039 (3) C8—H8 0.9500
Fe—C9 2.044 (3) C9—C10 1.420 (4)
Fe—C9i 2.044 (3) C9—H9 0.9500
Fe—C7i 2.059 (3) C10—H10 0.9500
Fe—C7 2.059 (3) C11—C12 1.386 (4)
Fe—C8 2.071 (3) C11—C16 1.395 (4)
Fe—C8i 2.071 (3) C12—C13 1.388 (4)
S1—C1 1.757 (3) C12—H12 0.9500
S2—C1 1.689 (3) C13—C14 1.382 (5)
P1—C6 1.796 (3) C13—H13 0.9500
P1—C17 1.809 (3) C14—C15 1.386 (5)
P1—C11 1.818 (3) C14—H14 0.9500
N1—C1 1.327 (4) C15—C16 1.381 (5)
N1—C2 1.478 (4) C15—H15 0.9500
N1—C5 1.478 (4) C16—H16 0.9500
C2—C3 1.531 (4) C17—C18 1.390 (4)
C2—H2A 0.9900 C17—C22 1.394 (4)
C2—H2B 0.9900 C18—C19 1.389 (4)
C3—C4 1.506 (5) C18—H18 0.9500
C3—H3A 0.9900 C19—C20 1.387 (4)
C3—H3B 0.9900 C19—H19 0.9500
C4—C5 1.528 (5) C20—C21 1.371 (5)
C4—H4A 0.9900 C20—H20 0.9500
C4—H4B 0.9900 C21—C22 1.388 (4)
C5—H5A 0.9900 C21—H21 0.9500
C5—H5B 0.9900 C22—H22 0.9500
P1—Au—S1 169.35 (3) C5—C4—H4B 110.9
C10i—Fe—C10 180.00 (19) H4A—C4—H4B 109.0
C10i—Fe—C6i 41.11 (12) N1—C5—C4 103.6 (2)
C10—Fe—C6i 138.89 (12) N1—C5—H5A 111.0
C10i—Fe—C6 138.89 (12) C4—C5—H5A 111.0
C10—Fe—C6 41.11 (12) N1—C5—H5B 111.0
C6i—Fe—C6 180.0 C4—C5—H5B 111.0
C10i—Fe—C9 139.24 (12) H5A—C5—H5B 109.0
C10—Fe—C9 40.76 (12) C7—C6—C10 107.3 (3)
C6i—Fe—C9 111.54 (12) C7—C6—P1 121.7 (2)
C6—Fe—C9 68.46 (12) C10—C6—P1 131.0 (2)
C10i—Fe—C9i 40.76 (12) C7—C6—Fe 70.32 (18)
C10—Fe—C9i 139.24 (13) C10—C6—Fe 69.22 (17)
C6i—Fe—C9i 68.46 (12) P1—C6—Fe 124.38 (15)
C6—Fe—C9i 111.54 (12) C8—C7—C6 108.1 (3)
C9—Fe—C9i 180.0 C8—C7—Fe 70.42 (19)
C10i—Fe—C7i 68.50 (14) C6—C7—Fe 68.85 (17)
C10—Fe—C7i 111.50 (13) C8—C7—H7 125.9
C6i—Fe—C7i 40.83 (12) C6—C7—H7 125.9
C6—Fe—C7i 139.17 (12) Fe—C7—H7 126.4
C9—Fe—C7i 112.49 (14) C9—C8—C7 108.2 (3)
C9i—Fe—C7i 67.51 (14) C9—C8—Fe 69.09 (18)
C10i—Fe—C7 111.50 (13) C7—C8—Fe 69.53 (18)
C10—Fe—C7 68.50 (14) C9—C8—H8 125.9
C6i—Fe—C7 139.17 (12) C7—C8—H8 125.9
C6—Fe—C7 40.83 (12) Fe—C8—H8 127.1
C9—Fe—C7 67.51 (14) C8—C9—C10 109.0 (3)
C9i—Fe—C7 112.49 (14) C8—C9—Fe 71.15 (19)
C7i—Fe—C7 180.0 C10—C9—Fe 69.22 (17)
C10i—Fe—C8 112.02 (14) C8—C9—H9 125.5
C10—Fe—C8 67.98 (14) C10—C9—H9 125.5
C6i—Fe—C8 111.87 (12) Fe—C9—H9 125.7
C6—Fe—C8 68.13 (12) C9—C10—C6 107.4 (3)
C9—Fe—C8 39.76 (15) C9—C10—Fe 70.02 (18)
C9i—Fe—C8 140.24 (15) C6—C10—Fe 69.67 (18)
C7i—Fe—C8 139.95 (13) C9—C10—H10 126.3
C7—Fe—C8 40.05 (13) C6—C10—H10 126.3
C10i—Fe—C8i 67.98 (14) Fe—C10—H10 125.6
C10—Fe—C8i 112.02 (14) C12—C11—C16 119.4 (3)
C6i—Fe—C8i 68.13 (12) C12—C11—P1 122.1 (2)
C6—Fe—C8i 111.87 (12) C16—C11—P1 118.5 (2)
C9—Fe—C8i 140.24 (15) C11—C12—C13 119.7 (3)
C9i—Fe—C8i 39.76 (15) C11—C12—H12 120.1
C7i—Fe—C8i 40.05 (13) C13—C12—H12 120.1
C7—Fe—C8i 139.95 (13) C14—C13—C12 120.6 (3)
C8—Fe—C8i 180.0 C14—C13—H13 119.7
