Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Sep 26;71(Pt 10):1230–1235. doi: 10.1107/S2056989015017181

Crystal structures of three new N-halo­methyl­ated quaternary ammonium salts

Carolina Múnera-Orozco a, Rogelio Ocampo-Cardona a, David L Cedeño b,, Rubén A Toscano c, Luz Amalia Ríos-Vásquez a,*
PMCID: PMC4647383  PMID: 26594414

In the crystals of the title N-halo­methyl­ated quaternary ammonium salts, there are short I⋯I inter­actions of 3.564 (4), 3.506 (1) and 3.55781) Å for compounds (I), (II) and (III), respectively. In (I), mol­ecules are linked by C—H⋯I and C—H⋯π inter­actions, together with the I⋯I short contacts, forming ribbons along [100]. In (II), there are only C—H⋯I inter­actions, which together with the I⋯I short contacts, lead to the formation of helices along [010]. In (III), apart from the I⋯I short contacts, there are no other significant inter­molecular inter­actions present.

Keywords: crystal structure, N-halo­methyl­ated quaternary ammonium salts, cation–π inter­action, halogen bond, hydrogen bonding

Abstract

In the crystals of the title N-halo­methyl­ated quaternary ammonium salts, C19H23IN+·I, (I) [systematic name: N-(4,4-di­phenyl­but-3-en-1-yl)-N-iodo­methyl-N,N-di­methyl­ammonium iodide], C20H25IN+·I, (II) [systematic name: N-(5,5-di­phenyl­pent-4-en-1-yl)-N-iodo­methyl-N,N-di­methyl­ammonium iodide], and C21H27IN+·I, (III) [systematic name: N-(6,6-di­phenyl­hex-5-en-1-yl)-N-iodo­methyl-N,N-di­methyl­ammonium iodide], there are short I⋯I inter­actions of 3.564 (4), 3.506 (1) and 3.557 (1) Å for compounds (I), (II) and (III), respectively. Compound (I) crystallizes in the Sohncke group P21 as an ‘enanti­opure’ compound and is therefore a potential material for NLO properties. In the crystal of compound (I), mol­ecules are linked by C—H⋯I and C—H⋯π inter­actions which, together with the I⋯I inter­actions, lead to the formation of ribbons along [100]. In (II), there are only C—H⋯I inter­actions which, together with the I⋯I inter­actions, lead to the formation of helices along [010]. In (III), apart from the I⋯I inter­actions, there are no significant inter­molecular inter­actions present.

Chemical context and background to halogen bonding and cation–π inter­actions  

Quaternary ammonium salts have been widely studied as anti-cancer (Wang et al., 2012; Song et al., 2013), anti-fungal (Ng et al., 2006), anti-HIV-1 (Shiraishi et al., 2000), anti-bacterial (Calvani et al., 1998), anti-malarial (Calas et al., 1997; Calas et al., 2000) and anti-leishmanial (Mavromoustakos et al., 2001) pharmaceuticals. Our research group has been working in the past few years on the activity of quaternary N-halomethyl ammonium salts for likely pharmaceutical purposes, specifically against axenic L. (V) panamensis and L. (L) amazonensis parasites, human pathogenic species that cause cutaneous and mucocutaneous leishmaniasis. The experiments proved that these compounds are very promising anti-leishmanial mol­ecules, and very significant changes in their activity were observed upon a slight modification of the carbon skeleton by only a single methyl­ene unit (Ríos-Vásquez et al., 2015). A preliminary effort at understanding a structure–activity relationship with three N-iodo­methyl quaternary ammonium salts (I), (II) and (III) of the form [ICH2N(CH3)3(CH2)nCH=C(Ph)2]+·I (with n = 2, 3 and 4, respectively) is currently being carried out. One possible approach to understand the different activities is to establish what kind of inter­actions are present in compounds (I)–(III), for example whether C—I⋯I (Desiraju et al., 2013), C—H⋯I (Glidewell et al., 1994), C—H⋯π (Nishio et al., 1998) or cation–π (Dougherty, 1996), and if so, how these inter­actions may affect their structure and biological properties.

As defined by Inter­national Union for Pure and Applied Chemistry (IUPAC): a halogen bond occurs when there is evidence of a net attractive inter­action between an electrophilic region associated with a halogen atom in a mol­ecular entity and a nucleophilic region in another, or the same, mol­ecular entity (Desiraju et al., 2013). Halogen bonds are characterized by XX distances that are clearly shorter than the van der Waals radii sum (Formigué, 2009; Awwadi et al.; 2006); otherwise this inter­action is neglected. In a similar way, the existence of C—H⋯X hydrogen bonds (X = F, Cl, Br or I) in neutral organic mol­ecules (Aakeröy & Seddon, 1993) and even in organic salts has been recognized. On the other hand, a special kind of hydrogen bond, defined as a weak inter­action between a soft acid (i.e. an sp 3, sp 2 or sp C—H system) and a soft base (i.e. an aromatic, olefinic or acetilenic p system), with a significant role on diverse chemical and biological phenomena has recently been described (Nishio, 2012). In particular, this inter­action exerts an observable influence on host–guest recognition and crystal packing in the solid state. A related attraction is the cation–π inter­action, which is regarded as an electrostatic attraction between a positive charge and the quadrupole moment of an aromatic ring (Dougherty, 1996). A cation–π inter­action between aromatic and ammonium ions is known to play an important role in many biological systems (Ma & Dougherty, 1997; Dougherty, 2013; Sussman et al., 1991; Chen et al., 2011). Part of our research inter­est is focused not only in understanding the reactive nature of alpha ammonium distonic radical cations which are generated from N-halo­methyl­ated quaternary ammonium salts (Ríos et al., 1996; Ríos, Bartberger et al., 1997), but also in trying to understand how these salts behave against Leishmania parasites (Ríos-Vásquez et al., 2015). The recognition of the occurrence of some supra­molecular inter­actions in these salts may lead to a better understanding of the likely novel biological binding sites, and therefore to new suggestions about biocatalytic mechanisms.graphic file with name e-71-01230-scheme1.jpg

The title N-iodo­methyl quaternary ammonium salts, (I)–(III), were synthesized following standard procedures used for other related compounds (Newcomb et al., 1993; Horner et al., 1995) and suitable crystals were obtained (Múnera-Orozco, 2014). This paper reports a comparative crystal structure and supra­molecular inter­actions analysis for the aforementioned compounds.

Structural commentary  

Compound (I), Fig. 1, crystallizes in the non-centrosymmetric monoclinic space group P21 and is therefore, a potential material for NLO properties. The asymmetric unit consists of an ammonium cation and an iodide anion. In the geminal-substituted di­phenyl­ethene unit, the phenyl rings (C5–C10 and C11–C16) are inclined to one another by 74.6 (2)°, and are twisted from the mean plane of the central C=C bond fragment (C2–C5/C11) by 33.2 (2) and 61.4 (2)°, respectively. Co-planarity of the olefin skeleton and the peripheral phenyl rings is prevented because of steric congestion between the associated phenyl rings. The conformation of the side chain reveals an all-trans extended conformation with the iodo­methyl moiety on one side of the backbone chain, with bond lengths and angles in the expected ranges.

Figure 1.

Figure 1

The mol­ecular structure of compound (I), showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

In compound (II), Fig. 2, the dihedral angles between the mean planes of the C=C double-bond fragment (C3–C6/C12) and the two phenyl rings (C6–C11 and C12–C17) are 31.1 (4) and 58.6 (4)°, respectively, while the phenyl rings are inclined to one another by 76.2 (4)°. The N-iodo­methyl-N,N-dimethyl-N-propyl­ammonium moiety adopts a fully extended conformation with one methyl group and the iodo­methyl unit on opposite sides of the backbone of the side chain (Fig. 2). This conformation seems to be partially supported by a C—H⋯I hydrogen bond (Table 2 and Supra­molecular features).

Figure 2.

Figure 2

The mol­ecular structure of compound (II), showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

In compound (III), Fig. 3, the phenyl rings are twisted out of the plane defined by the ethyl­ene moiety (C4–C7/C13), making dihedral angles of 38.7 (4) and 78.7 (6)° for the trans (C7–C12) and cis (C13–C18) phenyl rings, respectively. The phenyl rings are inclined to one another by 78.5 (6)°. The alkyl­amino side chain is almost fully extended away from the geminal-substituted ethene group.

Figure 3.

Figure 3

The mol­ecular structure of compound (III), showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

Supra­molecular features  

In the crystal of (I), ribbons are formed, by I1⋯I2i contacts [3.564 (4) Å; symmetry code: (i) −x − 1, y − Inline graphic, −z + 1] and C—H⋯I hydrogen bonds, along the a-axis direction. The chains are reinforced by C—H⋯π inter­actions (Fig. 4 and Table 1).

Figure 4.

Figure 4

The crystal packing of compound (I), viewed along the b axis, showing the inter­molecular contacts (dashed lines; see Table 1).

Table 1. Hydrogen-bond geometry (Å, °) for (I) .

Cg is the centroid of the C11–C16 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17B⋯I2i 0.97 3.00 3.919 (5) 159
C7—H7⋯Cg ii 0.93 2.84 3.030 (5) 143

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

In the crystal of (II), helical chains along the b-axis direction are formed by mol­ecules linked via C—H⋯I (Table 2) and I1⋯I2ii inter­actions [3.506 (1) Å; symmetry code: (ii) −x + Inline graphic, y − Inline graphic, −z + Inline graphic]; as shown in Fig. 5. Here no C—H⋯π inter­actions are present in the crystal packing. The closest distance between the ammonium substituents and any of the phenyl rings is ca 7.18 Å. These features clearly rule out an intra­molecular cation–π inter­action for this mol­ecule in the solid state. However, in studies of distonic radical cation (Ríos et al. 1996; Yates et al., 1986), evidence is presented that the active conformation of the alkyl­amino side chain is oriented toward and above the plane of the C=C double bond of the geminal-substituted ethene group. These results confirm that there is considerable freedom of rotation about the bonds separating the basic amino function and the tricyclic system, and thus numerous inter­convertible side-chain conformations, differing only slightly in potential energy, may exist.

Table 2. Hydrogen-bond geometry (Å, °) for (II) .

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2B⋯I2 0.97 3.06 4.001 (7) 165

Figure 5.

Figure 5

The crystal packing of compound (II), viewed along the b axis, showing the inter­molecular contacts (dashed lines; see Table 2).

In the crystal of (III), apart from the I1⋯I2iii contact of 3.557 (1) Å [symmetry code: (iii) −x, −y + 1, −z], there are no other significant inter­molecular contacts present (Fig. 6). The only possible conclusion regarding the crystal structure of (III) is that the steric requirements in this mol­ecule outweigh the additional stabilization obtained by an intra­molecular cation–π inter­action.

Figure 6.

Figure 6

The crystal packing of compound (III), viewed along the b axis.

Synthesis and crystallization  

The general procedure for the preparation of the title quaternary ammonium salts is illustrated in Fig. 7 for compounds (I)–(III). The reactions were carried out following a standard literature method (Ríos et al., 1996) starting from the appropriate amine [N,N-dimethyl-4,4-di­phenyl­but-3-en-1-amine 1(a), N,N-dimethyl-5,5-di­phenyl­pent-4-en-1-amine 1(b) and N,N-dimethyl-6,6-di­phenyl­hex-5-en-1-amine 1(c)]. Typically, CH2I2 (4 eq) and 1 eq of the starting tertiary amine [for example, compound 1(a) for the synthesis of (I); as shown in Fig. 7] were dissolved in aceto­nitrile. The reactions were allowed to run overnight at room temperature, and the precipitated salts were filtered off and washed several times with diethyl ether, and then recrystallized from a binary mixture water–iso­propanol. The desired products were obtained as colourless crystals.

Figure 7.

Figure 7

The general procedure for the preparation of the title quaternary ammonium salts.

Compound (I): The product was obtained as a white solid in 74% yield; m.p. 425–427 K. 1H NMR (DMSO, 300 MHz, δ, p.p.m.): 2.49 (m, 2H), 3.12 (s, 6H), 3.50 (m, 2H), 5.05 (s, 2H), 6.07 (t, J = 7.4 Hz, 1H), 7.15–7.58 (m, 10H) p.p.m. 13C NMR (DMSO, 75 MHz,, p.p.m.) 23.70, 31.49, 51.66, 63.58, 121.92, 127.19–129.51, 138.79, 141.62, 145.03 p.p.m. Elemental analysis calculated for C19H23NI2: C, 43.95%; H, 4.46%; N, 2.70%; found, C, 43.48%; H, 4.35%; N, 2.68%. MS–ESI calculated for C19H23NI: 392.09, found: 391.95.

Compound (II): The product was obtained as a white solid in 77% yield; m.p. 430–437 K. 1H NMR (DMSO, 300 MHz, δ, p.p.m.): 1.85 (m, 2H), 2.12 (m, 2H), 2.51 (m, 2H), 3.15 (s, 6H), 5.18 (s, 2H), 6.14 (t, J = 7.2 Hz, 1H), 7.11–7.51 (10H). 13C NMR (DMSO, 75 MHz, p.p.m.): 22.30, 25.91, 39.01, 51.19, 63.84, 126.84–141.68. ESI–MS m/z calculated for C20H25NI: 406.10, found: 406.20.

Compound (III): The product was obtained as a white solid in 72% yield; m.p. 429–431 K. 1H NMR (DMSO, 300 MHz, δ, p.p.m.): 1.45 (m, 2H), 1.68 (m, 2H), 2.12 (m, 2H), 2.51 (m, 2H), 3.10 (s, 6H), 5.14 (s, 2H), 6.14 (t, J = 7.3 Hz, 1H), 7.06–7.51 (m, 10H) p.p.m. 13C NMR (DMSO, 75 MHz, p.p.m.): 25.07, 28.91, 31.91, 35.35, 54.29, 67.34, 129.89–132.50, 130.19, 142.45, 144.34, 145.02. Elemental analysis calculated for C21H27NI2: C, 46.09%; H, 4.97%; N, 2.56%; found C, 45.91%; H, 4.93%; N, 2.58%. ESI–MS m/z calculated for C21H27NI: 420.12, found: 420.20.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. For all three compounds the C-bound H atoms were included in calculated positions and treated as riding atoms: C—H = 0.93–0.99 Å with U iso(H) = 1.5U eq(C) for methyl H atoms and 1.2U eq(C) for other H atoms. Refining the structure of compound (I) in the non-centrosymmetric space group gives a value of 0.02 (3) for the Flack parameter (Flack & Bernardinelli, 1999), confirming that the direction of the polar axis has been correctly determined. The studied crystal of compound (III) was a non-merohedral twin with a ratio of two major domains of 0.374 (2):0.626 (2). The two domains are rotated from each other by 180.0° about the reciprocal axis a*, as determined by the CELL NOW program (Sheldrick, 2004). The final refinement was carried out using the twinned data set.

Table 3. Experimental details.

  (I) (II) (III)
Crystal data
Chemical formula C19H23IN+·I C20H25IN+·I C21H27IN+·I
M r 519.18 533.21 547.23
Crystal system, space group Monoclinic, P21 Monoclinic, C2/c Monoclinic, P21/c
Temperature (K) 298 298 298
a, b, c (Å) 7.9254 (2), 13.6161 (3), 9.4632 (2) 37.778 (7), 6.6323 (12), 17.021 (3) 8.9423 (12), 24.058 (3), 10.3749 (13)
β (°) 103.320 (1) 100.567 (4) 103.656 (3)
V3) 993.73 (4) 4192.3 (13) 2168.9 (5)
Z 2 8 4
Radiation type Mo Kα Mo Kα Mo Kα
μ (mm−1) 3.16 3.00 2.90
Crystal size (mm) 0.23 × 0.19 × 0.12 0.21 × 0.20 × 0.08 0.32 × 0.22 × 0.04
 
Data collection
Diffractometer Bruker SMART APEX CCD Bruker SMART APEX CCD Bruker SMART APEX CCD
Absorption correction Multi-scan (SADABS; Bruker, 2012) Multi-scan (SADABS; Bruker, 2012) Multi-scan (TWINABS; Bruker, 2012)
T min, T max 0.624, 0.745 0.349, 0.745 0.273, 0.429
No. of measured, independent and observed [I > 2σ(I)] reflections 5791, 3085, 3013 16925, 3808, 3114 3961, 3961, 2941
R int 0.016 0.079 0.079
(sin θ/λ)max−1) 0.602 0.602 0.603
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.017, 0.038, 1.08 0.052, 0.145, 1.05 0.060, 0.138, 1.05
No. of reflections 3085 3808 3961
No. of parameters 202 210 220
No. of restraints 1 0 0
H-atom treatment H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.27, −0.46 1.90, −1.98 0.82, −0.80
Absolute structure Refined as an inversion twin
Absolute structure parameter 0.02 (3)

Computer programs: APEX2 and SAINT (Bruker, 2012), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), Mercury (Macrae et al., 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, II, III, Global. DOI: 10.1107/S2056989015017181/su5179sup1.cif

e-71-01230-sup1.cif (940.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015017181/su5179Isup2.hkl

e-71-01230-Isup2.hkl (246.4KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015017181/su5179Isup3.cdx

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989015017181/su5179IIsup4.hkl

e-71-01230-IIsup4.hkl (304.1KB, hkl)

Structure factors: contains datablock(s) III. DOI: 10.1107/S2056989015017181/su5179IIIsup5.hkl

e-71-01230-IIIsup5.hkl (315.9KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015017181/su5179Isup6.cml

Supporting information file. DOI: 10.1107/S2056989015017181/su5179IIsup7.cml

Supporting information file. DOI: 10.1107/S2056989015017181/su5179IIIsup8.cml

CCDC references: 1424320, 1424319, 1424318

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

Special thanks are extended to Dr Guillermo Delgado Lamas (Universidad Nacional Autónoma de México) and Dr Eunice Ríos Vásquez [Universidad Nacional Autónoma de México and Universidad del Quindío (Colombia)] for assistance with the structural analyses. The authors also acknowledge financial support from the Universidad de Caldas, Colombia, and Illinois State University, USA.

supplementary crystallographic information

(I) N-(4,4-Diphenylbut-3-en-1-yl)-N-iodomethyl-N,N-dimethylammonium iodide . Crystal data

C19H23IN+·I Dx = 1.735 Mg m3
Mr = 519.18 Melting point = 425–427 K
Monoclinic, P21 Mo Kα radiation, λ = 0.71073 Å
a = 7.9254 (2) Å Cell parameters from 4987 reflections
b = 13.6161 (3) Å θ = 2.2–25.3°
c = 9.4632 (2) Å µ = 3.16 mm1
β = 103.320 (1)° T = 298 K
V = 993.73 (4) Å3 Prism, colourless
Z = 2 0.23 × 0.19 × 0.12 mm
F(000) = 500

(I) N-(4,4-Diphenylbut-3-en-1-yl)-N-iodomethyl-N,N-dimethylammonium iodide . Data collection

Bruker SMART APEX CCD diffractometer 3085 independent reflections
Radiation source: fine-focus sealed tube 3013 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.016
Detector resolution: 8.333 pixels mm-1 θmax = 25.3°, θmin = 2.2°
ω–scans h = −9→9
Absorption correction: multi-scan (SADABS; Bruker, 2012) k = −16→16
Tmin = 0.624, Tmax = 0.745 l = −11→11
5791 measured reflections

(I) N-(4,4-Diphenylbut-3-en-1-yl)-N-iodomethyl-N,N-dimethylammonium iodide . Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.017 H-atom parameters constrained
wR(F2) = 0.038 w = 1/[σ2(Fo2) + (0.0138P)2 + 0.0203P] where P = (Fo2 + 2Fc2)/3
S = 1.08 (Δ/σ)max = 0.001
3085 reflections Δρmax = 0.27 e Å3
202 parameters Δρmin = −0.46 e Å3
1 restraint Absolute structure: Refined as an inversion twin
Primary atom site location: structure-invariant direct methods Absolute structure parameter: 0.02 (3)

(I) N-(4,4-Diphenylbut-3-en-1-yl)-N-iodomethyl-N,N-dimethylammonium iodide . Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refined as a 2-component inversion twin.

(I) N-(4,4-Diphenylbut-3-en-1-yl)-N-iodomethyl-N,N-dimethylammonium iodide . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
I1 −0.65685 (3) 0.06224 (2) 0.13054 (3) 0.04839 (9)
I2 0.06519 (4) 0.44189 (2) 0.91487 (3) 0.04368 (9)
N1 −0.3770 (4) 0.2023 (3) 0.0555 (4) 0.0376 (8)
C1 −0.1849 (5) 0.2322 (4) 0.0948 (5) 0.0402 (10)
H1A −0.1144 0.1733 0.1019 0.048*
H1B −0.1609 0.2719 0.0166 0.048*
C2 −0.1311 (5) 0.2891 (3) 0.2358 (5) 0.0409 (11)
H2A −0.1888 0.3524 0.2249 0.049*
H2B −0.1676 0.2536 0.3124 0.049*
C3 0.0613 (6) 0.3044 (3) 0.2779 (5) 0.0382 (10)
H3 0.1101 0.3408 0.2143 0.046*
C4 0.1686 (5) 0.2711 (3) 0.3970 (4) 0.0329 (9)
C5 0.3545 (5) 0.3021 (3) 0.4380 (4) 0.0349 (9)
C6 0.4815 (6) 0.2388 (4) 0.5116 (5) 0.0457 (11)
H6 0.4514 0.1752 0.5318 0.055*
C7 0.6528 (6) 0.2687 (4) 0.5557 (5) 0.0546 (13)
H7 0.7362 0.2248 0.6040 0.065*
C8 0.7001 (6) 0.3612 (5) 0.5292 (6) 0.0598 (15)
H8 0.8148 0.3812 0.5610 0.072*
C9 0.5768 (7) 0.4253 (4) 0.4549 (7) 0.0661 (16)
H9 0.6087 0.4887 0.4357 0.079*
C10 0.4056 (6) 0.3959 (4) 0.4085 (6) 0.0532 (13)
H10 0.3239 0.4395 0.3569 0.064*
C11 0.1128 (5) 0.2030 (3) 0.5013 (4) 0.0326 (9)
C12 0.0439 (6) 0.1106 (3) 0.4575 (5) 0.0422 (10)
H12 0.0314 0.0909 0.3616 0.051*
C13 −0.0060 (6) 0.0480 (3) 0.5561 (5) 0.0500 (12)
H13 −0.0522 −0.0134 0.5258 0.060*
C14 0.0124 (6) 0.0761 (4) 0.6978 (5) 0.0523 (13)
H14 −0.0198 0.0334 0.7637 0.063*
C15 0.0784 (6) 0.1674 (4) 0.7431 (5) 0.0467 (12)
H15 0.0883 0.1871 0.8388 0.056*
C16 0.1298 (5) 0.2295 (4) 0.6457 (5) 0.0403 (10)
H16 0.1768 0.2905 0.6774 0.048*
C17 −0.4036 (5) 0.1302 (3) 0.1685 (5) 0.0411 (10)
H17A −0.3821 0.1637 0.2614 0.049*
H17B −0.3174 0.0787 0.1761 0.049*
C18 −0.4928 (7) 0.2892 (4) 0.0510 (7) 0.0633 (15)
H18A −0.6106 0.2703 0.0100 0.095*
H18B −0.4590 0.3397 −0.0076 0.095*
H18C −0.4832 0.3135 0.1478 0.095*
C19 −0.4089 (7) 0.1546 (5) −0.0910 (5) 0.0596 (14)
H19A −0.5290 0.1369 −0.1218 0.089*
H19B −0.3385 0.0967 −0.0855 0.089*
H19C −0.3796 0.1997 −0.1596 0.089*

(I) N-(4,4-Diphenylbut-3-en-1-yl)-N-iodomethyl-N,N-dimethylammonium iodide . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
I1 0.03965 (16) 0.05161 (19) 0.05521 (18) −0.00709 (15) 0.01359 (13) −0.00180 (15)
I2 0.04705 (17) 0.03979 (15) 0.04515 (16) 0.00372 (15) 0.01257 (12) 0.00767 (14)
N1 0.0317 (17) 0.043 (2) 0.0351 (19) −0.0020 (17) 0.0010 (15) 0.0047 (16)
C1 0.029 (2) 0.051 (3) 0.039 (2) −0.005 (2) 0.0042 (18) 0.006 (2)
C2 0.035 (2) 0.043 (3) 0.042 (3) 0.001 (2) 0.004 (2) −0.001 (2)
C3 0.038 (2) 0.037 (2) 0.038 (2) −0.004 (2) 0.0058 (19) 0.003 (2)
C4 0.034 (2) 0.031 (2) 0.033 (2) −0.0022 (18) 0.0073 (18) −0.0027 (18)
C5 0.033 (2) 0.037 (2) 0.035 (2) −0.002 (2) 0.0087 (18) −0.0047 (19)
C6 0.037 (3) 0.055 (3) 0.046 (3) 0.003 (2) 0.012 (2) 0.011 (2)
C7 0.033 (2) 0.083 (4) 0.049 (3) 0.007 (3) 0.010 (2) 0.009 (3)
C8 0.034 (3) 0.080 (4) 0.065 (4) −0.009 (3) 0.011 (3) −0.014 (3)
C9 0.049 (3) 0.048 (4) 0.103 (4) −0.019 (3) 0.021 (3) −0.017 (3)
C10 0.040 (3) 0.037 (2) 0.082 (4) −0.003 (2) 0.012 (3) 0.003 (3)
C11 0.0266 (19) 0.035 (2) 0.035 (2) 0.0031 (18) 0.0054 (17) 0.0010 (18)
C12 0.043 (2) 0.040 (2) 0.045 (2) −0.002 (2) 0.013 (2) −0.004 (2)
C13 0.054 (3) 0.032 (3) 0.068 (3) −0.001 (2) 0.022 (2) 0.004 (2)
C14 0.046 (3) 0.054 (3) 0.061 (3) 0.009 (3) 0.019 (2) 0.023 (3)
C15 0.043 (3) 0.065 (3) 0.031 (2) 0.007 (3) 0.008 (2) 0.007 (2)
C16 0.031 (2) 0.048 (3) 0.040 (2) −0.004 (2) 0.0043 (19) −0.004 (2)
C17 0.035 (2) 0.049 (3) 0.037 (2) −0.005 (2) 0.0035 (18) 0.005 (2)
C18 0.041 (3) 0.049 (3) 0.091 (4) 0.009 (3) −0.002 (3) 0.013 (3)
C19 0.055 (3) 0.084 (4) 0.036 (3) −0.014 (3) 0.003 (2) 0.001 (3)

(I) N-(4,4-Diphenylbut-3-en-1-yl)-N-iodomethyl-N,N-dimethylammonium iodide . Geometric parameters (Å, º)

I1—C17 2.164 (4) C8—H8 0.9300
I1—I2i 3.5640 (4) C9—C10 1.386 (7)
N1—C18 1.492 (6) C9—H9 0.9300
N1—C19 1.499 (6) C10—H10 0.9300
N1—C17 1.502 (5) C11—C16 1.390 (6)
N1—C1 1.536 (5) C11—C12 1.396 (6)
C1—C2 1.517 (6) C12—C13 1.387 (6)
C1—H1A 0.9700 C12—H12 0.9300
C1—H1B 0.9700 C13—C14 1.370 (7)
C2—C3 1.499 (6) C13—H13 0.9300
C2—H2A 0.9700 C14—C15 1.379 (7)
C2—H2B 0.9700 C14—H14 0.9300
C3—C4 1.326 (6) C15—C16 1.379 (6)
C3—H3 0.9300 C15—H15 0.9300
C4—C11 1.493 (6) C16—H16 0.9300
C4—C5 1.495 (6) C17—H17A 0.9700
C5—C6 1.385 (6) C17—H17B 0.9700
C5—C10 1.388 (6) C18—H18A 0.9600
C6—C7 1.387 (7) C18—H18B 0.9600
C6—H6 0.9300 C18—H18C 0.9600
C7—C8 1.353 (8) C19—H19A 0.9600
C7—H7 0.9300 C19—H19B 0.9600
C8—C9 1.376 (8) C19—H19C 0.9600
C17—I1—I2i 176.81 (12) C9—C10—C5 120.8 (5)
C18—N1—C19 110.2 (4) C9—C10—H10 119.6
C18—N1—C17 110.7 (4) C5—C10—H10 119.6
C19—N1—C17 110.7 (4) C16—C11—C12 118.0 (4)
C18—N1—C1 111.4 (4) C16—C11—C4 120.8 (4)
C19—N1—C1 106.6 (3) C12—C11—C4 121.2 (4)
C17—N1—C1 107.1 (3) C13—C12—C11 120.5 (4)
C2—C1—N1 114.2 (3) C13—C12—H12 119.8
C2—C1—H1A 108.7 C11—C12—H12 119.8
N1—C1—H1A 108.7 C14—C13—C12 120.3 (5)
C2—C1—H1B 108.7 C14—C13—H13 119.9
N1—C1—H1B 108.7 C12—C13—H13 119.9
H1A—C1—H1B 107.6 C13—C14—C15 120.2 (4)
C3—C2—C1 111.6 (4) C13—C14—H14 119.9
C3—C2—H2A 109.3 C15—C14—H14 119.9
C1—C2—H2A 109.3 C14—C15—C16 119.7 (4)
C3—C2—H2B 109.3 C14—C15—H15 120.2
C1—C2—H2B 109.3 C16—C15—H15 120.2
H2A—C2—H2B 108.0 C15—C16—C11 121.4 (4)
C4—C3—C2 126.3 (4) C15—C16—H16 119.3
C4—C3—H3 116.8 C11—C16—H16 119.3
C2—C3—H3 116.8 N1—C17—I1 116.0 (3)
C3—C4—C11 123.0 (4) N1—C17—H17A 108.3
C3—C4—C5 121.6 (4) I1—C17—H17A 108.3
C11—C4—C5 115.3 (3) N1—C17—H17B 108.3
C6—C5—C10 117.5 (4) I1—C17—H17B 108.3
C6—C5—C4 120.9 (4) H17A—C17—H17B 107.4
C10—C5—C4 121.6 (4) N1—C18—H18A 109.5
C5—C6—C7 121.1 (5) N1—C18—H18B 109.5
C5—C6—H6 119.4 H18A—C18—H18B 109.5
C7—C6—H6 119.4 N1—C18—H18C 109.5
C8—C7—C6 120.7 (5) H18A—C18—H18C 109.5
C8—C7—H7 119.6 H18B—C18—H18C 109.5
C6—C7—H7 119.6 N1—C19—H19A 109.5
C7—C8—C9 119.4 (5) N1—C19—H19B 109.5
C7—C8—H8 120.3 H19A—C19—H19B 109.5
C9—C8—H8 120.3 N1—C19—H19C 109.5
C8—C9—C10 120.5 (5) H19A—C19—H19C 109.5
C8—C9—H9 119.8 H19B—C19—H19C 109.5
C10—C9—H9 119.8
C18—N1—C1—C2 55.2 (5) C6—C5—C10—C9 −1.8 (8)
C19—N1—C1—C2 175.5 (4) C4—C5—C10—C9 176.1 (5)
C17—N1—C1—C2 −65.9 (5) C3—C4—C11—C16 −120.5 (5)
N1—C1—C2—C3 172.5 (4) C5—C4—C11—C16 57.8 (5)
C1—C2—C3—C4 −117.9 (5) C3—C4—C11—C12 60.2 (6)
C2—C3—C4—C11 6.6 (7) C5—C4—C11—C12 −121.5 (4)
C2—C3—C4—C5 −171.6 (4) C16—C11—C12—C13 0.2 (6)
C3—C4—C5—C6 −148.1 (5) C4—C11—C12—C13 179.5 (4)
C11—C4—C5—C6 33.5 (5) C11—C12—C13—C14 −0.3 (7)
C3—C4—C5—C10 34.0 (6) C12—C13—C14—C15 0.9 (7)
C11—C4—C5—C10 −144.3 (4) C13—C14—C15—C16 −1.5 (7)
C10—C5—C6—C7 0.9 (7) C14—C15—C16—C11 1.5 (7)
C4—C5—C6—C7 −177.0 (4) C12—C11—C16—C15 −0.8 (6)
C5—C6—C7—C8 0.7 (7) C4—C11—C16—C15 179.9 (4)
C6—C7—C8—C9 −1.4 (8) C18—N1—C17—I1 64.6 (4)
C7—C8—C9—C10 0.5 (9) C19—N1—C17—I1 −57.9 (4)
C8—C9—C10—C5 1.1 (9) C1—N1—C17—I1 −173.8 (3)

Symmetry code: (i) −x−1, y−1/2, −z+1.

(I) N-(4,4-Diphenylbut-3-en-1-yl)-N-iodomethyl-N,N-dimethylammonium iodide . Hydrogen-bond geometry (Å, º)

Cg is the centroid of the C11–C16 ring.

D—H···A D—H H···A D···A D—H···A
C17—H17B···I2ii 0.97 3.00 3.919 (5) 159
C7—H7···Cgiii 0.93 2.84 3.030 (5) 143

Symmetry codes: (ii) −x, y−1/2, −z+1; (iii) x+1, y, z.

(II) N-(5,5-Diphenylpent-4-en-1-yl)-N-iodomethyl-N,N-dimethylammonium iodide . Crystal data

C20H25IN+·I Dx = 1.690 Mg m3
Mr = 533.21 Melting point = 430–431 K
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
a = 37.778 (7) Å Cell parameters from 4726 reflections
b = 6.6323 (12) Å θ = 2.2–25.3°
c = 17.021 (3) Å µ = 3.00 mm1
β = 100.567 (4)° T = 298 K
V = 4192.3 (13) Å3 Platy-prism, colourless
Z = 8 0.21 × 0.20 × 0.08 mm
F(000) = 2064

(II) N-(5,5-Diphenylpent-4-en-1-yl)-N-iodomethyl-N,N-dimethylammonium iodide . Data collection

Bruker SMART APEX CCD diffractometer 3808 independent reflections
Radiation source: fine-focus sealed tube 3114 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.079
ω–scans θmax = 25.4°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Bruker, 2012) h = −45→45
Tmin = 0.349, Tmax = 0.745 k = −7→7
16925 measured reflections l = −20→20

(II) N-(5,5-Diphenylpent-4-en-1-yl)-N-iodomethyl-N,N-dimethylammonium iodide . Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.145 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0918P)2] where P = (Fo2 + 2Fc2)/3
3808 reflections (Δ/σ)max = 0.001
210 parameters Δρmax = 1.90 e Å3
0 restraints Δρmin = −1.98 e Å3

(II) N-(5,5-Diphenylpent-4-en-1-yl)-N-iodomethyl-N,N-dimethylammonium iodide . Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

(II) N-(5,5-Diphenylpent-4-en-1-yl)-N-iodomethyl-N,N-dimethylammonium iodide . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
I1 0.25244 (2) −0.01229 (6) 0.13640 (2) 0.04488 (19)
I2 0.30512 (2) 0.07869 (7) 0.42246 (3) 0.04999 (19)
N1 0.31227 (12) 0.3200 (8) 0.1496 (2) 0.0383 (11)
C1 0.32956 (18) 0.4989 (9) 0.1981 (4) 0.0446 (15)
H1A 0.3463 0.5629 0.1690 0.053*
H1B 0.3109 0.5965 0.2029 0.053*
C2 0.34941 (19) 0.4459 (10) 0.2810 (4) 0.0503 (16)
H2A 0.3713 0.3736 0.2770 0.060*
H2B 0.3345 0.3583 0.3069 0.060*
C3 0.35877 (18) 0.6363 (11) 0.3312 (4) 0.0498 (15)
H3A 0.3769 0.7134 0.3107 0.060*
H3B 0.3375 0.7199 0.3284 0.060*
C4 0.37268 (18) 0.5764 (12) 0.4160 (4) 0.0536 (17)
H4 0.3577 0.4935 0.4394 0.064*
C5 0.40427 (16) 0.6276 (11) 0.4628 (3) 0.0476 (15)
C6 0.41456 (18) 0.5452 (12) 0.5446 (4) 0.0537 (18)
C7 0.4042 (2) 0.3523 (14) 0.5653 (4) 0.066 (2)
H7 0.3905 0.2719 0.5265 0.080*
C8 0.4140 (2) 0.2791 (17) 0.6421 (5) 0.083 (3)
H8 0.4068 0.1506 0.6544 0.099*
C9 0.4346 (2) 0.396 (2) 0.7012 (5) 0.095 (4)
H9 0.4411 0.3468 0.7530 0.114*
C10 0.4453 (2) 0.586 (2) 0.6822 (5) 0.098 (4)
H10 0.4592 0.6652 0.7213 0.117*
C11 0.43528 (19) 0.6603 (16) 0.6054 (4) 0.073 (2)
H11 0.4425 0.7893 0.5937 0.088*
C12 0.42943 (16) 0.7710 (12) 0.4341 (3) 0.0494 (16)
C13 0.4190 (2) 0.9644 (13) 0.4097 (5) 0.067 (2)
H13 0.3957 1.0067 0.4121 0.080*
C14 0.4417 (3) 1.0942 (16) 0.3824 (6) 0.087 (3)
H14 0.4339 1.2226 0.3655 0.104*
C15 0.4761 (3) 1.036 (2) 0.3796 (7) 0.097 (4)
H15 0.4914 1.1257 0.3604 0.117*
C16 0.4882 (2) 0.849 (2) 0.4045 (5) 0.091 (3)
H16 0.5118 0.8115 0.4026 0.109*
C17 0.46478 (18) 0.7137 (15) 0.4330 (4) 0.067 (2)
H17 0.4729 0.5865 0.4509 0.080*
C18 0.28176 (16) 0.2484 (10) 0.1869 (3) 0.0425 (14)
H18A 0.2648 0.3587 0.1853 0.051*
H18B 0.2911 0.2201 0.2428 0.051*
C19 0.33945 (17) 0.1549 (11) 0.1464 (4) 0.0509 (16)
H19A 0.3288 0.0516 0.1101 0.076*
H19B 0.3468 0.0982 0.1988 0.076*
H19C 0.3601 0.2098 0.1283 0.076*
C20 0.29821 (18) 0.3908 (10) 0.0658 (3) 0.0495 (16)
H20A 0.2870 0.2801 0.0343 0.074*
H20B 0.3178 0.4416 0.0427 0.074*
H20C 0.2808 0.4959 0.0668 0.074*

(II) N-(5,5-Diphenylpent-4-en-1-yl)-N-iodomethyl-N,N-dimethylammonium iodide . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
I1 0.0501 (3) 0.0520 (3) 0.0289 (3) −0.01023 (17) −0.00240 (18) 0.00087 (16)
I2 0.0512 (3) 0.0512 (3) 0.0461 (3) 0.00415 (19) 0.0052 (2) 0.01397 (19)
N1 0.041 (3) 0.050 (3) 0.021 (2) −0.003 (2) −0.0006 (19) −0.002 (2)
C1 0.052 (4) 0.047 (4) 0.033 (3) −0.013 (3) 0.001 (3) −0.003 (3)
C2 0.052 (4) 0.062 (4) 0.031 (3) −0.008 (3) −0.009 (3) −0.005 (3)
C3 0.044 (3) 0.062 (4) 0.039 (3) −0.010 (3) −0.003 (3) −0.011 (3)
C4 0.047 (4) 0.082 (5) 0.028 (3) −0.012 (3) −0.001 (3) −0.011 (3)
C5 0.042 (3) 0.067 (4) 0.031 (3) −0.009 (3) 0.000 (2) −0.019 (3)
C6 0.035 (3) 0.089 (5) 0.036 (3) 0.001 (3) 0.004 (3) −0.008 (3)
C7 0.064 (5) 0.088 (6) 0.046 (4) 0.000 (4) 0.008 (3) −0.002 (4)
C8 0.066 (5) 0.126 (8) 0.058 (5) 0.013 (5) 0.018 (4) 0.021 (5)
C9 0.051 (5) 0.188 (12) 0.044 (5) 0.007 (6) 0.002 (4) 0.014 (6)
C10 0.059 (5) 0.190 (12) 0.039 (4) −0.033 (7) −0.004 (4) −0.024 (6)
C11 0.057 (4) 0.118 (7) 0.042 (4) −0.023 (5) 0.001 (3) −0.021 (4)
C12 0.040 (3) 0.075 (5) 0.029 (3) −0.008 (3) −0.003 (2) −0.016 (3)
C13 0.057 (5) 0.075 (5) 0.061 (5) −0.012 (4) −0.007 (4) −0.020 (4)
C14 0.079 (6) 0.092 (7) 0.079 (6) −0.027 (5) −0.014 (5) 0.009 (5)
C15 0.073 (7) 0.136 (10) 0.076 (6) −0.044 (6) −0.004 (5) 0.025 (7)
C16 0.047 (4) 0.167 (11) 0.056 (5) −0.019 (6) 0.004 (4) −0.005 (6)
C17 0.043 (4) 0.111 (7) 0.042 (4) −0.004 (4) −0.002 (3) −0.004 (4)
C18 0.044 (3) 0.058 (4) 0.025 (3) −0.009 (3) 0.003 (2) −0.004 (3)
C19 0.048 (4) 0.058 (4) 0.044 (3) 0.005 (3) 0.002 (3) −0.011 (3)
C20 0.057 (4) 0.061 (4) 0.028 (3) −0.004 (3) 0.000 (3) 0.006 (3)

(II) N-(5,5-Diphenylpent-4-en-1-yl)-N-iodomethyl-N,N-dimethylammonium iodide . Geometric parameters (Å, º)

I1—C18 2.146 (6) C9—C10 1.381 (16)
I1—I2i 3.5058 (7) C9—H9 0.9300
N1—C18 1.492 (7) C10—C11 1.382 (12)
N1—C20 1.504 (7) C10—H10 0.9300
N1—C19 1.509 (8) C11—H11 0.9300
N1—C1 1.522 (8) C12—C13 1.383 (11)
C1—C2 1.513 (9) C12—C17 1.392 (9)
C1—H1A 0.9700 C13—C14 1.357 (12)
C1—H1B 0.9700 C13—H13 0.9300
C2—C3 1.530 (9) C14—C15 1.361 (14)
C2—H2A 0.9700 C14—H14 0.9300
C2—H2B 0.9700 C15—C16 1.363 (16)
C3—C4 1.496 (9) C15—H15 0.9300
C3—H3A 0.9700 C16—C17 1.410 (13)
C3—H3B 0.9700 C16—H16 0.9300
C4—C5 1.351 (9) C17—H17 0.9300
C4—H4 0.9300 C18—H18A 0.9700
C5—C6 1.480 (10) C18—H18B 0.9700
C5—C12 1.489 (9) C19—H19A 0.9600
C6—C7 1.402 (12) C19—H19B 0.9600
C6—C11 1.404 (10) C19—H19C 0.9600
C7—C8 1.379 (11) C20—H20A 0.9600
C7—H7 0.9300 C20—H20B 0.9600
C8—C9 1.390 (14) C20—H20C 0.9600
C8—H8 0.9300
C18—I1—I2i 170.16 (15) C9—C10—C11 120.3 (9)
C18—N1—C20 109.7 (4) C9—C10—H10 119.9
C18—N1—C19 111.6 (5) C11—C10—H10 119.9
C20—N1—C19 108.5 (5) C10—C11—C6 121.6 (9)
C18—N1—C1 107.8 (4) C10—C11—H11 119.2
C20—N1—C1 108.2 (5) C6—C11—H11 119.2
C19—N1—C1 111.0 (5) C13—C12—C17 118.1 (7)
C2—C1—N1 114.4 (5) C13—C12—C5 121.8 (6)
C2—C1—H1A 108.6 C17—C12—C5 120.1 (7)
N1—C1—H1A 108.6 C14—C13—C12 121.8 (8)
C2—C1—H1B 108.6 C14—C13—H13 119.1
N1—C1—H1B 108.6 C12—C13—H13 119.1
H1A—C1—H1B 107.6 C13—C14—C15 120.0 (10)
C1—C2—C3 110.7 (6) C13—C14—H14 120.0
C1—C2—H2A 109.5 C15—C14—H14 120.0
C3—C2—H2A 109.5 C14—C15—C16 121.0 (9)
C1—C2—H2B 109.5 C14—C15—H15 119.5
C3—C2—H2B 109.5 C16—C15—H15 119.5
H2A—C2—H2B 108.1 C15—C16—C17 119.3 (9)
C4—C3—C2 108.9 (6) C15—C16—H16 120.3
C4—C3—H3A 109.9 C17—C16—H16 120.3
C2—C3—H3A 109.9 C12—C17—C16 119.7 (9)
C4—C3—H3B 109.9 C12—C17—H17 120.1
C2—C3—H3B 109.9 C16—C17—H17 120.1
H3A—C3—H3B 108.3 N1—C18—I1 117.9 (4)
C5—C4—C3 128.2 (7) N1—C18—H18A 107.8
C5—C4—H4 115.9 I1—C18—H18A 107.8
C3—C4—H4 115.9 N1—C18—H18B 107.8
C4—C5—C6 120.9 (6) I1—C18—H18B 107.8
C4—C5—C12 121.0 (6) H18A—C18—H18B 107.2
C6—C5—C12 118.1 (5) N1—C19—H19A 109.5
C7—C6—C11 117.0 (7) N1—C19—H19B 109.5
C7—C6—C5 122.5 (6) H19A—C19—H19B 109.5
C11—C6—C5 120.5 (7) N1—C19—H19C 109.5
C8—C7—C6 121.4 (8) H19A—C19—H19C 109.5
C8—C7—H7 119.3 H19B—C19—H19C 109.5
C6—C7—H7 119.3 N1—C20—H20A 109.5
C7—C8—C9 120.4 (10) N1—C20—H20B 109.5
C7—C8—H8 119.8 H20A—C20—H20B 109.5
C9—C8—H8 119.8 N1—C20—H20C 109.5
C10—C9—C8 119.3 (8) H20A—C20—H20C 109.5
C10—C9—H9 120.3 H20B—C20—H20C 109.5
C8—C9—H9 120.3
C18—N1—C1—C2 69.2 (7) C7—C6—C11—C10 0.4 (12)
C20—N1—C1—C2 −172.2 (5) C5—C6—C11—C10 −179.9 (8)
C19—N1—C1—C2 −53.3 (7) C4—C5—C12—C13 57.8 (9)
N1—C1—C2—C3 −167.8 (5) C6—C5—C12—C13 −121.2 (7)
C1—C2—C3—C4 170.6 (6) C4—C5—C12—C17 −123.6 (8)
C2—C3—C4—C5 124.9 (8) C6—C5—C12—C17 57.4 (8)
C3—C4—C5—C6 −176.7 (7) C17—C12—C13—C14 2.5 (11)
C3—C4—C5—C12 4.3 (12) C5—C12—C13—C14 −179.0 (7)
C4—C5—C6—C7 32.1 (11) C12—C13—C14—C15 −1.0 (14)
C12—C5—C6—C7 −148.9 (7) C13—C14—C15—C16 −0.4 (16)
C4—C5—C6—C11 −147.5 (7) C14—C15—C16—C17 0.4 (16)
C12—C5—C6—C11 31.5 (10) C13—C12—C17—C16 −2.5 (10)
C11—C6—C7—C8 0.0 (11) C5—C12—C17—C16 179.0 (6)
C5—C6—C7—C8 −179.7 (7) C15—C16—C17—C12 1.1 (13)
C6—C7—C8—C9 0.0 (12) C20—N1—C18—I1 64.9 (6)
C7—C8—C9—C10 −0.2 (14) C19—N1—C18—I1 −55.4 (5)
C8—C9—C10—C11 0.6 (15) C1—N1—C18—I1 −177.5 (4)
C9—C10—C11—C6 −0.7 (14)

Symmetry code: (i) −x+1/2, y−1/2, −z+1/2.

(II) N-(5,5-Diphenylpent-4-en-1-yl)-N-iodomethyl-N,N-dimethylammonium iodide . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C2—H2B···I2 0.97 3.06 4.001 (7) 165

(III) N-(6,6-Diphenylhex-5-en-1-yl)-N-iodomethyl-N,N-dimethylammonium iodide . Crystal data

C21H27IN+·I Dx = 1.676 Mg m3
Mr = 547.23 Melting point = 429–431 K
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 8.9423 (12) Å Cell parameters from 3046 reflections
b = 24.058 (3) Å θ = 2.3–24.4°
c = 10.3749 (13) Å µ = 2.90 mm1
β = 103.656 (3)° T = 298 K
V = 2168.9 (5) Å3 Prism, colourless
Z = 4 0.32 × 0.22 × 0.04 mm
F(000) = 1064

(III) N-(6,6-Diphenylhex-5-en-1-yl)-N-iodomethyl-N,N-dimethylammonium iodide . Data collection

Bruker SMART APEX CCD diffractometer 3961 independent reflections
Radiation source: fine-focus sealed tube 2941 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.079
Detector resolution: 8.333 pixels mm-1 θmax = 25.4°, θmin = 1.7°
ω–scans h = −10→10
Absorption correction: multi-scan (TWINABS; Bruker, 2012) k = 0→28
Tmin = 0.273, Tmax = 0.429 l = 0→12
3961 measured reflections

(III) N-(6,6-Diphenylhex-5-en-1-yl)-N-iodomethyl-N,N-dimethylammonium iodide . Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.138 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0515P)2 + 2.9321P] where P = (Fo2 + 2Fc2)/3
3961 reflections (Δ/σ)max < 0.001
220 parameters Δρmax = 0.82 e Å3
0 restraints Δρmin = −0.80 e Å3

(III) N-(6,6-Diphenylhex-5-en-1-yl)-N-iodomethyl-N,N-dimethylammonium iodide . Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refined as a 2-component twin. The studied crystal was a nonmerohedral twin with a ratio of two major domains of 0.374 (2):0.626 (2). The two domains were rotated from each other by 180.0° about the recipocal axis (1 0 0), which was determined by the CELL NOW program (Sheldrick, 2004). The final refinement was carried out using twinned data set.

(III) N-(6,6-Diphenylhex-5-en-1-yl)-N-iodomethyl-N,N-dimethylammonium iodide . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
I1 −0.29957 (8) 0.44339 (3) 0.01740 (6) 0.0597 (2)
I2 0.17494 (8) 0.51476 (3) 0.26901 (6) 0.0598 (2)
N1 −0.3411 (8) 0.4415 (4) 0.3070 (7) 0.056 (2)
C1 −0.1733 (11) 0.4319 (4) 0.3631 (10) 0.063 (3)
H1A −0.1159 0.4525 0.3103 0.076*
H1B −0.1459 0.4469 0.4524 0.076*
C2 −0.1252 (12) 0.3731 (4) 0.3678 (12) 0.072 (3)
H2A −0.1407 0.3584 0.2786 0.087*
H2B −0.1860 0.3512 0.4153 0.087*
C3 0.0467 (11) 0.3699 (4) 0.4394 (11) 0.068 (3)
H3A 0.1029 0.3971 0.4001 0.082*
H3B 0.0578 0.3800 0.5317 0.082*
C4 0.1182 (12) 0.3134 (4) 0.4333 (15) 0.091 (4)
H4A 0.1013 0.3019 0.3413 0.109*
H4B 0.0681 0.2866 0.4789 0.109*
C5 0.2892 (10) 0.3135 (4) 0.4957 (12) 0.068 (3)
H5 0.3381 0.3478 0.5120 0.082*
C6 0.3743 (10) 0.2685 (3) 0.5287 (10) 0.055 (2)
C7 0.5451 (11) 0.2703 (3) 0.5813 (9) 0.052 (2)
C8 0.6398 (11) 0.2322 (4) 0.5435 (11) 0.066 (3)
H8 0.5966 0.2031 0.4881 0.080*
C9 0.8003 (12) 0.2359 (5) 0.5862 (14) 0.091 (4)
H9 0.8636 0.2109 0.5560 0.109*
C10 0.8623 (15) 0.2778 (5) 0.6747 (14) 0.097 (5)
H10 0.9683 0.2798 0.7079 0.116*
C11 0.7701 (16) 0.3158 (5) 0.7133 (14) 0.094 (4)
H11 0.8128 0.3446 0.7699 0.113*
C12 0.6122 (14) 0.3116 (5) 0.6681 (11) 0.079 (3)
H12 0.5495 0.3373 0.6969 0.094*
C13 0.3026 (11) 0.2115 (3) 0.5086 (10) 0.055 (2)
C14 0.2723 (13) 0.1847 (4) 0.6156 (12) 0.074 (3)
H14 0.2993 0.2012 0.6990 0.089*
C15 0.2004 (14) 0.1323 (4) 0.6000 (16) 0.088 (4)
H15 0.1840 0.1135 0.6738 0.105*
C16 0.1551 (14) 0.1091 (5) 0.4782 (18) 0.095 (4)
H16 0.1010 0.0757 0.4681 0.114*
C17 0.1888 (18) 0.1347 (6) 0.3678 (16) 0.116 (6)
H17 0.1614 0.1184 0.2842 0.139*
C18 0.2659 (17) 0.1861 (5) 0.3880 (12) 0.091 (4)
H18 0.2926 0.2034 0.3164 0.109*
C19 −0.4077 (11) 0.4192 (4) 0.1718 (10) 0.065 (3)
H19A −0.5148 0.4304 0.1460 0.078*
H19B −0.4058 0.3789 0.1771 0.078*
C20 −0.3648 (13) 0.5048 (4) 0.3059 (11) 0.074 (3)
H20A −0.4723 0.5131 0.2740 0.111*
H20B −0.3078 0.5218 0.2488 0.111*
H20C −0.3294 0.5191 0.3943 0.111*
C21 −0.4312 (12) 0.4165 (5) 0.3995 (10) 0.071 (3)
H21A −0.5382 0.4256 0.3684 0.107*
H21B −0.3936 0.4313 0.4872 0.107*
H21C −0.4189 0.3769 0.4015 0.107*

(III) N-(6,6-Diphenylhex-5-en-1-yl)-N-iodomethyl-N,N-dimethylammonium iodide . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
I1 0.0559 (4) 0.0659 (4) 0.0605 (4) 0.0039 (3) 0.0202 (3) 0.0118 (3)
I2 0.0586 (4) 0.0618 (4) 0.0632 (4) 0.0015 (3) 0.0228 (3) 0.0043 (3)
N1 0.041 (4) 0.081 (6) 0.046 (4) 0.002 (4) 0.012 (4) 0.020 (4)
C1 0.045 (5) 0.078 (7) 0.069 (6) −0.006 (5) 0.015 (5) 0.014 (5)
C2 0.058 (6) 0.056 (6) 0.106 (9) 0.003 (5) 0.024 (6) −0.001 (6)
C3 0.057 (6) 0.069 (6) 0.075 (7) 0.012 (5) 0.007 (6) 0.017 (6)
C4 0.054 (7) 0.065 (7) 0.158 (12) 0.006 (5) 0.036 (8) 0.023 (8)
C5 0.040 (5) 0.043 (5) 0.123 (9) 0.002 (4) 0.022 (6) 0.012 (6)
C6 0.047 (5) 0.038 (5) 0.082 (7) 0.005 (4) 0.019 (5) 0.010 (5)
C7 0.052 (6) 0.038 (5) 0.069 (6) −0.002 (4) 0.019 (5) 0.010 (4)
C8 0.051 (6) 0.055 (6) 0.090 (7) 0.004 (5) 0.009 (6) −0.006 (5)
C9 0.051 (7) 0.083 (8) 0.140 (11) 0.017 (6) 0.026 (8) 0.022 (8)
C10 0.066 (8) 0.077 (8) 0.129 (11) −0.028 (7) −0.014 (8) 0.022 (8)
C11 0.100 (10) 0.054 (7) 0.116 (11) −0.008 (7) −0.001 (9) −0.007 (7)
C12 0.075 (8) 0.074 (7) 0.087 (8) −0.007 (6) 0.019 (7) −0.002 (7)
C13 0.056 (6) 0.040 (5) 0.067 (6) 0.012 (4) 0.011 (5) 0.014 (5)
C14 0.079 (8) 0.053 (6) 0.101 (9) −0.004 (6) 0.043 (7) −0.012 (6)
C15 0.085 (9) 0.041 (6) 0.152 (13) −0.009 (6) 0.058 (9) 0.011 (7)
C16 0.053 (7) 0.063 (7) 0.155 (14) −0.001 (6) −0.004 (9) −0.005 (10)
C17 0.135 (14) 0.072 (9) 0.108 (11) 0.001 (9) −0.038 (10) −0.002 (8)
C18 0.116 (11) 0.069 (8) 0.075 (8) −0.001 (8) −0.002 (7) 0.001 (7)
C19 0.049 (6) 0.080 (7) 0.073 (7) −0.005 (5) 0.029 (5) 0.024 (6)
C20 0.066 (7) 0.071 (7) 0.089 (8) 0.009 (6) 0.027 (6) 0.008 (6)
C21 0.056 (6) 0.091 (8) 0.072 (7) −0.006 (6) 0.025 (6) 0.032 (6)

(III) N-(6,6-Diphenylhex-5-en-1-yl)-N-iodomethyl-N,N-dimethylammonium iodide . Geometric parameters (Å, º)

I1—C19 2.138 (9) C9—C10 1.388 (17)
I1—I2i 3.5565 (9) C9—H9 0.9300
N1—C19 1.489 (12) C10—C11 1.353 (18)
N1—C1 1.494 (12) C10—H10 0.9300
N1—C21 1.515 (11) C11—C12 1.383 (16)
N1—C20 1.537 (12) C11—H11 0.9300
C1—C2 1.477 (13) C12—H12 0.9300
C1—H1A 0.9700 C13—C18 1.360 (14)
C1—H1B 0.9700 C13—C14 1.365 (14)
C2—C3 1.543 (13) C14—C15 1.407 (14)
C2—H2A 0.9700 C14—H14 0.9300
C2—H2B 0.9700 C15—C16 1.353 (18)
C3—C4 1.510 (14) C15—H15 0.9300
C3—H3A 0.9700 C16—C17 1.39 (2)
C3—H3B 0.9700 C16—H16 0.9300
C4—C5 1.514 (14) C17—C18 1.409 (17)
C4—H4A 0.9700 C17—H17 0.9300
C4—H4B 0.9700 C18—H18 0.9300
C5—C6 1.323 (12) C19—H19A 0.9700
C5—H5 0.9300 C19—H19B 0.9700
C6—C7 1.497 (12) C20—H20A 0.9600
C6—C13 1.507 (12) C20—H20B 0.9600
C7—C8 1.366 (12) C20—H20C 0.9600
C7—C12 1.379 (14) C21—H21A 0.9600
C8—C9 1.401 (14) C21—H21B 0.9600
C8—H8 0.9300 C21—H21C 0.9600
C19—I1—I2i 171.6 (3) C11—C10—C9 120.6 (11)
C19—N1—C1 116.9 (8) C11—C10—H10 119.7
C19—N1—C21 107.4 (7) C9—C10—H10 119.7
C1—N1—C21 109.1 (7) C10—C11—C12 119.7 (12)
C19—N1—C20 109.1 (7) C10—C11—H11 120.1
C1—N1—C20 106.3 (7) C12—C11—H11 120.1
C21—N1—C20 107.8 (8) C7—C12—C11 121.7 (12)
C2—C1—N1 114.8 (8) C7—C12—H12 119.1
C2—C1—H1A 108.6 C11—C12—H12 119.1
N1—C1—H1A 108.6 C18—C13—C14 119.1 (9)
C2—C1—H1B 108.6 C18—C13—C6 122.5 (9)
N1—C1—H1B 108.6 C14—C13—C6 118.4 (9)
H1A—C1—H1B 107.5 C13—C14—C15 120.1 (12)
C1—C2—C3 108.2 (8) C13—C14—H14 119.9
C1—C2—H2A 110.1 C15—C14—H14 119.9
C3—C2—H2A 110.1 C16—C15—C14 120.4 (12)
C1—C2—H2B 110.1 C16—C15—H15 119.8
C3—C2—H2B 110.1 C14—C15—H15 119.8
H2A—C2—H2B 108.4 C15—C16—C17 120.6 (11)
C4—C3—C2 114.0 (9) C15—C16—H16 119.7
C4—C3—H3A 108.7 C17—C16—H16 119.7
C2—C3—H3A 108.7 C16—C17—C18 117.3 (13)
C4—C3—H3B 108.7 C16—C17—H17 121.3
C2—C3—H3B 108.7 C18—C17—H17 121.3
H3A—C3—H3B 107.6 C13—C18—C17 122.2 (13)
C3—C4—C5 112.1 (9) C13—C18—H18 118.9
C3—C4—H4A 109.2 C17—C18—H18 118.9
C5—C4—H4A 109.2 N1—C19—I1 117.2 (6)
C3—C4—H4B 109.2 N1—C19—H19A 108.0
C5—C4—H4B 109.2 I1—C19—H19A 108.0
H4A—C4—H4B 107.9 N1—C19—H19B 108.0
C6—C5—C4 124.8 (9) I1—C19—H19B 108.0
C6—C5—H5 117.6 H19A—C19—H19B 107.2
C4—C5—H5 117.6 N1—C20—H20A 109.5
C5—C6—C7 123.1 (8) N1—C20—H20B 109.5
C5—C6—C13 120.7 (8) H20A—C20—H20B 109.5
C7—C6—C13 116.2 (7) N1—C20—H20C 109.5
C8—C7—C12 117.9 (10) H20A—C20—H20C 109.5
C8—C7—C6 121.6 (9) H20B—C20—H20C 109.5
C12—C7—C6 120.5 (9) N1—C21—H21A 109.5
C7—C8—C9 121.6 (10) N1—C21—H21B 109.5
C7—C8—H8 119.2 H21A—C21—H21B 109.5
C9—C8—H8 119.2 N1—C21—H21C 109.5
C10—C9—C8 118.4 (11) H21A—C21—H21C 109.5
C10—C9—H9 120.8 H21B—C21—H21C 109.5
C8—C9—H9 120.8
C19—N1—C1—C2 −55.7 (12) C8—C7—C12—C11 1.8 (16)
C21—N1—C1—C2 66.3 (12) C6—C7—C12—C11 −176.9 (10)
C20—N1—C1—C2 −177.7 (9) C10—C11—C12—C7 −2 (2)
N1—C1—C2—C3 −174.9 (8) C5—C6—C13—C18 78.5 (15)
C1—C2—C3—C4 −171.1 (10) C7—C6—C13—C18 −98.8 (13)
C2—C3—C4—C5 175.7 (10) C5—C6—C13—C14 −100.9 (13)
C3—C4—C5—C6 165.3 (12) C7—C6—C13—C14 81.9 (12)
C4—C5—C6—C7 175.5 (11) C18—C13—C14—C15 −1.6 (16)
C4—C5—C6—C13 −1.5 (18) C6—C13—C14—C15 177.7 (9)
C5—C6—C7—C8 −140.0 (11) C13—C14—C15—C16 −2.7 (18)
C13—C6—C7—C8 37.2 (13) C14—C15—C16—C17 4.7 (19)
C5—C6—C7—C12 38.6 (15) C15—C16—C17—C18 −2 (2)
C13—C6—C7—C12 −144.2 (10) C14—C13—C18—C17 4.0 (19)
C12—C7—C8—C9 −2.7 (16) C6—C13—C18—C17 −175.3 (11)
C6—C7—C8—C9 175.9 (10) C16—C17—C18—C13 −2 (2)
C7—C8—C9—C10 3.5 (18) C1—N1—C19—I1 −54.3 (10)
C8—C9—C10—C11 −3.4 (19) C21—N1—C19—I1 −177.2 (7)
C9—C10—C11—C12 3 (2) C20—N1—C19—I1 66.3 (9)

Symmetry code: (i) −x, −y+1, −z.

References

  1. Aakeröy, C. B. & Seddon, K. R. (1993). Z. Naturforsch Teil B, 48, 1023–1025.
  2. Awwadi, F. F., Willett, R. D., Peterson, K. A. & Twamley, B. (2006). Chem. Eur. J. 12, 8952–8960. [DOI] [PubMed]
  3. Bruker (2012). APEX2, SAINT, SADABS and TWINABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Calas, M., Ancelin, M. L., Cordina, G., Portefaix, P., Piquet, G., Vidal-Sailhan, V. & Vial, H. (2000). J. Med. Chem. 43, 505–516. [DOI] [PubMed]
  5. Calas, M., Cordina, G., Bompart, J., Ben Bari, M., Jei, T., Ancelin, M. L. & Vial, H. (1997). J. Med. Chem. 40, 3557–3566. [DOI] [PubMed]
  6. Calvani, M., Critelli, L., Gallo, G., Giorgi, F., Gramiccioli, G., Santaniello, M., Scafetta, N., Tinti, M. O. & De Angelis, F. (1998). J. Med. Chem. 41, 2227–2233. [DOI] [PubMed]
  7. Chen, C. C., Hsu, W., Hwang, K. C., Hwu, J. R., Lin, C. C. & Horng, J. (2011). Arch. Biochem. Biophys. 508, 46–53. [DOI] [PubMed]
  8. Desiraju, G. R., Ho, P. S., Kloo, L., Legon, A. C., Marquardt, R., Metrangolo, P., Politzer, P., Resnati, G. & Rissanen, K. (2013). Pure Appl. Chem. 85, 1711–1713.
  9. Dougherty, D. A. (1996). Science, 271, 163–168. [DOI] [PubMed]
  10. Dougherty, D. A. (2013). Acc. Chem. Res. 46, 885–893. [DOI] [PMC free article] [PubMed]
  11. Flack, H. D. & Bernardinelli, G. (1999). Acta Cryst. A55, 908–915. [DOI] [PubMed]
  12. Formigué, M. (2009). Curr. Opin. Solid State Mater. Sci. 13, 36–45.
  13. Glidewell, C., Zakaria, C. M., Ferguson, G. & Gallagher, J. F. (1994). Acta Cryst. C50, 233–238.
  14. Horner, J. H., Martínez, F. N., Musa, O. M., Newcomb, M. & Shahin, H. E. (1995). J. Am. Chem. Soc. 117, 11124–11133.
  15. Ma, J. C. & Dougherty, D. A. (1997). Chem. Rev. 97, 1303–1324. [DOI] [PubMed]
  16. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  17. Mavromoustakos, T., Calogeropoulou, T., Koufaki, M., Kolocouris, A., Daliani, I., Demetzos, D., Meng, Z., Makriyannis, A., Balzarini, J. & De Clercq, E. (2001). J. Med. Chem. 44, 1702–1709. [DOI] [PubMed]
  18. Múnera-Orozco, C. (2014). MSc thesis, Universidad de Caldas, Manizales, Colombia.
  19. Newcomb, M., Horner, J. H. & Shahin, H. (1993). Tetrahedron Lett. 34, 5523–5526.
  20. Ng, K. L. C., Obando, D., Widmer, F., Wright, L. C., Sorrell, T. C. & Jolliffe, K. A. (2006). J. Med. Chem. 49, 811–816. [DOI] [PubMed]
  21. Nishio, M. (2012). J. Mol. Struct. 1018, 2–7.
  22. Nishio, M., Hirota, M. & Umezawa, Y. (1998). In The C—H⋯p Interaction. Evidence, Nature, and Consequences. New York: Wiley–VCH.
  23. Ríos, L. A., Bartberger, M. D., Dolbier, W. R. & Paredes, R. (1997). Tetrahedron Lett. 38, 7041–7044.
  24. Ríos, L. A., Dolbier, W. R., Paredes, R., Lusztyk, J., Ingold, K. U. & Jonsson, M. (1996). J. Am. Chem. Soc. 118, 11313–11314.
  25. Ríos-Vásquez, L. A., Ocampo-Cardona, R., Duque-Benítez, S. M., Cedeño, D. L., Jones, M., Robledo-Restrepo, S. M. & Vélez-Bernal, I. D. (2015). US Patent No. 9,145,352 (September 29, 2015).
  26. Sheldrick, G. M. (2004). CELL NOW. University of Göttingen, Germany.
  27. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  28. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  29. Shiraishi, M., Aramaki, Y., Seto, M., Imoto, H., Nishikawa, Y., Kanzaki, N., Okamoto, M., Sawada, H., Nishimura, O., Baba, M. & Fujino, M. (2000). J. Med. Chem. 43, 2049–2063. [DOI] [PubMed]
  30. Song, D., Yang, J. S., Oh, C., Cui, S., Kim, B. K., Won, M., Lee, J. I., Kim, H. M. & Han, G. (2013). Eur. J. Med. Chem. 69, 670–677. [DOI] [PubMed]
  31. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  32. Sussman, J. L., Harel, M., Frolow, F., Oefner, C., Goldman, A., Toker, L. & Silman, I. (1991). Science, 253, 872–879. [DOI] [PubMed]
  33. Wang, W., Bai, Z., Zhang, F., Wang, C., Yuan, Y. & Shao, J. (2012). Eur. J. Med. Chem. 56, 320–331. [DOI] [PubMed]
  34. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  35. Yates, B. F., Bouma, W. J. & Radom, L. (1986). Tetrahedron, 42, 6225–6234.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, II, III, Global. DOI: 10.1107/S2056989015017181/su5179sup1.cif

e-71-01230-sup1.cif (940.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015017181/su5179Isup2.hkl

e-71-01230-Isup2.hkl (246.4KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015017181/su5179Isup3.cdx

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989015017181/su5179IIsup4.hkl

e-71-01230-IIsup4.hkl (304.1KB, hkl)

Structure factors: contains datablock(s) III. DOI: 10.1107/S2056989015017181/su5179IIIsup5.hkl

e-71-01230-IIIsup5.hkl (315.9KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015017181/su5179Isup6.cml

Supporting information file. DOI: 10.1107/S2056989015017181/su5179IIsup7.cml

Supporting information file. DOI: 10.1107/S2056989015017181/su5179IIIsup8.cml

CCDC references: 1424320, 1424319, 1424318

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES