Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Sep 26;71(Pt 10):1199–1202. doi: 10.1107/S2056989015017302

Crystal structure of poly[[μ2-di­aqua-di­aqua-μ2-l-proline-κ2 O:O′-strontium] dibromide]

Selladurai Sathiskumar a, Thangavelu Balakrishnan a,*, Kandasamy Ramamurthi b, Subbiah Thamotharan c,*
PMCID: PMC4647404  PMID: 26594406

In the title polymer, zwitterionic proline and water mol­ecules inter­act with the bromide counter-anions through inter­molecular N—H⋯Br and O—H⋯Br hydrogen-bonding inter­actions, providing a novel supra­molecular structure.

Keywords: crystal structure, proline, amino acid, strontium coordination polymer, N/O—H⋯Br hydrogen bonds

Abstract

In the title coordination polymer, {[Sr(C5H9NO2)(H2O)4]Br2}n, the proline mol­ecule exists in a zwitterionic form with one of the ring C atoms disordered over two sites [site-occupancy factors = 0.57 (6):0.43 (6)]. The SrII ion is nine-coordinated by six water O atoms, two monodentate and two μ2-bridging, and three carboxyl­ate O atoms of the proline ligands, with two bridging [Sr—O range = 2.524 (4)–2.800 (5) Å]. In the crystal, there is no direct inter­action between the proline mol­ecules. However, the proline and water mol­ecules associate with the bromide counter-anions through a number of inter­molecular O—H⋯Br and N—H⋯Br hydrogen-bonding inter­actions, giving a three-dimensional supra­molecular structure.

Chemical context  

The study of coordination polymers has been an area of rapid development in recent years due to their inter­esting structures and their wide range of applications as functional materials (Lyhs et al., 2012). Reports of the crystal structures of alkaline earth metal ions combined with anions of amino acids are very limited. As part of our ongoing investigations of the crystal and mol­ecular structures of a series of metal complexes generated from amino acids (Revathi et al., 2015; Sathiskumar et al., 2015a,b ; Balakrishnan et al., 2013), we report here the crystal structure of a polymeric strontium–proline complex, {[Sr(C5H9NO2)(H2O)4]2+ 2(Br)}n, (I).graphic file with name e-71-01199-scheme1.jpg

Structural commentary  

The asymmetric unit of the title complex (I) contains one Sr2+ ion, one bridging proline ligand and four water mol­ecules, two of which are monodentate and two bridging, and two bromide counter-anions (Fig. 1). In (I), the bond lengths involving the carboxyl­ate atoms and the protonation of the amino group suggest that the proline mol­ecule exists in a zwitterionic form. The SrII ion is nine-coordinated by six water oxygen atoms [Sr—O = 2.582 (6)–2.707 (5)Å] and three carboxyl­ate oxygen atoms of zwitterionic proline ligands [Sr—O = 2.524 (4)–2.800 (4) Å; Table 1]. In the strontium–glycine complex, the Sr—O (water) and Sr—O(carboxyl­ate) distances ranges are 2.526 (4)–2.661 (2) and 2.605 (2)–2.703 (2) Å, respectively (Revathi et al., 2015). In (I), one of the carbon atoms (C4) of the pyrrolidine ring is disordered over two sites. In the major component of the pyrrolidine ring, there is a twist conformation on the C2—C5 bond with a pseudo-rotation angle Δ = 40.1 (14)° and a maximum torsion angle φm = 43.8 (10)° for the atom sequence N1–C2–C5–C4A–C3 (Rao et al., 1981). In the minor component, the pyrrolidine ring exhibits an envelope conformation on N1 with a pseudo-rotation angle Δ = 341.5 (19)° and a maximum torsion angle φm = 36.0 (9)° for the atom sequence N1–C2–C5–C4B–C3 (Rao et al., 1981). As shown in Fig. 2, the title complex forms a coordination polymeric chain that lies parallel to the a axis. Adjacent SrII ions are separated by 3.9387 (7) Å within a chain.

Figure 1.

Figure 1

The coordination sphere of Sr2+ in the crystal structure of (I). Only the major components of the disordered proline ligands are shown. Displacement ellipsoids are drawn at the 50% probability level. For symmetry codes, see Table 1.

Table 1. Selected bond lengths ().

Sr1O1 2.524(4) Sr1O2i 2.728(4)
Sr1O3 2.625(6) Sr1O3ii 2.707(6)
Sr1O4 2.630(6) Sr1O4ii 2.651(5)
Sr1O5 2.593(5) Sr1O2iii 2.800(5)
Sr1O6 2.582(6)    

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Figure 2.

Figure 2

The Sr–water coordination polymeric chain substructure of (I), with peripheral water O—H⋯Br hydrogen bonds shown as dashed lines.

Supra­molecular features  

The crystal structure of (I), is stabilized by inter­molecular N—H⋯Br and O—H⋯Br hydrogen bonds (Table 2). One of the characteristic features observed in amino acid complexes is the head-to-tail sequence in which amino acids are self-associated through their amino and carboxyl­ate groups (Sharma et al., 2006; Selvaraj et al., 2007; Balakrishnan et al., 2013; Revathi et al., 2015). In the crystal structure of the l-proline lithium bromide monohydrate complex, there is a head-to-tail sequence observed (Sathiskumar et al., 2015a ). In contrast, there is no direct hydrogen-bonding inter­action between the proline mol­ecules in (I).

Table 2. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
N1H1ABr2i 0.90(6) 2.52(5) 3.374(7) 159(6)
N1H1BBr3i 0.90(7) 2.40(7) 3.240(7) 156(8)
O3H3CBr3iv 0.84(7) 2.63(7) 3.440(6) 163(7)
O3H3DBr2v 0.84(7) 2.54(7) 3.376(6) 172(5)
O4H4EBr2vi 0.85(6) 2.47(7) 3.281(6) 162(7)
O4H4FBr3vii 0.83(6) 2.52(6) 3.347(6) 174(6)
O5H5CBr2i 0.86(5) 2.54(5) 3.369(6) 164(6)
O5H5DBr3vii 0.84(6) 2.48(6) 3.304(6) 166(6)
O6H6CBr2v 0.83(6) 2.58(6) 3.393(6) 167(5)
O6H6DBr3i 0.85(7) 2.56(6) 3.378(6) 162(7)

Symmetry codes: (i) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic; (vii) Inline graphic.

As shown in Fig. 3, two water mol­ecules and two bromide anions along with Sr2+ ions generate a hydrogen-bonded sheet which lies parallel to the a axis. Within this sheet, two Sr2+ ions and two water oxygens form a cyclic motif. Water mol­ecules (O3 and O4) inter­connect the bromide anions, forming a chain. In (I), two mol­ecules (O5 and O6) act as donors for inter­molecular O—H⋯Br hydrogen bonds. These hydrogen bonds generate a cyclic dibromide motif similar to that observed in a related structure (Revathi et al., 2015). Adjacent dibromide motifs in (I), which run parallel to the b axis, are inter­connected by proline ligands through inter­molecular N—H⋯Br hydrogen bonds on both sides (Fig. 3). Adjacent supra­molecular arrangements of cyclic dibromide⋯proline⋯cyclic dibromide motifs are inter­linked further by water mol­ecules (O3 and O4) through O—H⋯Br hydrogen bonds. This entire arrangement forms a butterfly-like structure. The overall hydrogen-bonded supra­molecular structure (Fig. 4) is three-dimensional.

Figure 3.

Figure 3

The butterfly-like supra­molecular arrangements generated by inter­molecular N—H⋯Br and O—H⋯Br hydrogen bonds. Only atoms involved in hydrogen-bonding inter­actions are labelled.

Figure 4.

Figure 4

The crystal packing of (I) viewed along the a axis, with hydrogen bonds shown as dashed lines. C-bound H atoms have been omitted for clarity.

Synthesis and crystallization  

Single crystals of the title complex were obtained by slow evaporation from an aqueous solution of l-proline and strontium bromide hexa­hydrate in a 1:1 stoichiometric molar ratio at 306 K. The prepared solution was stirred well and filtered. The resultant filtered solution was left undisturbed to allow evaporation. After 15 days, colourless prismatic crystals were harvested.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. One of the carbon (C4) atoms of the pyrrolidine ring appears to be disordered over two sites. These positions were defined for this atom and constrained refinement of the site-occupation factors led to a value of 0.57 (6) for the major component. The positions of amino and water H atoms were located from difference Fourier maps. Further, the O—H distances in the water mol­ecules were restrained to 0.85 (2) Å. The N—H distances of amino group were also restrained, to 0.89 (2) Å. The remaining hydrogen atoms were placed in geometrically idealized positions (C—H = 0.97 Å with U iso(H) = 1.2U eq(C) and were constrained to ride on their parent atom. The Flack absolute structure parameter was determined to be 0.008 (8) (788 Friedel pairs; Parsons et al., 2013), indicating an S configuration for C2, consistent with that for the parent l-proline (Kayushina & Vainshtein, 1965).

Table 3. Experimental details.

Crystal data
Chemical formula [Sr(C5H9NO2)(H2O)4]Br2
M r 434.63
Crystal system, space group Orthorhombic, P212121
Temperature (K) 296
a, b, c () 6.7079(4), 12.9125(9), 15.4499(11)
V (3) 1338.20(16)
Z 4
Radiation type Mo K
(mm1) 10.01
Crystal size (mm) 0.15 0.10 0.10
 
Data collection
Diffractometer Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SABABS; Bruker, 2004)
T min, T max 0.26, 0.44
No. of measured, independent and observed [I > 2(I)] reflections 14183, 2345, 2081
R int 0.068
(sin /)max (1) 0.594
 
Refinement
R[F 2 > 2(F 2)], wR(F 2), S 0.032, 0.063, 1.07
No. of reflections 2345
No. of parameters 186
No. of restraints 26
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
max, min (e 3) 0.60, 0.86
Absolute structure Flack x determined using 788 quotients [(I +)(I )]/[(I +)+(I )] (Parsons et al., 2013)
Absolute structure parameter 0.008(8)

Computer programs: APEX2, SAINT and XPREP (Bruker, 2004), SIR92 (Altomare et al., 1993), SHELXL2014 (Sheldrick, 2015), PLATON (Spek, 2009) and Mercury (Macrae et al., 2008).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015017302/zs2346sup1.cif

e-71-01199-sup1.cif (536.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015017302/zs2346Isup2.hkl

e-71-01199-Isup2.hkl (188KB, hkl)

CCDC reference: 1424731

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

TB and SS would like to acknowledge the University Grants Commission (UGC), India for providing financial support [Project No. 41-956/2012(SR)]. ST is very grateful to the management of SASTRA University for infrastructural and financial support (Professor TRR grant).

supplementary crystallographic information

Crystal data

[Sr(C5H9NO2)(H2O)4]Br2 Dx = 2.157 Mg m3
Mr = 434.63 Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121 Cell parameters from 7063 reflections
a = 6.7079 (4) Å θ = 2.6–28.5°
b = 12.9125 (9) Å µ = 10.01 mm1
c = 15.4499 (11) Å T = 296 K
V = 1338.20 (16) Å3 Block, brown
Z = 4 0.15 × 0.10 × 0.10 mm
F(000) = 840

Data collection

Bruker Kappa APEXII CCD diffractometer 2081 reflections with I > 2σ(I)
Radiation source: Sealed tube Rint = 0.068
ω nd φ scan θmax = 25.0°, θmin = 2.6°
Absorption correction: multi-scan (SABABS; Bruker, 2004) h = −7→7
Tmin = 0.26, Tmax = 0.44 k = −15→15
14183 measured reflections l = −18→18
2345 independent reflections

Refinement

Refinement on F2 Hydrogen site location: mixed
Least-squares matrix: full H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.032 w = 1/[σ2(Fo2) + (0.0267P)2] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.063 (Δ/σ)max < 0.001
S = 1.07 Δρmax = 0.60 e Å3
2345 reflections Δρmin = −0.86 e Å3
186 parameters Absolute structure: Flack x determined using 788 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
26 restraints Absolute structure parameter: 0.008 (8)

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Sr1 1.34882 (8) 0.24302 (5) 0.43342 (4) 0.0174 (2)
O1 1.0492 (6) 0.2322 (4) 0.3350 (3) 0.0257 (16)
O2 0.7439 (6) 0.2420 (4) 0.3916 (3) 0.0243 (16)
O3 1.5725 (8) 0.3885 (5) 0.5016 (4) 0.0243 (19)
O4 1.5819 (8) 0.1162 (4) 0.5200 (4) 0.0213 (17)
O5 1.3443 (9) 0.0648 (4) 0.3561 (4) 0.035 (2)
O6 1.3860 (9) 0.3899 (5) 0.3212 (4) 0.038 (2)
N1 0.9404 (8) 0.2529 (6) 0.1734 (4) 0.026 (2)
C1 0.8660 (9) 0.2426 (5) 0.3307 (4) 0.018 (2)
C2 0.7837 (9) 0.2600 (6) 0.2411 (4) 0.021 (2)
C3 0.8370 (12) 0.2347 (7) 0.0890 (5) 0.042 (3)
C4A 0.623 (2) 0.211 (3) 0.1117 (11) 0.034 (7) 0.57 (6)
C5 0.6277 (12) 0.1840 (7) 0.2082 (5) 0.042 (3)
C4B 0.660 (5) 0.167 (3) 0.1117 (13) 0.035 (8) 0.43 (6)
Br2 0.18627 (12) 0.02641 (6) 0.15165 (6) 0.0389 (3)
Br3 0.22307 (13) 0.44596 (7) 0.11973 (6) 0.0466 (3)
H1A 1.024 (9) 0.199 (4) 0.180 (5) 0.02 (2)*
H1B 1.033 (10) 0.303 (5) 0.175 (6) 0.05 (3)*
H3C 1.522 (13) 0.429 (5) 0.538 (4) 0.06 (3)*
H3D 1.622 (13) 0.422 (5) 0.460 (4) 0.07 (4)*
H4E 1.532 (12) 0.085 (5) 0.563 (3) 0.05 (3)*
H4F 1.640 (10) 0.075 (4) 0.487 (4) 0.04 (3)*
H5C 1.281 (10) 0.060 (6) 0.308 (3) 0.06 (3)*
H5D 1.450 (7) 0.030 (6) 0.353 (5) 0.06 (3)*
H6C 1.478 (8) 0.432 (5) 0.327 (5) 0.03 (3)*
H6D 1.319 (11) 0.402 (7) 0.276 (4) 0.09 (4)*
H31 0.89720 0.17700 0.05850 0.0500* 0.57 (6)
H32 0.84480 0.29580 0.05270 0.0500* 0.57 (6)
H41 0.57440 0.15290 0.07800 0.0410* 0.57 (6)
H42 0.53890 0.27050 0.10120 0.0410* 0.57 (6)
H51 0.49920 0.19560 0.23530 0.0500* 0.57 (6)
H52 0.66830 0.11280 0.21770 0.0500* 0.57 (6)
H2 0.72630 0.32970 0.23900 0.0250*
H33 0.92450 0.19970 0.04850 0.0500* 0.43 (6)
H34 0.79360 0.29960 0.06370 0.0500* 0.43 (6)
H43 0.68850 0.09490 0.09960 0.0420* 0.43 (6)
H44 0.54310 0.18790 0.07910 0.0420* 0.43 (6)
H53 0.49510 0.21140 0.21840 0.0500* 0.43 (6)
H54 0.63970 0.11870 0.23880 0.0500* 0.43 (6)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Sr1 0.0142 (3) 0.0215 (4) 0.0165 (3) 0.0003 (3) −0.0010 (3) 0.0006 (3)
O1 0.017 (2) 0.041 (3) 0.019 (3) 0.006 (2) −0.001 (2) −0.003 (3)
O2 0.024 (2) 0.033 (3) 0.016 (3) 0.004 (3) 0.004 (2) 0.002 (3)
O3 0.025 (3) 0.029 (3) 0.019 (4) 0.000 (2) 0.000 (3) −0.003 (3)
O4 0.024 (3) 0.024 (3) 0.016 (3) 0.000 (2) 0.003 (3) 0.000 (3)
O5 0.033 (3) 0.044 (4) 0.029 (4) 0.006 (3) −0.002 (3) −0.010 (3)
O6 0.034 (4) 0.043 (4) 0.037 (4) −0.012 (3) −0.011 (3) 0.017 (3)
N1 0.022 (3) 0.035 (4) 0.022 (4) −0.005 (4) 0.000 (3) 0.004 (4)
C1 0.025 (4) 0.011 (3) 0.017 (4) −0.001 (3) −0.003 (3) −0.004 (3)
C2 0.024 (3) 0.026 (4) 0.013 (4) 0.005 (4) 0.002 (3) 0.000 (4)
C3 0.052 (5) 0.059 (6) 0.015 (4) 0.000 (5) −0.001 (4) −0.001 (4)
C4A 0.036 (10) 0.041 (15) 0.025 (9) 0.001 (8) −0.007 (7) −0.014 (9)
C5 0.035 (5) 0.066 (6) 0.025 (5) −0.025 (4) −0.006 (4) −0.004 (5)
C4B 0.033 (13) 0.042 (17) 0.030 (11) −0.010 (13) 0.005 (10) −0.023 (11)
Br2 0.0357 (5) 0.0379 (5) 0.0432 (5) 0.0057 (4) −0.0102 (4) −0.0197 (4)
Br3 0.0505 (6) 0.0484 (6) 0.0409 (6) −0.0239 (4) −0.0107 (4) 0.0197 (5)

Geometric parameters (Å, º)

Sr1—O1 2.524 (4) N1—H1A 0.90 (6)
Sr1—O3 2.625 (6) N1—H1B 0.90 (7)
Sr1—O4 2.630 (6) C1—C2 1.507 (9)
Sr1—O5 2.593 (5) C2—C5 1.522 (11)
Sr1—O6 2.582 (6) C3—C4A 1.509 (17)
Sr1—O2i 2.728 (4) C3—C4B 1.52 (4)
Sr1—O3ii 2.707 (6) C4A—C5 1.53 (2)
Sr1—O4ii 2.651 (5) C4B—C5 1.52 (2)
Sr1—O2iii 2.800 (5) C2—H2 0.9800
O1—C1 1.238 (7) C3—H31 0.9700
O2—C1 1.248 (8) C3—H32 0.9700
O3—H3C 0.84 (7) C3—H33 0.9700
O3—H3D 0.84 (7) C3—H34 0.9700
O4—H4E 0.85 (6) C4A—H41 0.9700
O4—H4F 0.83 (6) C4A—H42 0.9700
O5—H5D 0.84 (6) C4B—H43 0.9700
O5—H5C 0.86 (5) C4B—H44 0.9700
O6—H6D 0.85 (7) C5—H51 0.9700
O6—H6C 0.83 (6) C5—H54 0.9700
N1—C3 1.496 (10) C5—H52 0.9700
N1—C2 1.486 (8) C5—H53 0.9700
O1—Sr1—O3 137.44 (18) Sr1—O6—H6D 130 (6)
O1—Sr1—O4 138.19 (17) Sr1—O6—H6C 119 (5)
O1—Sr1—O5 70.37 (18) H6C—O6—H6D 111 (8)
O1—Sr1—O6 73.32 (18) C2—N1—C3 107.2 (5)
O1—Sr1—O2i 129.10 (14) C3—N1—H1B 117 (6)
O1—Sr1—O3ii 69.11 (17) H1A—N1—H1B 97 (5)
O1—Sr1—O4ii 70.35 (17) C2—N1—H1A 114 (5)
O1—Sr1—O2iii 112.66 (13) C2—N1—H1B 115 (5)
O3—Sr1—O4 84.36 (18) C3—N1—H1A 105 (5)
O3—Sr1—O5 145.76 (18) O1—C1—C2 115.4 (5)
O3—Sr1—O6 71.85 (19) O2—C1—C2 117.0 (5)
O2i—Sr1—O3 62.82 (16) O1—C1—O2 127.6 (6)
O3—Sr1—O3ii 133.75 (19) N1—C2—C5 102.2 (6)
O3—Sr1—O4ii 77.67 (17) N1—C2—C1 112.2 (5)
O2iii—Sr1—O3 72.95 (16) C1—C2—C5 117.6 (6)
O4—Sr1—O5 71.86 (18) N1—C3—C4B 104.6 (10)
O4—Sr1—O6 137.87 (18) N1—C3—C4A 105.7 (8)
O2i—Sr1—O4 62.60 (16) C3—C4A—C5 104.7 (10)
O3ii—Sr1—O4 80.08 (17) C3—C4B—C5 104.8 (19)
O4—Sr1—O4ii 133.67 (19) C2—C5—C4A 101.1 (12)
O2iii—Sr1—O4 72.62 (16) C2—C5—C4B 108.8 (15)
O5—Sr1—O6 110.10 (19) N1—C2—H2 108.00
O2i—Sr1—O5 84.14 (17) C1—C2—H2 108.00
O3ii—Sr1—O5 66.80 (19) C5—C2—H2 108.00
O4ii—Sr1—O5 136.53 (18) N1—C3—H31 111.00
O2iii—Sr1—O5 120.21 (17) N1—C3—H32 111.00
O2i—Sr1—O6 75.56 (17) N1—C3—H33 111.00
O3ii—Sr1—O6 140.90 (18) N1—C3—H34 111.00
O4ii—Sr1—O6 75.16 (19) C4A—C3—H31 111.00
O2iii—Sr1—O6 128.45 (18) C4A—C3—H32 111.00
O2i—Sr1—O3ii 138.60 (17) H31—C3—H32 109.00
O2i—Sr1—O4ii 136.37 (16) C4B—C3—H33 111.00
O2i—Sr1—O2iii 118.24 (13) C4B—C3—H34 111.00
O3ii—Sr1—O4ii 82.36 (17) H33—C3—H34 109.00
O2iii—Sr1—O3ii 60.87 (16) C3—C4A—H41 111.00
O2iii—Sr1—O4ii 61.37 (16) C3—C4A—H42 111.00
Sr1—O1—C1 144.8 (4) C5—C4A—H41 111.00
Sr1iv—O2—C1 144.7 (4) C5—C4A—H42 111.00
Sr1ii—O2—C1 124.2 (4) H41—C4A—H42 109.00
Sr1iv—O2—Sr1ii 90.87 (13) H43—C4B—H44 109.00
Sr1—O3—Sr1iii 95.2 (2) C3—C4B—H44 111.00
Sr1—O4—Sr1iii 96.47 (17) C5—C4B—H43 111.00
H3C—O3—H3D 111 (6) C3—C4B—H43 111.00
Sr1iii—O3—H3C 115 (5) C5—C4B—H44 111.00
Sr1iii—O3—H3D 110 (5) C2—C5—H52 112.00
Sr1—O3—H3C 119 (6) C2—C5—H53 110.00
Sr1—O3—H3D 107 (5) C2—C5—H51 112.00
H4E—O4—H4F 111 (6) C4B—C5—H54 110.00
Sr1—O4—H4E 117 (5) H53—C5—H54 108.00
Sr1—O4—H4F 111 (4) C2—C5—H54 110.00
Sr1iii—O4—H4F 107 (4) C4A—C5—H51 112.00
Sr1iii—O4—H4E 112 (5) C4A—C5—H52 112.00
Sr1—O5—H5D 119 (5) H51—C5—H52 109.00
Sr1—O5—H5C 118 (5) C4B—C5—H53 110.00
H5C—O5—H5D 109 (7)
O3—Sr1—O1—C1 −76.6 (8) O5iii—Sr1iii—O3—Sr1 −158.1 (2)
O4—Sr1—O1—C1 101.4 (8) O6iii—Sr1iii—O3—Sr1 −64.4 (3)
O5—Sr1—O1—C1 128.0 (8) O1—Sr1—O4—Sr1iii 171.61 (16)
O6—Sr1—O1—C1 −112.8 (8) O3—Sr1—O4—Sr1iii −9.71 (18)
O2i—Sr1—O1—C1 −167.5 (7) O5—Sr1—O4—Sr1iii 145.3 (2)
O3ii—Sr1—O1—C1 56.1 (8) O6—Sr1—O4—Sr1iii 45.1 (3)
O4ii—Sr1—O1—C1 −33.0 (8) O2i—Sr1—O4—Sr1iii 52.53 (16)
O2iii—Sr1—O1—C1 12.5 (8) O3ii—Sr1—O4—Sr1iii −146.0 (2)
O1iv—Sr1iv—O2—C1 5.3 (8) O4ii—Sr1—O4—Sr1iii −76.7 (3)
O3iv—Sr1iv—O2—C1 −125.2 (8) O2iii—Sr1—O4—Sr1iii −83.58 (18)
O4iv—Sr1iv—O2—C1 136.7 (8) O3—Sr1iii—O4—Sr1 9.45 (18)
O5iv—Sr1iv—O2—C1 64.1 (8) O2i—Sr1iii—O4—Sr1 −51.45 (16)
O6iv—Sr1iv—O2—C1 −48.4 (8) O1iii—Sr1iii—O4—Sr1 79.93 (18)
O2ii—Sr1iv—O2—C1 −174.6 (7) O3iii—Sr1iii—O4—Sr1 −128.6 (2)
O3iv—Sr1ii—O2—C1 127.5 (6) O4iii—Sr1iii—O4—Sr1 −58.9 (3)
O4iv—Sr1ii—O2—C1 −135.0 (6) O5iii—Sr1iii—O4—Sr1 53.5 (3)
O1ii—Sr1ii—O2—C1 175.1 (5) O6iii—Sr1iii—O4—Sr1 157.2 (2)
O3ii—Sr1ii—O2—C1 −50.0 (5) Sr1—O1—C1—O2 −19.8 (13)
O4ii—Sr1ii—O2—C1 39.4 (5) Sr1—O1—C1—C2 158.9 (6)
O5ii—Sr1ii—O2—C1 95.3 (5) Sr1iv—O2—C1—O1 −172.8 (5)
O6ii—Sr1ii—O2—C1 −98.7 (5) Sr1ii—O2—C1—O1 13.2 (10)
O2iii—Sr1ii—O2—C1 −5.0 (6) Sr1iv—O2—C1—C2 8.5 (11)
O1—Sr1—O3—Sr1iii −171.81 (15) Sr1ii—O2—C1—C2 −165.5 (4)
O4—Sr1—O3—Sr1iii 9.48 (18) C2—N1—C3—C4A −10.6 (17)
O5—Sr1—O3—Sr1iii −36.0 (4) C3—N1—C2—C5 34.0 (8)
O6—Sr1—O3—Sr1iii −135.3 (2) C3—N1—C2—C1 160.9 (6)
O2i—Sr1—O3—Sr1iii −52.54 (16) O1—C1—C2—N1 4.6 (9)
O3ii—Sr1—O3—Sr1iii 80.0 (3) O2—C1—C2—C5 −58.5 (9)
O4ii—Sr1—O3—Sr1iii 146.5 (2) O2—C1—C2—N1 −176.6 (6)
O2iii—Sr1—O3—Sr1iii 83.01 (17) O1—C1—C2—C5 122.7 (7)
O4—Sr1iii—O3—Sr1 −9.45 (18) N1—C2—C5—C4A −43.4 (12)
O2i—Sr1iii—O3—Sr1 51.95 (16) C1—C2—C5—C4A −166.7 (12)
O1iii—Sr1iii—O3—Sr1 −81.27 (18) N1—C3—C4A—C5 −17 (2)
O3iii—Sr1iii—O3—Sr1 55.3 (3) C3—C4A—C5—C2 37 (2)
O4iii—Sr1iii—O3—Sr1 127.5 (2)

Symmetry codes: (i) x+1, y, z; (ii) x−1/2, −y+1/2, −z+1; (iii) x+1/2, −y+1/2, −z+1; (iv) x−1, y, z.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1A···Br2i 0.90 (6) 2.52 (5) 3.374 (7) 159 (6)
N1—H1B···Br3i 0.90 (7) 2.40 (7) 3.240 (7) 156 (8)
O3—H3C···Br3v 0.84 (7) 2.63 (7) 3.440 (6) 163 (7)
O3—H3D···Br2vi 0.84 (7) 2.54 (7) 3.376 (6) 172 (5)
O4—H4E···Br2vii 0.85 (6) 2.47 (7) 3.281 (6) 162 (7)
O4—H4F···Br3viii 0.83 (6) 2.52 (6) 3.347 (6) 174 (6)
O5—H5C···Br2i 0.86 (5) 2.54 (5) 3.369 (6) 164 (6)
O5—H5D···Br3viii 0.84 (6) 2.48 (6) 3.304 (6) 166 (6)
O6—H6C···Br2vi 0.83 (6) 2.58 (6) 3.393 (6) 167 (5)
O6—H6D···Br3i 0.85 (7) 2.56 (6) 3.378 (6) 162 (7)

Symmetry codes: (i) x+1, y, z; (v) −x+3/2, −y+1, z+1/2; (vi) −x+2, y+1/2, −z+1/2; (vii) −x+3/2, −y, z+1/2; (viii) −x+2, y−1/2, −z+1/2.

References

  1. Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.
  2. Balakrishnan, T., Ramamurthi, K., Jeyakanthan, J. & Thamotharan, S. (2013). Acta Cryst. E69, m60–m61. [DOI] [PMC free article] [PubMed]
  3. Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Kayushina, R. L. & Vainshtein, B. K. (1965). Kristallografiya, 10, 833–844.
  5. Lyhs, B., Bläser, D., Wölper, C., Haack, R., Jansen, G. & Schulz, S. (2012). Eur. J. Inorg. Chem. pp. 4350–4355. [DOI] [PubMed]
  6. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  7. Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
  8. Rao, S. T., Westhof, E. & Sundaralingam, M. (1981). Acta Cryst. A37, 421–425.
  9. Revathi, P., Balakrishnan, T., Ramamurthi, K. & Thamotharan, S. (2015). Acta Cryst. E71, 875–878. [DOI] [PMC free article] [PubMed]
  10. Sathiskumar, S., Balakrishnan, T., Ramamurthi, K. & Thamotharan, S. (2015a). Spectrochim. Acta Part A, 138, 187–194. [DOI] [PubMed]
  11. Sathiskumar, S., Balakrishnan, T., Ramamurthi, K. & Thamotharan, S. (2015b). Acta Cryst. E71, 217–219. [DOI] [PMC free article] [PubMed]
  12. Selvaraj, M., Thamotharan, S., Roy, S. & Vijayan, M. (2007). Acta Cryst. B63, 459–468. [DOI] [PubMed]
  13. Sharma, A., Thamotharan, S., Roy, S. & Vijayan, M. (2006). Acta Cryst. C62, o148–o152. [DOI] [PubMed]
  14. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  15. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015017302/zs2346sup1.cif

e-71-01199-sup1.cif (536.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015017302/zs2346Isup2.hkl

e-71-01199-Isup2.hkl (188KB, hkl)

CCDC reference: 1424731

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES