In the title polymer, zwitterionic proline and water molecules interact with the bromide counter-anions through intermolecular N—H⋯Br and O—H⋯Br hydrogen-bonding interactions, providing a novel supramolecular structure.
Keywords: crystal structure, proline, amino acid, strontium coordination polymer, N/O—H⋯Br hydrogen bonds
Abstract
In the title coordination polymer, {[Sr(C5H9NO2)(H2O)4]Br2}n, the proline molecule exists in a zwitterionic form with one of the ring C atoms disordered over two sites [site-occupancy factors = 0.57 (6):0.43 (6)]. The SrII ion is nine-coordinated by six water O atoms, two monodentate and two μ2-bridging, and three carboxylate O atoms of the proline ligands, with two bridging [Sr—O range = 2.524 (4)–2.800 (5) Å]. In the crystal, there is no direct interaction between the proline molecules. However, the proline and water molecules associate with the bromide counter-anions through a number of intermolecular O—H⋯Br and N—H⋯Br hydrogen-bonding interactions, giving a three-dimensional supramolecular structure.
Chemical context
The study of coordination polymers has been an area of rapid development in recent years due to their interesting structures and their wide range of applications as functional materials (Lyhs et al., 2012 ▸). Reports of the crystal structures of alkaline earth metal ions combined with anions of amino acids are very limited. As part of our ongoing investigations of the crystal and molecular structures of a series of metal complexes generated from amino acids (Revathi et al., 2015 ▸; Sathiskumar et al., 2015a ▸,b
▸; Balakrishnan et al., 2013 ▸), we report here the crystal structure of a polymeric strontium–proline complex, {[Sr(C5H9NO2)(H2O)4]2+ 2(Br−)}n, (I).
Structural commentary
The asymmetric unit of the title complex (I) contains one Sr2+ ion, one bridging proline ligand and four water molecules, two of which are monodentate and two bridging, and two bromide counter-anions (Fig. 1 ▸). In (I), the bond lengths involving the carboxylate atoms and the protonation of the amino group suggest that the proline molecule exists in a zwitterionic form. The SrII ion is nine-coordinated by six water oxygen atoms [Sr—O = 2.582 (6)–2.707 (5)Å] and three carboxylate oxygen atoms of zwitterionic proline ligands [Sr—O = 2.524 (4)–2.800 (4) Å; Table 1 ▸]. In the strontium–glycine complex, the Sr—O (water) and Sr—O(carboxylate) distances ranges are 2.526 (4)–2.661 (2) and 2.605 (2)–2.703 (2) Å, respectively (Revathi et al., 2015 ▸). In (I), one of the carbon atoms (C4) of the pyrrolidine ring is disordered over two sites. In the major component of the pyrrolidine ring, there is a twist conformation on the C2—C5 bond with a pseudo-rotation angle Δ = 40.1 (14)° and a maximum torsion angle φm = 43.8 (10)° for the atom sequence N1–C2–C5–C4A–C3 (Rao et al., 1981 ▸). In the minor component, the pyrrolidine ring exhibits an envelope conformation on N1 with a pseudo-rotation angle Δ = 341.5 (19)° and a maximum torsion angle φm = 36.0 (9)° for the atom sequence N1–C2–C5–C4B–C3 (Rao et al., 1981 ▸). As shown in Fig. 2 ▸, the title complex forms a coordination polymeric chain that lies parallel to the a axis. Adjacent SrII ions are separated by 3.9387 (7) Å within a chain.
Figure 1.
The coordination sphere of Sr2+ in the crystal structure of (I). Only the major components of the disordered proline ligands are shown. Displacement ellipsoids are drawn at the 50% probability level. For symmetry codes, see Table 1 ▸.
Table 1. Selected bond lengths ().
| Sr1O1 | 2.524(4) | Sr1O2i | 2.728(4) |
| Sr1O3 | 2.625(6) | Sr1O3ii | 2.707(6) |
| Sr1O4 | 2.630(6) | Sr1O4ii | 2.651(5) |
| Sr1O5 | 2.593(5) | Sr1O2iii | 2.800(5) |
| Sr1O6 | 2.582(6) |
Symmetry codes: (i)
; (ii)
; (iii)
.
Figure 2.

The Sr–water coordination polymeric chain substructure of (I), with peripheral water O—H⋯Br hydrogen bonds shown as dashed lines.
Supramolecular features
The crystal structure of (I), is stabilized by intermolecular N—H⋯Br and O—H⋯Br hydrogen bonds (Table 2 ▸). One of the characteristic features observed in amino acid complexes is the head-to-tail sequence in which amino acids are self-associated through their amino and carboxylate groups (Sharma et al., 2006 ▸; Selvaraj et al., 2007 ▸; Balakrishnan et al., 2013 ▸; Revathi et al., 2015 ▸). In the crystal structure of the l-proline lithium bromide monohydrate complex, there is a head-to-tail sequence observed (Sathiskumar et al., 2015a ▸). In contrast, there is no direct hydrogen-bonding interaction between the proline molecules in (I).
Table 2. Hydrogen-bond geometry (, ).
| DHA | DH | HA | D A | DHA |
|---|---|---|---|---|
| N1H1ABr2i | 0.90(6) | 2.52(5) | 3.374(7) | 159(6) |
| N1H1BBr3i | 0.90(7) | 2.40(7) | 3.240(7) | 156(8) |
| O3H3CBr3iv | 0.84(7) | 2.63(7) | 3.440(6) | 163(7) |
| O3H3DBr2v | 0.84(7) | 2.54(7) | 3.376(6) | 172(5) |
| O4H4EBr2vi | 0.85(6) | 2.47(7) | 3.281(6) | 162(7) |
| O4H4FBr3vii | 0.83(6) | 2.52(6) | 3.347(6) | 174(6) |
| O5H5CBr2i | 0.86(5) | 2.54(5) | 3.369(6) | 164(6) |
| O5H5DBr3vii | 0.84(6) | 2.48(6) | 3.304(6) | 166(6) |
| O6H6CBr2v | 0.83(6) | 2.58(6) | 3.393(6) | 167(5) |
| O6H6DBr3i | 0.85(7) | 2.56(6) | 3.378(6) | 162(7) |
Symmetry codes: (i)
; (iv)
; (v)
; (vi)
; (vii)
.
As shown in Fig. 3 ▸, two water molecules and two bromide anions along with Sr2+ ions generate a hydrogen-bonded sheet which lies parallel to the a axis. Within this sheet, two Sr2+ ions and two water oxygens form a cyclic motif. Water molecules (O3 and O4) interconnect the bromide anions, forming a chain. In (I), two molecules (O5 and O6) act as donors for intermolecular O—H⋯Br hydrogen bonds. These hydrogen bonds generate a cyclic dibromide motif similar to that observed in a related structure (Revathi et al., 2015 ▸). Adjacent dibromide motifs in (I), which run parallel to the b axis, are interconnected by proline ligands through intermolecular N—H⋯Br hydrogen bonds on both sides (Fig. 3 ▸). Adjacent supramolecular arrangements of cyclic dibromide⋯proline⋯cyclic dibromide motifs are interlinked further by water molecules (O3 and O4) through O—H⋯Br hydrogen bonds. This entire arrangement forms a butterfly-like structure. The overall hydrogen-bonded supramolecular structure (Fig. 4 ▸) is three-dimensional.
Figure 3.
The butterfly-like supramolecular arrangements generated by intermolecular N—H⋯Br and O—H⋯Br hydrogen bonds. Only atoms involved in hydrogen-bonding interactions are labelled.
Figure 4.
The crystal packing of (I) viewed along the a axis, with hydrogen bonds shown as dashed lines. C-bound H atoms have been omitted for clarity.
Synthesis and crystallization
Single crystals of the title complex were obtained by slow evaporation from an aqueous solution of l-proline and strontium bromide hexahydrate in a 1:1 stoichiometric molar ratio at 306 K. The prepared solution was stirred well and filtered. The resultant filtered solution was left undisturbed to allow evaporation. After 15 days, colourless prismatic crystals were harvested.
Refinement
Crystal data, data collection and structure refinement details are summarized in Table 3 ▸. One of the carbon (C4) atoms of the pyrrolidine ring appears to be disordered over two sites. These positions were defined for this atom and constrained refinement of the site-occupation factors led to a value of 0.57 (6) for the major component. The positions of amino and water H atoms were located from difference Fourier maps. Further, the O—H distances in the water molecules were restrained to 0.85 (2) Å. The N—H distances of amino group were also restrained, to 0.89 (2) Å. The remaining hydrogen atoms were placed in geometrically idealized positions (C—H = 0.97 Å with U iso(H) = 1.2U eq(C) and were constrained to ride on their parent atom. The Flack absolute structure parameter was determined to be 0.008 (8) (788 Friedel pairs; Parsons et al., 2013 ▸), indicating an S configuration for C2, consistent with that for the parent l-proline (Kayushina & Vainshtein, 1965 ▸).
Table 3. Experimental details.
| Crystal data | |
| Chemical formula | [Sr(C5H9NO2)(H2O)4]Br2 |
| M r | 434.63 |
| Crystal system, space group | Orthorhombic, P212121 |
| Temperature (K) | 296 |
| a, b, c () | 6.7079(4), 12.9125(9), 15.4499(11) |
| V (3) | 1338.20(16) |
| Z | 4 |
| Radiation type | Mo K |
| (mm1) | 10.01 |
| Crystal size (mm) | 0.15 0.10 0.10 |
| Data collection | |
| Diffractometer | Bruker Kappa APEXII CCD |
| Absorption correction | Multi-scan (SABABS; Bruker, 2004 ▸) |
| T min, T max | 0.26, 0.44 |
| No. of measured, independent and observed [I > 2(I)] reflections | 14183, 2345, 2081 |
| R int | 0.068 |
| (sin /)max (1) | 0.594 |
| Refinement | |
| R[F 2 > 2(F 2)], wR(F 2), S | 0.032, 0.063, 1.07 |
| No. of reflections | 2345 |
| No. of parameters | 186 |
| No. of restraints | 26 |
| H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
| max, min (e 3) | 0.60, 0.86 |
| Absolute structure | Flack x determined using 788 quotients [(I +)(I )]/[(I +)+(I )] (Parsons et al., 2013 ▸) |
| Absolute structure parameter | 0.008(8) |
Supplementary Material
Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015017302/zs2346sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015017302/zs2346Isup2.hkl
CCDC reference: 1424731
Additional supporting information: crystallographic information; 3D view; checkCIF report
Acknowledgments
TB and SS would like to acknowledge the University Grants Commission (UGC), India for providing financial support [Project No. 41-956/2012(SR)]. ST is very grateful to the management of SASTRA University for infrastructural and financial support (Professor TRR grant).
supplementary crystallographic information
Crystal data
| [Sr(C5H9NO2)(H2O)4]Br2 | Dx = 2.157 Mg m−3 |
| Mr = 434.63 | Mo Kα radiation, λ = 0.71073 Å |
| Orthorhombic, P212121 | Cell parameters from 7063 reflections |
| a = 6.7079 (4) Å | θ = 2.6–28.5° |
| b = 12.9125 (9) Å | µ = 10.01 mm−1 |
| c = 15.4499 (11) Å | T = 296 K |
| V = 1338.20 (16) Å3 | Block, brown |
| Z = 4 | 0.15 × 0.10 × 0.10 mm |
| F(000) = 840 |
Data collection
| Bruker Kappa APEXII CCD diffractometer | 2081 reflections with I > 2σ(I) |
| Radiation source: Sealed tube | Rint = 0.068 |
| ω nd φ scan | θmax = 25.0°, θmin = 2.6° |
| Absorption correction: multi-scan (SABABS; Bruker, 2004) | h = −7→7 |
| Tmin = 0.26, Tmax = 0.44 | k = −15→15 |
| 14183 measured reflections | l = −18→18 |
| 2345 independent reflections |
Refinement
| Refinement on F2 | Hydrogen site location: mixed |
| Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
| R[F2 > 2σ(F2)] = 0.032 | w = 1/[σ2(Fo2) + (0.0267P)2] where P = (Fo2 + 2Fc2)/3 |
| wR(F2) = 0.063 | (Δ/σ)max < 0.001 |
| S = 1.07 | Δρmax = 0.60 e Å−3 |
| 2345 reflections | Δρmin = −0.86 e Å−3 |
| 186 parameters | Absolute structure: Flack x determined using 788 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
| 26 restraints | Absolute structure parameter: 0.008 (8) |
Special details
| Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | Occ. (<1) | |
| Sr1 | 1.34882 (8) | 0.24302 (5) | 0.43342 (4) | 0.0174 (2) | |
| O1 | 1.0492 (6) | 0.2322 (4) | 0.3350 (3) | 0.0257 (16) | |
| O2 | 0.7439 (6) | 0.2420 (4) | 0.3916 (3) | 0.0243 (16) | |
| O3 | 1.5725 (8) | 0.3885 (5) | 0.5016 (4) | 0.0243 (19) | |
| O4 | 1.5819 (8) | 0.1162 (4) | 0.5200 (4) | 0.0213 (17) | |
| O5 | 1.3443 (9) | 0.0648 (4) | 0.3561 (4) | 0.035 (2) | |
| O6 | 1.3860 (9) | 0.3899 (5) | 0.3212 (4) | 0.038 (2) | |
| N1 | 0.9404 (8) | 0.2529 (6) | 0.1734 (4) | 0.026 (2) | |
| C1 | 0.8660 (9) | 0.2426 (5) | 0.3307 (4) | 0.018 (2) | |
| C2 | 0.7837 (9) | 0.2600 (6) | 0.2411 (4) | 0.021 (2) | |
| C3 | 0.8370 (12) | 0.2347 (7) | 0.0890 (5) | 0.042 (3) | |
| C4A | 0.623 (2) | 0.211 (3) | 0.1117 (11) | 0.034 (7) | 0.57 (6) |
| C5 | 0.6277 (12) | 0.1840 (7) | 0.2082 (5) | 0.042 (3) | |
| C4B | 0.660 (5) | 0.167 (3) | 0.1117 (13) | 0.035 (8) | 0.43 (6) |
| Br2 | 0.18627 (12) | 0.02641 (6) | 0.15165 (6) | 0.0389 (3) | |
| Br3 | 0.22307 (13) | 0.44596 (7) | 0.11973 (6) | 0.0466 (3) | |
| H1A | 1.024 (9) | 0.199 (4) | 0.180 (5) | 0.02 (2)* | |
| H1B | 1.033 (10) | 0.303 (5) | 0.175 (6) | 0.05 (3)* | |
| H3C | 1.522 (13) | 0.429 (5) | 0.538 (4) | 0.06 (3)* | |
| H3D | 1.622 (13) | 0.422 (5) | 0.460 (4) | 0.07 (4)* | |
| H4E | 1.532 (12) | 0.085 (5) | 0.563 (3) | 0.05 (3)* | |
| H4F | 1.640 (10) | 0.075 (4) | 0.487 (4) | 0.04 (3)* | |
| H5C | 1.281 (10) | 0.060 (6) | 0.308 (3) | 0.06 (3)* | |
| H5D | 1.450 (7) | 0.030 (6) | 0.353 (5) | 0.06 (3)* | |
| H6C | 1.478 (8) | 0.432 (5) | 0.327 (5) | 0.03 (3)* | |
| H6D | 1.319 (11) | 0.402 (7) | 0.276 (4) | 0.09 (4)* | |
| H31 | 0.89720 | 0.17700 | 0.05850 | 0.0500* | 0.57 (6) |
| H32 | 0.84480 | 0.29580 | 0.05270 | 0.0500* | 0.57 (6) |
| H41 | 0.57440 | 0.15290 | 0.07800 | 0.0410* | 0.57 (6) |
| H42 | 0.53890 | 0.27050 | 0.10120 | 0.0410* | 0.57 (6) |
| H51 | 0.49920 | 0.19560 | 0.23530 | 0.0500* | 0.57 (6) |
| H52 | 0.66830 | 0.11280 | 0.21770 | 0.0500* | 0.57 (6) |
| H2 | 0.72630 | 0.32970 | 0.23900 | 0.0250* | |
| H33 | 0.92450 | 0.19970 | 0.04850 | 0.0500* | 0.43 (6) |
| H34 | 0.79360 | 0.29960 | 0.06370 | 0.0500* | 0.43 (6) |
| H43 | 0.68850 | 0.09490 | 0.09960 | 0.0420* | 0.43 (6) |
| H44 | 0.54310 | 0.18790 | 0.07910 | 0.0420* | 0.43 (6) |
| H53 | 0.49510 | 0.21140 | 0.21840 | 0.0500* | 0.43 (6) |
| H54 | 0.63970 | 0.11870 | 0.23880 | 0.0500* | 0.43 (6) |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| Sr1 | 0.0142 (3) | 0.0215 (4) | 0.0165 (3) | 0.0003 (3) | −0.0010 (3) | 0.0006 (3) |
| O1 | 0.017 (2) | 0.041 (3) | 0.019 (3) | 0.006 (2) | −0.001 (2) | −0.003 (3) |
| O2 | 0.024 (2) | 0.033 (3) | 0.016 (3) | 0.004 (3) | 0.004 (2) | 0.002 (3) |
| O3 | 0.025 (3) | 0.029 (3) | 0.019 (4) | 0.000 (2) | 0.000 (3) | −0.003 (3) |
| O4 | 0.024 (3) | 0.024 (3) | 0.016 (3) | 0.000 (2) | 0.003 (3) | 0.000 (3) |
| O5 | 0.033 (3) | 0.044 (4) | 0.029 (4) | 0.006 (3) | −0.002 (3) | −0.010 (3) |
| O6 | 0.034 (4) | 0.043 (4) | 0.037 (4) | −0.012 (3) | −0.011 (3) | 0.017 (3) |
| N1 | 0.022 (3) | 0.035 (4) | 0.022 (4) | −0.005 (4) | 0.000 (3) | 0.004 (4) |
| C1 | 0.025 (4) | 0.011 (3) | 0.017 (4) | −0.001 (3) | −0.003 (3) | −0.004 (3) |
| C2 | 0.024 (3) | 0.026 (4) | 0.013 (4) | 0.005 (4) | 0.002 (3) | 0.000 (4) |
| C3 | 0.052 (5) | 0.059 (6) | 0.015 (4) | 0.000 (5) | −0.001 (4) | −0.001 (4) |
| C4A | 0.036 (10) | 0.041 (15) | 0.025 (9) | 0.001 (8) | −0.007 (7) | −0.014 (9) |
| C5 | 0.035 (5) | 0.066 (6) | 0.025 (5) | −0.025 (4) | −0.006 (4) | −0.004 (5) |
| C4B | 0.033 (13) | 0.042 (17) | 0.030 (11) | −0.010 (13) | 0.005 (10) | −0.023 (11) |
| Br2 | 0.0357 (5) | 0.0379 (5) | 0.0432 (5) | 0.0057 (4) | −0.0102 (4) | −0.0197 (4) |
| Br3 | 0.0505 (6) | 0.0484 (6) | 0.0409 (6) | −0.0239 (4) | −0.0107 (4) | 0.0197 (5) |
Geometric parameters (Å, º)
| Sr1—O1 | 2.524 (4) | N1—H1A | 0.90 (6) |
| Sr1—O3 | 2.625 (6) | N1—H1B | 0.90 (7) |
| Sr1—O4 | 2.630 (6) | C1—C2 | 1.507 (9) |
| Sr1—O5 | 2.593 (5) | C2—C5 | 1.522 (11) |
| Sr1—O6 | 2.582 (6) | C3—C4A | 1.509 (17) |
| Sr1—O2i | 2.728 (4) | C3—C4B | 1.52 (4) |
| Sr1—O3ii | 2.707 (6) | C4A—C5 | 1.53 (2) |
| Sr1—O4ii | 2.651 (5) | C4B—C5 | 1.52 (2) |
| Sr1—O2iii | 2.800 (5) | C2—H2 | 0.9800 |
| O1—C1 | 1.238 (7) | C3—H31 | 0.9700 |
| O2—C1 | 1.248 (8) | C3—H32 | 0.9700 |
| O3—H3C | 0.84 (7) | C3—H33 | 0.9700 |
| O3—H3D | 0.84 (7) | C3—H34 | 0.9700 |
| O4—H4E | 0.85 (6) | C4A—H41 | 0.9700 |
| O4—H4F | 0.83 (6) | C4A—H42 | 0.9700 |
| O5—H5D | 0.84 (6) | C4B—H43 | 0.9700 |
| O5—H5C | 0.86 (5) | C4B—H44 | 0.9700 |
| O6—H6D | 0.85 (7) | C5—H51 | 0.9700 |
| O6—H6C | 0.83 (6) | C5—H54 | 0.9700 |
| N1—C3 | 1.496 (10) | C5—H52 | 0.9700 |
| N1—C2 | 1.486 (8) | C5—H53 | 0.9700 |
| O1—Sr1—O3 | 137.44 (18) | Sr1—O6—H6D | 130 (6) |
| O1—Sr1—O4 | 138.19 (17) | Sr1—O6—H6C | 119 (5) |
| O1—Sr1—O5 | 70.37 (18) | H6C—O6—H6D | 111 (8) |
| O1—Sr1—O6 | 73.32 (18) | C2—N1—C3 | 107.2 (5) |
| O1—Sr1—O2i | 129.10 (14) | C3—N1—H1B | 117 (6) |
| O1—Sr1—O3ii | 69.11 (17) | H1A—N1—H1B | 97 (5) |
| O1—Sr1—O4ii | 70.35 (17) | C2—N1—H1A | 114 (5) |
| O1—Sr1—O2iii | 112.66 (13) | C2—N1—H1B | 115 (5) |
| O3—Sr1—O4 | 84.36 (18) | C3—N1—H1A | 105 (5) |
| O3—Sr1—O5 | 145.76 (18) | O1—C1—C2 | 115.4 (5) |
| O3—Sr1—O6 | 71.85 (19) | O2—C1—C2 | 117.0 (5) |
| O2i—Sr1—O3 | 62.82 (16) | O1—C1—O2 | 127.6 (6) |
| O3—Sr1—O3ii | 133.75 (19) | N1—C2—C5 | 102.2 (6) |
| O3—Sr1—O4ii | 77.67 (17) | N1—C2—C1 | 112.2 (5) |
| O2iii—Sr1—O3 | 72.95 (16) | C1—C2—C5 | 117.6 (6) |
| O4—Sr1—O5 | 71.86 (18) | N1—C3—C4B | 104.6 (10) |
| O4—Sr1—O6 | 137.87 (18) | N1—C3—C4A | 105.7 (8) |
| O2i—Sr1—O4 | 62.60 (16) | C3—C4A—C5 | 104.7 (10) |
| O3ii—Sr1—O4 | 80.08 (17) | C3—C4B—C5 | 104.8 (19) |
| O4—Sr1—O4ii | 133.67 (19) | C2—C5—C4A | 101.1 (12) |
| O2iii—Sr1—O4 | 72.62 (16) | C2—C5—C4B | 108.8 (15) |
| O5—Sr1—O6 | 110.10 (19) | N1—C2—H2 | 108.00 |
| O2i—Sr1—O5 | 84.14 (17) | C1—C2—H2 | 108.00 |
| O3ii—Sr1—O5 | 66.80 (19) | C5—C2—H2 | 108.00 |
| O4ii—Sr1—O5 | 136.53 (18) | N1—C3—H31 | 111.00 |
| O2iii—Sr1—O5 | 120.21 (17) | N1—C3—H32 | 111.00 |
| O2i—Sr1—O6 | 75.56 (17) | N1—C3—H33 | 111.00 |
| O3ii—Sr1—O6 | 140.90 (18) | N1—C3—H34 | 111.00 |
| O4ii—Sr1—O6 | 75.16 (19) | C4A—C3—H31 | 111.00 |
| O2iii—Sr1—O6 | 128.45 (18) | C4A—C3—H32 | 111.00 |
| O2i—Sr1—O3ii | 138.60 (17) | H31—C3—H32 | 109.00 |
| O2i—Sr1—O4ii | 136.37 (16) | C4B—C3—H33 | 111.00 |
| O2i—Sr1—O2iii | 118.24 (13) | C4B—C3—H34 | 111.00 |
| O3ii—Sr1—O4ii | 82.36 (17) | H33—C3—H34 | 109.00 |
| O2iii—Sr1—O3ii | 60.87 (16) | C3—C4A—H41 | 111.00 |
| O2iii—Sr1—O4ii | 61.37 (16) | C3—C4A—H42 | 111.00 |
| Sr1—O1—C1 | 144.8 (4) | C5—C4A—H41 | 111.00 |
| Sr1iv—O2—C1 | 144.7 (4) | C5—C4A—H42 | 111.00 |
| Sr1ii—O2—C1 | 124.2 (4) | H41—C4A—H42 | 109.00 |
| Sr1iv—O2—Sr1ii | 90.87 (13) | H43—C4B—H44 | 109.00 |
| Sr1—O3—Sr1iii | 95.2 (2) | C3—C4B—H44 | 111.00 |
| Sr1—O4—Sr1iii | 96.47 (17) | C5—C4B—H43 | 111.00 |
| H3C—O3—H3D | 111 (6) | C3—C4B—H43 | 111.00 |
| Sr1iii—O3—H3C | 115 (5) | C5—C4B—H44 | 111.00 |
| Sr1iii—O3—H3D | 110 (5) | C2—C5—H52 | 112.00 |
| Sr1—O3—H3C | 119 (6) | C2—C5—H53 | 110.00 |
| Sr1—O3—H3D | 107 (5) | C2—C5—H51 | 112.00 |
| H4E—O4—H4F | 111 (6) | C4B—C5—H54 | 110.00 |
| Sr1—O4—H4E | 117 (5) | H53—C5—H54 | 108.00 |
| Sr1—O4—H4F | 111 (4) | C2—C5—H54 | 110.00 |
| Sr1iii—O4—H4F | 107 (4) | C4A—C5—H51 | 112.00 |
| Sr1iii—O4—H4E | 112 (5) | C4A—C5—H52 | 112.00 |
| Sr1—O5—H5D | 119 (5) | H51—C5—H52 | 109.00 |
| Sr1—O5—H5C | 118 (5) | C4B—C5—H53 | 110.00 |
| H5C—O5—H5D | 109 (7) | ||
| O3—Sr1—O1—C1 | −76.6 (8) | O5iii—Sr1iii—O3—Sr1 | −158.1 (2) |
| O4—Sr1—O1—C1 | 101.4 (8) | O6iii—Sr1iii—O3—Sr1 | −64.4 (3) |
| O5—Sr1—O1—C1 | 128.0 (8) | O1—Sr1—O4—Sr1iii | 171.61 (16) |
| O6—Sr1—O1—C1 | −112.8 (8) | O3—Sr1—O4—Sr1iii | −9.71 (18) |
| O2i—Sr1—O1—C1 | −167.5 (7) | O5—Sr1—O4—Sr1iii | 145.3 (2) |
| O3ii—Sr1—O1—C1 | 56.1 (8) | O6—Sr1—O4—Sr1iii | 45.1 (3) |
| O4ii—Sr1—O1—C1 | −33.0 (8) | O2i—Sr1—O4—Sr1iii | 52.53 (16) |
| O2iii—Sr1—O1—C1 | 12.5 (8) | O3ii—Sr1—O4—Sr1iii | −146.0 (2) |
| O1iv—Sr1iv—O2—C1 | 5.3 (8) | O4ii—Sr1—O4—Sr1iii | −76.7 (3) |
| O3iv—Sr1iv—O2—C1 | −125.2 (8) | O2iii—Sr1—O4—Sr1iii | −83.58 (18) |
| O4iv—Sr1iv—O2—C1 | 136.7 (8) | O3—Sr1iii—O4—Sr1 | 9.45 (18) |
| O5iv—Sr1iv—O2—C1 | 64.1 (8) | O2i—Sr1iii—O4—Sr1 | −51.45 (16) |
| O6iv—Sr1iv—O2—C1 | −48.4 (8) | O1iii—Sr1iii—O4—Sr1 | 79.93 (18) |
| O2ii—Sr1iv—O2—C1 | −174.6 (7) | O3iii—Sr1iii—O4—Sr1 | −128.6 (2) |
| O3iv—Sr1ii—O2—C1 | 127.5 (6) | O4iii—Sr1iii—O4—Sr1 | −58.9 (3) |
| O4iv—Sr1ii—O2—C1 | −135.0 (6) | O5iii—Sr1iii—O4—Sr1 | 53.5 (3) |
| O1ii—Sr1ii—O2—C1 | 175.1 (5) | O6iii—Sr1iii—O4—Sr1 | 157.2 (2) |
| O3ii—Sr1ii—O2—C1 | −50.0 (5) | Sr1—O1—C1—O2 | −19.8 (13) |
| O4ii—Sr1ii—O2—C1 | 39.4 (5) | Sr1—O1—C1—C2 | 158.9 (6) |
| O5ii—Sr1ii—O2—C1 | 95.3 (5) | Sr1iv—O2—C1—O1 | −172.8 (5) |
| O6ii—Sr1ii—O2—C1 | −98.7 (5) | Sr1ii—O2—C1—O1 | 13.2 (10) |
| O2iii—Sr1ii—O2—C1 | −5.0 (6) | Sr1iv—O2—C1—C2 | 8.5 (11) |
| O1—Sr1—O3—Sr1iii | −171.81 (15) | Sr1ii—O2—C1—C2 | −165.5 (4) |
| O4—Sr1—O3—Sr1iii | 9.48 (18) | C2—N1—C3—C4A | −10.6 (17) |
| O5—Sr1—O3—Sr1iii | −36.0 (4) | C3—N1—C2—C5 | 34.0 (8) |
| O6—Sr1—O3—Sr1iii | −135.3 (2) | C3—N1—C2—C1 | 160.9 (6) |
| O2i—Sr1—O3—Sr1iii | −52.54 (16) | O1—C1—C2—N1 | 4.6 (9) |
| O3ii—Sr1—O3—Sr1iii | 80.0 (3) | O2—C1—C2—C5 | −58.5 (9) |
| O4ii—Sr1—O3—Sr1iii | 146.5 (2) | O2—C1—C2—N1 | −176.6 (6) |
| O2iii—Sr1—O3—Sr1iii | 83.01 (17) | O1—C1—C2—C5 | 122.7 (7) |
| O4—Sr1iii—O3—Sr1 | −9.45 (18) | N1—C2—C5—C4A | −43.4 (12) |
| O2i—Sr1iii—O3—Sr1 | 51.95 (16) | C1—C2—C5—C4A | −166.7 (12) |
| O1iii—Sr1iii—O3—Sr1 | −81.27 (18) | N1—C3—C4A—C5 | −17 (2) |
| O3iii—Sr1iii—O3—Sr1 | 55.3 (3) | C3—C4A—C5—C2 | 37 (2) |
| O4iii—Sr1iii—O3—Sr1 | 127.5 (2) |
Symmetry codes: (i) x+1, y, z; (ii) x−1/2, −y+1/2, −z+1; (iii) x+1/2, −y+1/2, −z+1; (iv) x−1, y, z.
Hydrogen-bond geometry (Å, º)
| D—H···A | D—H | H···A | D···A | D—H···A |
| N1—H1A···Br2i | 0.90 (6) | 2.52 (5) | 3.374 (7) | 159 (6) |
| N1—H1B···Br3i | 0.90 (7) | 2.40 (7) | 3.240 (7) | 156 (8) |
| O3—H3C···Br3v | 0.84 (7) | 2.63 (7) | 3.440 (6) | 163 (7) |
| O3—H3D···Br2vi | 0.84 (7) | 2.54 (7) | 3.376 (6) | 172 (5) |
| O4—H4E···Br2vii | 0.85 (6) | 2.47 (7) | 3.281 (6) | 162 (7) |
| O4—H4F···Br3viii | 0.83 (6) | 2.52 (6) | 3.347 (6) | 174 (6) |
| O5—H5C···Br2i | 0.86 (5) | 2.54 (5) | 3.369 (6) | 164 (6) |
| O5—H5D···Br3viii | 0.84 (6) | 2.48 (6) | 3.304 (6) | 166 (6) |
| O6—H6C···Br2vi | 0.83 (6) | 2.58 (6) | 3.393 (6) | 167 (5) |
| O6—H6D···Br3i | 0.85 (7) | 2.56 (6) | 3.378 (6) | 162 (7) |
Symmetry codes: (i) x+1, y, z; (v) −x+3/2, −y+1, z+1/2; (vi) −x+2, y+1/2, −z+1/2; (vii) −x+3/2, −y, z+1/2; (viii) −x+2, y−1/2, −z+1/2.
References
- Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.
- Balakrishnan, T., Ramamurthi, K., Jeyakanthan, J. & Thamotharan, S. (2013). Acta Cryst. E69, m60–m61. [DOI] [PMC free article] [PubMed]
- Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Kayushina, R. L. & Vainshtein, B. K. (1965). Kristallografiya, 10, 833–844.
- Lyhs, B., Bläser, D., Wölper, C., Haack, R., Jansen, G. & Schulz, S. (2012). Eur. J. Inorg. Chem. pp. 4350–4355. [DOI] [PubMed]
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
- Rao, S. T., Westhof, E. & Sundaralingam, M. (1981). Acta Cryst. A37, 421–425.
- Revathi, P., Balakrishnan, T., Ramamurthi, K. & Thamotharan, S. (2015). Acta Cryst. E71, 875–878. [DOI] [PMC free article] [PubMed]
- Sathiskumar, S., Balakrishnan, T., Ramamurthi, K. & Thamotharan, S. (2015a). Spectrochim. Acta Part A, 138, 187–194. [DOI] [PubMed]
- Sathiskumar, S., Balakrishnan, T., Ramamurthi, K. & Thamotharan, S. (2015b). Acta Cryst. E71, 217–219. [DOI] [PMC free article] [PubMed]
- Selvaraj, M., Thamotharan, S., Roy, S. & Vijayan, M. (2007). Acta Cryst. B63, 459–468. [DOI] [PubMed]
- Sharma, A., Thamotharan, S., Roy, S. & Vijayan, M. (2006). Acta Cryst. C62, o148–o152. [DOI] [PubMed]
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
- Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015017302/zs2346sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015017302/zs2346Isup2.hkl
CCDC reference: 1424731
Additional supporting information: crystallographic information; 3D view; checkCIF report