C1—S1—Au 98.40 (10) C12—C13—H13 119.7
C6—P1—C17 105.75 (14) C13—C14—C15 119.9 (3)
C6—P1—C11 105.61 (14) C13—C14—H14 120.0
C17—P1—C11 103.37 (13) C15—C14—H14 120.0
C6—P1—Au 108.05 (10) C16—C15—C14 119.6 (3)
C17—P1—Au 115.04 (10) C16—C15—H15 120.2
C11—P1—Au 118.03 (10) C14—C15—H15 120.2
C1—N1—C2 124.6 (2) C15—C16—C11 120.7 (3)
C1—N1—C5 123.5 (2) C15—C16—H16 119.6
C2—N1—C5 111.5 (2) C11—C16—H16 119.6
N1—C1—S2 121.7 (2) C18—C17—C22 119.1 (3)
N1—C1—S1 116.5 (2) C18—C17—P1 120.7 (2)
S2—C1—S1 121.79 (18) C22—C17—P1 120.2 (2)
N1—C2—C3 103.7 (2) C19—C18—C17 120.6 (3)
N1—C2—H2A 111.0 C19—C18—H18 119.7
C3—C2—H2A 111.0 C17—C18—H18 119.7
N1—C2—H2B 111.0 C20—C19—C18 119.3 (3)
C3—C2—H2B 111.0 C20—C19—H19 120.3
H2A—C2—H2B 109.0 C18—C19—H19 120.3
C4—C3—C2 104.7 (3) C21—C20—C19 120.6 (3)
C4—C3—H3A 110.8 C21—C20—H20 119.7
C2—C3—H3A 110.8 C19—C20—H20 119.7
C4—C3—H3B 110.8 C20—C21—C22 120.2 (3)
C2—C3—H3B 110.8 C20—C21—H21 119.9
H3A—C3—H3B 108.9 C22—C21—H21 119.9
C3—C4—C5 104.1 (3) C21—C22—C17 120.0 (3)
C3—C4—H4A 110.9 C21—C22—H22 120.0
C5—C4—H4A 110.9 C17—C22—H22 120.0
C3—C4—H4B 110.9
C2—N1—C1—S2 −173.8 (2) C8—C9—C10—Fe 60.3 (2)
C5—N1—C1—S2 −2.2 (4) C7—C6—C10—C9 −0.2 (3)
C2—N1—C1—S1 6.1 (4) P1—C6—C10—C9 178.2 (2)
C5—N1—C1—S1 177.7 (2) Fe—C6—C10—C9 60.1 (2)
Au—S1—C1—N1 −164.2 (2) C7—C6—C10—Fe −60.3 (2)
Au—S1—C1—S2 15.7 (2) P1—C6—C10—Fe 118.1 (3)
C1—N1—C2—C3 −179.5 (3) C6—P1—C11—C12 −7.3 (3)
C5—N1—C2—C3 8.0 (3) C17—P1—C11—C12 103.5 (3)
N1—C2—C3—C4 −27.0 (3) Au—P1—C11—C12 −128.2 (2)
C2—C3—C4—C5 35.8 (3) C6—P1—C11—C16 174.7 (2)
C1—N1—C5—C4 −158.8 (3) C17—P1—C11—C16 −74.4 (3)
C2—N1—C5—C4 13.8 (3) Au—P1—C11—C16 53.8 (3)
C3—C4—C5—N1 −30.3 (3) C16—C11—C12—C13 −1.4 (5)
C17—P1—C6—C7 150.6 (2) P1—C11—C12—C13 −179.3 (2)
C11—P1—C6—C7 −100.2 (3) C11—C12—C13—C14 0.7 (5)
Au—P1—C6—C7 27.0 (3) C12—C13—C14—C15 0.1 (5)
C17—P1—C6—C10 −27.5 (3) C13—C14—C15—C16 −0.2 (5)
C11—P1—C6—C10 81.6 (3) C14—C15—C16—C11 −0.5 (5)
Au—P1—C6—C10 −151.2 (3) C12—C11—C16—C15 1.3 (5)
C17—P1—C6—Fe 63.9 (2) P1—C11—C16—C15 179.3 (2)
C11—P1—C6—Fe 173.08 (17) C6—P1—C17—C18 64.2 (3)
Au—P1—C6—Fe −59.75 (19) C11—P1—C17—C18 −46.6 (3)
C10—C6—C7—C8 −0.1 (4) Au—P1—C17—C18 −176.7 (2)
P1—C6—C7—C8 −178.6 (2) C6—P1—C17—C22 −113.7 (3)
Fe—C6—C7—C8 −59.7 (2) C11—P1—C17—C22 135.5 (2)
C10—C6—C7—Fe 59.6 (2) Au—P1—C17—C22 5.4 (3)
P1—C6—C7—Fe −118.9 (2) C22—C17—C18—C19 3.0 (4)
C6—C7—C8—C9 0.3 (4) P1—C17—C18—C19 −175.0 (2)
Fe—C7—C8—C9 −58.4 (2) C17—C18—C19—C20 −2.8 (5)
C6—C7—C8—Fe 58.7 (2) C18—C19—C20—C21 0.7 (5)
C7—C8—C9—C10 −0.4 (4) C19—C20—C21—C22 1.2 (5)
Fe—C8—C9—C10 −59.1 (2) C20—C21—C22—C17 −1.0 (5)
C7—C8—C9—Fe 58.7 (2) C18—C17—C22—C21 −1.0 (4)
C8—C9—C10—C6 0.4 (4) P1—C17—C22—C21 176.9 (2)
Fe—C9—C10—C6 −59.9 (2)

Symmetry code: (i) −x+1, −y, −z+2.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C13—H13···S2ii 0.95 2.86 3.680 (3) 144
C20—H20···S2iii 0.95 2.84 3.628 (3) 141

Symmetry codes: (ii) x, −y+1/2, z+1/2; (iii) −x+1, −y, −z+1.

References

  1. Agilent (2014). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.
  2. Braga, S. S. & Silva, A. M. S. (2013). Organometallics, 32, 5626–5639.
  3. Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  4. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  5. Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. [DOI] [PubMed]
  6. Ho, S. Y. & Tiekink, E. R. T. (2002). Z. Kristallogr. New Cryst. Struct 217, 359–360.
  7. Ho, S. Y. & Tiekink, E. R. T. (2004). Z. Kristallogr. New Cryst. Struct 219, 73–74.
  8. Jamaludin, N. S., Goh, Z.-J., Cheah, Y. K., Ang, K.-P., Sim, J. H., Khoo, C. H., Fairuz, Z. A., Halim, S. N. B. A., Ng, S. W., Seng, H.-L. & Tiekink, E. R. T. (2013). Eur. J. Med. Chem. 67, 127–141. [DOI] [PubMed]
  9. Ornelas, C. (2011). New J. Chem. 35, 1973–1985.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  12. Sim, J.-H., Jamaludin, N. S., Khoo, C.-H., Cheah, Y.-K., Halim, S. N. B. A., Seng, H.-L. & Tiekink, E. R. T. (2014). Gold Bull. 47, 225–236.
  13. Štěpnička, P. & Císařová, I. (2012). J. Organomet. Chem. 716, 110–119.
  14. Vergara, E., Miranda, S., Mohr, F., Cerrada, E., Tiekink, E. R. T., Romero, P., Mendía, A. & Laguna, M. (2007). Eur. J. Inorg. Chem. pp. 2926–2933.
  15. Vos, D. de, Ho, S. Y. & Tiekink, E. R. T. (2004). Bioinorg. Chem. Appl. 2, 141–154. [DOI] [PMC free article] [PubMed]
  16. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  17. Wijnhoven, J. G., Bosman, W. P. J. H. & Beurskens, P. T. (1972). J. Cryst. Mol. Struct. 2, 7–15.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989015016382/vn2097sup1.cif

e-71-01143-sup1.cif (790.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015016382/vn2097Isup2.hkl

e-71-01143-Isup2.hkl (380.4KB, hkl)

CCDC reference: 1421954

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES