Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Sep 12;71(Pt 10):o699–o700. doi: 10.1107/S2056989015015145

Crystal structure of ethyl 4-(2-fluoro­phen­yl)-6-methyl-2-sulfanyl­idene-1,2,3,4-tetra­hydro­pyrimidine-5-carboxyl­ate

M S Krishnamurthy a, Noor Shahina Begum a,*
PMCID: PMC4647406  PMID: 26594430

Abstract

The title compound, C14H15FN2O2S, crystallizes with two mol­ecules in the asymmetric unit. In each mol­ecule, the pyrimidine ring adopts a sofa conformation with the sp 3-hybridized C atom forming the flap and the fluoro-substituted ring in an axial position. In the crystal, mol­ecules are linked via N—H⋯S hydrogen bonds, forming chains of R 2 2(8) rings along [100]. In one independent mol­ecule, an intra­molecular C—H⋯O hydrogen bond is observed.

Keywords: crystal structure; ester; pyrimidine; hydrogen bonding; 3,4-di­hydro­pyrimidin-2(1H)-one; therapeutic properties; pharmacological properties

Related literature  

For the therapeutic and pharmacological properties of 3,4-di­hydro­pyrimidin-2(1H)-ones, see: Kappe (2000); Hurst & Hull (1961); Mayer et al. (1999); Atwal et al. (1991). For their applications in calcium-channel modulators, see: Kappe (1998); Jauk et al. (2000); Krishnamurthy & Begum (2015). For the bioactivity of organo–fluorine compounds, see: Hermann et al. (2003); Ulrich (2004). For examples of fluorine-directed crystal packing, see: Prasanna & Guru Row (2001). For related structures, see: Qin et al. (2006); Krishnamurthy & Begum (2015). For hydrogen-bond graph-set notation, see: Bernstein et al. (1995).graphic file with name e-71-0o699-scheme1.jpg

Experimental  

Crystal data  

  • C14H15FN2O2S

  • M r = 294.34

  • Triclinic, Inline graphic

  • a = 8.9298 (6) Å

  • b = 11.5870 (8) Å

  • c = 15.7459 (11) Å

  • α = 100.940 (2)°

  • β = 104.804 (2)°

  • γ = 98.153 (2)°

  • V = 1515.11 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 100 K

  • 0.18 × 0.16 × 0.16 mm

Data collection  

  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998) T min = 0.960, T max = 0.965

  • 17808 measured reflections

  • 5328 independent reflections

  • 3389 reflections with I > 2σ(I)

  • R int = 0.039

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.075

  • wR(F 2) = 0.228

  • S = 0.98

  • 5328 reflections

  • 365 parameters

  • H-atom parameters constrained

  • Δρmax = 1.04 e Å−3

  • Δρmin = −0.36 e Å−3

Data collection: SMART (Bruker, 1998); cell refinement: SMART; data reduction: SAINT-Plus (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), CAMERON (Watkin et al., 1996) and DIAMOND (Brandenburg & Berndt, 1999); software used to prepare material for publication: WinGX (Farrugia, 2012).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989015015145/lh5781sup1.cif

e-71-0o699-sup1.cif (25.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015015145/lh5781Isup2.hkl

e-71-0o699-Isup2.hkl (255.6KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015015145/lh5781Isup3.cml

. DOI: 10.1107/S2056989015015145/lh5781fig1.tif

The asymmetric unit of the title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.

. DOI: 10.1107/S2056989015015145/lh5781fig2.tif

Part of the crystal structure with hydrogen bonds shown as dashed lines.

CCDC reference: 1418668

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
N1H1S1i 0.88 2.83 3.703(4) 170
N1H1S1 0.88 2.84 3.711(4) 171
N2H2S1 0.88 2.52 3.337(4) 155
N2H2S1ii 0.88 2.50 3.335(5) 158
C1H11O1 0.98 2.14 2.861(6) 129

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

MSK thanks for the University Grants Commission (UGC), India, for the UGC–BSR Meritorious fellowship.

supplementary crystallographic information

S1. Comment

The Biginelli reaction is a three-component condensation of ethyl acetoacetate, benzaldehyde and urea for the synthesis of 3,4-dihydropyrimidine-2(1H) -ones (abbreviated as DHPMs). DHPMs have recently emerged as important target molecules because of their therapeutic and pharmacological properties (Kappe, 2000), such as antiviral (Hurst & Hull, 1961), antimitotic (Mayer et al., 1999), anticarcinogenic and antihypertensive (Atwal et al., 1991). They are also noteworthy as calcium channel modulators (Kappe, 1998; Jauk et al., 2000). In addition, compounds that contain fluorine have special bioactivity, e.g. flumioxazin is a widely used herbicide (Hermann et al., 2003; Ulrich, 2004). Guru Row and co-workers have extensively studied the structural property of fluorine and they have presented several elegant examples of fluorine directed crystal packing (Prasanna & Guru Row, 2001). Herein, we report the crystal structure of the title compound.

The asymmetric unit of the title compound is shown in Fig. 1. There are two indpendent molecules in the asymmetric unit. The bond lengths and bond angles are in good agreement with the corresponding bond distances and angles reported in closely related structures (Qin et al., 2006; Krishnamurthy & Begum, 2015). In each molecule, the pyrimidine ring adopts a sofa conformation with the sp3 hybridized carbon atom [C4 and C4'] forming the flap and the fluoro-substituted ring in an axial position. The carbonyl group of the exocyclic ester at C5 and C5' adopts a cis orientation with respect to the C5═C6 and C5'═C6 double bond. The fluoro-substituted benzene ring adopts an syn periplanar conformation with respect to the C4—H4 and C4'—H4' bonds. In the crystal, molecules are linked via N—H···S hydrogen bonds forming chains of R22(8) rings (Bernstein et al., 1995) along [100] (Fig. 2). In one independent molecule an intramolecular C—H···O hydrogen bond is observed.

S2. Experimental

The title compound was synthesized by the reaction of 2-fluorobenzaldehyde (1.24 g, 10 mmol), ethylacetoacetate (1.52 g, 12 mmol) and thiourea (1.14 g, 15 mmol) in 15 ml ethanol was refluxed for 6 h in the presence of concentrated hydrochloric acid as a catalyst. The reaction was monitored with TLC and the reaction medium was quenched in ice cold water. The precipitate obtained was filtered and dried. The compound was recrystallized from ethanol solvent by slow evaporation method, yielding colorless blocks suitable for X-ray diffraction studies (yield 76%; m.p. 485 K).

S3. Refinement

The H atoms were placed in calculated positions in a riding-model approximation with N—H = 0.86° A; C—H = 0.93° A, 0.96 ° A and 0.97 ° A for aromatic, methyl and methylene H-atoms respectively, with Uiso(H) = 1.5Ueq(C) for methyl H atoms and Uiso(H) = 1.2Ueq(C) for other hydrogen atoms.

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of the title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.

Fig. 2.

Fig. 2.

Part of the crystal structure with hydrogen bonds shown as dashed lines.

Crystal data

C14H15FN2O2S Z = 4
Mr = 294.34 F(000) = 616
Triclinic, P1 Dx = 1.290 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 8.9298 (6) Å Cell parameters from 5328 reflections
b = 11.5870 (8) Å θ = 2.4–25.0°
c = 15.7459 (11) Å µ = 0.23 mm1
α = 100.940 (2)° T = 100 K
β = 104.804 (2)° Block, colourless
γ = 98.153 (2)° 0.18 × 0.16 × 0.16 mm
V = 1515.11 (18) Å3

Data collection

Bruker SMART APEX CCD diffractometer 5328 independent reflections
Radiation source: fine-focus sealed tube 3389 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.039
ω scans θmax = 25.0°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Bruker, 1998) h = −10→10
Tmin = 0.960, Tmax = 0.965 k = −13→13
17808 measured reflections l = −18→18

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.075 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.228 H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.1269P)2 + 1.4728P] where P = (Fo2 + 2Fc2)/3
5328 reflections (Δ/σ)max = 0.001
365 parameters Δρmax = 1.04 e Å3
0 restraints Δρmin = −0.35 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.86288 (13) 0.90033 (10) 0.07601 (7) 0.0522 (3)
O1 0.6733 (4) 0.6314 (3) −0.3693 (2) 0.0743 (10)
O2 0.4450 (4) 0.6240 (3) −0.33627 (19) 0.0701 (10)
N1 0.8792 (4) 0.8058 (3) −0.0880 (2) 0.0489 (9)
H1 0.9822 0.8229 −0.0631 0.059*
N2 0.6330 (4) 0.7993 (3) −0.0734 (2) 0.0414 (8)
H2 0.5717 0.8312 −0.0439 0.050*
F1 0.2317 (4) 0.6093 (4) −0.2084 (3) 0.1226 (14)
C1 0.9490 (6) 0.7543 (5) −0.2257 (3) 0.0738 (15)
H1A 0.9492 0.6715 −0.2544 0.111*
H1B 1.0519 0.7900 −0.1810 0.111*
H1C 0.9294 0.8010 −0.2717 0.111*
C2 0.7856 (5) 0.8314 (3) −0.0339 (3) 0.0412 (9)
C3 0.6001 (5) 0.6538 (4) −0.3149 (3) 0.0499 (10)
C4 0.5536 (4) 0.7162 (3) −0.1611 (2) 0.0382 (9)
H4 0.4611 0.7476 −0.1922 0.046*
C5 0.6672 (5) 0.7122 (3) −0.2183 (3) 0.0415 (9)
C6 0.8224 (5) 0.7548 (4) −0.1798 (3) 0.0460 (10)
C7 0.3610 (7) 0.5580 (6) −0.4281 (3) 0.0891 (19)
H7A 0.3593 0.6128 −0.4694 0.107*
H7B 0.4162 0.4939 −0.4471 0.107*
C8 0.2083 (10) 0.5082 (10) −0.4334 (5) 0.172 (5)
H8A 0.2091 0.4715 −0.3822 0.258*
H8B 0.1620 0.4467 −0.4901 0.258*
H8C 0.1453 0.5708 −0.4319 0.258*
C9 0.4933 (5) 0.5941 (4) −0.1489 (3) 0.0455 (10)
C10 0.5973 (7) 0.5272 (4) −0.1092 (3) 0.0641 (13)
H10 0.7080 0.5584 −0.0905 0.077*
C11 0.5406 (10) 0.4154 (5) −0.0968 (4) 0.091 (2)
H11 0.6121 0.3698 −0.0706 0.109*
C12 0.3822 (15) 0.3718 (6) −0.1225 (5) 0.121 (3)
H12 0.3439 0.2959 −0.1130 0.145*
C13 0.2769 (9) 0.4347 (7) −0.1617 (5) 0.103 (2)
H13 0.1664 0.4031 −0.1807 0.123*
C14 0.3357 (6) 0.5445 (5) −0.1726 (3) 0.0669 (13)
S1' 0.31495 (13) 0.84530 (11) −0.00790 (7) 0.0544 (4)
O1' 0.6197 (5) 1.1437 (4) 0.4307 (3) 0.0940 (13)
O2' 0.3597 (4) 1.0906 (3) 0.4089 (2) 0.0683 (9)
N1' 0.5140 (4) 0.9516 (3) 0.1541 (2) 0.0490 (9)
H1' 0.5889 0.9363 0.1291 0.059*
N2' 0.2541 (4) 0.9254 (3) 0.1455 (2) 0.0463 (8)
H2' 0.1559 0.9156 0.1118 0.056*
F1' 0.0344 (4) 0.9094 (4) 0.3206 (3) 0.1074 (12)
C1' 0.7322 (5) 1.0702 (5) 0.2784 (3) 0.0692 (14)
H1'1 0.7651 1.0866 0.3446 0.104*
H1'2 0.7528 1.1453 0.2595 0.104*
H1'3 0.7921 1.0141 0.2544 0.104*
C2' 0.3619 (5) 0.9103 (3) 0.1028 (3) 0.0428 (9)
C3' 0.4889 (6) 1.0926 (4) 0.3814 (3) 0.0603 (12)
C4' 0.2823 (5) 0.9565 (4) 0.2428 (3) 0.0448 (10)
H4' 0.2094 1.0105 0.2567 0.054*
C5' 0.4504 (5) 1.0246 (3) 0.2879 (3) 0.0454 (10)
C6' 0.5595 (5) 1.0163 (4) 0.2430 (3) 0.0475 (10)
C7' 0.3799 (8) 1.1522 (5) 0.5011 (4) 0.0890 (18)
H7'1 0.4179 1.2393 0.5096 0.107*
H7'2 0.4591 1.1219 0.5431 0.107*
C8' 0.2281 (11) 1.1309 (9) 0.5198 (5) 0.144 (3)
H8'1 0.1539 1.1693 0.4828 0.217*
H8'2 0.2423 1.1647 0.5839 0.217*
H8'3 0.1862 1.0443 0.5052 0.217*
C9' 0.2458 (5) 0.8451 (4) 0.2768 (3) 0.0467 (10)
C10' 0.3336 (6) 0.7567 (4) 0.2711 (3) 0.0623 (13)
H10' 0.4194 0.7666 0.2460 0.075*
C11' 0.2998 (8) 0.6546 (5) 0.3007 (4) 0.0861 (18)
H11' 0.3602 0.5939 0.2946 0.103*
C12' 0.1789 (9) 0.6404 (6) 0.3392 (4) 0.091 (2)
H12' 0.1561 0.5704 0.3604 0.109*
C13' 0.0928 (8) 0.7260 (7) 0.3468 (4) 0.0926 (19)
H13' 0.0103 0.7176 0.3745 0.111*
C14' 0.1248 (6) 0.8256 (5) 0.3142 (3) 0.0675 (13)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0422 (6) 0.0611 (7) 0.0453 (6) 0.0011 (5) 0.0124 (5) 0.0006 (5)
O1 0.076 (2) 0.100 (3) 0.0456 (18) 0.012 (2) 0.0265 (18) 0.0051 (17)
O2 0.053 (2) 0.103 (3) 0.0393 (17) −0.0082 (18) 0.0078 (14) 0.0048 (16)
N1 0.0334 (18) 0.065 (2) 0.044 (2) 0.0023 (16) 0.0144 (15) 0.0047 (17)
N2 0.0351 (18) 0.0450 (18) 0.0419 (18) 0.0053 (15) 0.0147 (15) 0.0024 (15)
F1 0.057 (2) 0.161 (4) 0.132 (3) −0.004 (2) 0.017 (2) 0.025 (3)
C1 0.057 (3) 0.099 (4) 0.063 (3) −0.001 (3) 0.034 (3) 0.003 (3)
C2 0.039 (2) 0.037 (2) 0.047 (2) 0.0044 (17) 0.0133 (19) 0.0094 (18)
C3 0.057 (3) 0.049 (2) 0.045 (2) 0.005 (2) 0.016 (2) 0.017 (2)
C4 0.034 (2) 0.041 (2) 0.039 (2) 0.0074 (17) 0.0101 (17) 0.0083 (17)
C5 0.048 (2) 0.040 (2) 0.038 (2) 0.0046 (18) 0.0154 (18) 0.0136 (17)
C6 0.047 (2) 0.046 (2) 0.046 (2) 0.0057 (19) 0.020 (2) 0.0094 (19)
C7 0.076 (4) 0.117 (5) 0.044 (3) −0.023 (3) 0.001 (3) 0.001 (3)
C8 0.102 (6) 0.268 (12) 0.072 (5) −0.073 (7) 0.008 (4) −0.030 (6)
C9 0.052 (2) 0.045 (2) 0.037 (2) 0.000 (2) 0.0194 (19) 0.0025 (18)
C10 0.097 (4) 0.047 (3) 0.059 (3) 0.016 (3) 0.037 (3) 0.016 (2)
C11 0.158 (7) 0.054 (3) 0.086 (4) 0.026 (4) 0.068 (4) 0.027 (3)
C12 0.216 (10) 0.057 (4) 0.095 (5) −0.029 (5) 0.098 (6) 0.001 (4)
C13 0.107 (5) 0.087 (5) 0.096 (5) −0.045 (4) 0.051 (4) −0.003 (4)
C14 0.055 (3) 0.075 (3) 0.063 (3) −0.008 (3) 0.022 (3) 0.006 (3)
S1' 0.0444 (6) 0.0736 (8) 0.0449 (6) 0.0117 (5) 0.0137 (5) 0.0122 (5)
O1' 0.076 (3) 0.107 (3) 0.067 (2) −0.007 (2) 0.008 (2) −0.017 (2)
O2' 0.077 (2) 0.071 (2) 0.0534 (19) 0.0092 (18) 0.0289 (17) −0.0019 (16)
N1' 0.0341 (18) 0.062 (2) 0.049 (2) 0.0068 (16) 0.0149 (16) 0.0067 (17)
N2' 0.0359 (18) 0.066 (2) 0.0409 (19) 0.0151 (16) 0.0118 (15) 0.0167 (16)
F1' 0.083 (2) 0.135 (3) 0.138 (3) 0.034 (2) 0.074 (2) 0.047 (2)
C1' 0.042 (3) 0.084 (3) 0.070 (3) −0.003 (2) 0.014 (2) 0.005 (3)
C2' 0.038 (2) 0.045 (2) 0.050 (2) 0.0109 (18) 0.0160 (19) 0.0165 (19)
C3' 0.069 (3) 0.050 (3) 0.060 (3) 0.010 (2) 0.018 (3) 0.011 (2)
C4' 0.041 (2) 0.051 (2) 0.046 (2) 0.0133 (19) 0.0185 (19) 0.0086 (19)
C5' 0.048 (2) 0.042 (2) 0.045 (2) 0.0080 (19) 0.012 (2) 0.0090 (18)
C6' 0.042 (2) 0.046 (2) 0.051 (3) 0.0055 (19) 0.012 (2) 0.010 (2)
C7' 0.134 (6) 0.077 (4) 0.057 (3) 0.021 (4) 0.039 (4) 0.004 (3)
C8' 0.153 (7) 0.189 (8) 0.105 (6) 0.029 (6) 0.092 (6) −0.004 (5)
C9' 0.045 (2) 0.052 (2) 0.038 (2) 0.003 (2) 0.0100 (19) 0.0067 (19)
C10' 0.082 (3) 0.049 (3) 0.057 (3) 0.007 (2) 0.025 (3) 0.012 (2)
C11' 0.126 (5) 0.054 (3) 0.069 (4) 0.016 (3) 0.014 (4) 0.013 (3)
C12' 0.121 (5) 0.074 (4) 0.065 (4) −0.022 (4) 0.022 (4) 0.024 (3)
C13' 0.094 (5) 0.102 (5) 0.083 (4) −0.014 (4) 0.040 (4) 0.031 (4)
C14' 0.061 (3) 0.076 (3) 0.064 (3) 0.000 (3) 0.027 (3) 0.012 (3)

Geometric parameters (Å, º)

S1—C2 1.679 (4) S1'—C2' 1.679 (4)
O1—C3 1.216 (5) O1'—C3' 1.218 (6)
O2—C3 1.316 (5) O2'—C3' 1.330 (6)
O2—C7 1.450 (5) O2'—C7' 1.443 (6)
N1—C2 1.360 (5) N1'—C2' 1.354 (5)
N1—C6 1.382 (5) N1'—C6' 1.383 (5)
N1—H1 0.8800 N1'—H1' 0.8800
N2—C2 1.311 (5) N2'—C2' 1.321 (5)
N2—C4 1.463 (5) N2'—C4' 1.452 (5)
N2—H2 0.8800 N2'—H2' 0.8800
F1—C14 1.355 (6) F1'—C14' 1.354 (6)
C1—C6 1.490 (6) C1'—C6' 1.496 (6)
C1—H1A 0.9800 C1'—H1'1 0.9800
C1—H1B 0.9800 C1'—H1'2 0.9800
C1—H1C 0.9800 C1'—H1'3 0.9800
C3—C5 1.469 (6) C3'—C5' 1.459 (6)
C4—C9 1.506 (5) C4'—C5' 1.512 (6)
C4—C5 1.518 (5) C4'—C9' 1.513 (6)
C4—H4 1.0000 C4'—H4' 1.0000
C5—C6 1.340 (6) C5'—C6' 1.346 (6)
C7—C8 1.378 (9) C7'—C8' 1.456 (9)
C7—H7A 0.9900 C7'—H7'1 0.9900
C7—H7B 0.9900 C7'—H7'2 0.9900
C8—H8A 0.9800 C8'—H8'1 0.9800
C8—H8B 0.9800 C8'—H8'2 0.9800
C8—H8C 0.9800 C8'—H8'3 0.9800
C9—C14 1.368 (6) C9'—C14' 1.368 (6)
C9—C10 1.394 (6) C9'—C10' 1.378 (6)
C10—C11 1.391 (7) C10'—C11' 1.375 (7)
C10—H10 0.9500 C10'—H10' 0.9500
C11—C12 1.359 (11) C11'—C12' 1.371 (9)
C11—H11 0.9500 C11'—H11' 0.9500
C12—C13 1.366 (11) C12'—C13' 1.345 (9)
C12—H12 0.9500 C12'—H12' 0.9500
C13—C14 1.365 (8) C13'—C14' 1.373 (8)
C13—H13 0.9500 C13'—H13' 0.9500
C3—O2—C7 117.6 (4) C3'—O2'—C7' 117.2 (4)
C2—N1—C6 124.0 (3) C2'—N1'—C6' 124.3 (3)
C2—N1—H1 118.0 C2'—N1'—H1' 117.8
C6—N1—H1 118.0 C6'—N1'—H1' 117.8
C2—N2—C4 127.1 (3) C2'—N2'—C4' 126.1 (3)
C2—N2—H2 116.5 C2'—N2'—H2' 117.0
C4—N2—H2 116.5 C4'—N2'—H2' 117.0
C6—C1—H1A 109.5 C6'—C1'—H1'1 109.5
C6—C1—H1B 109.5 C6'—C1'—H1'2 109.5
H1A—C1—H1B 109.5 H1'1—C1'—H1'2 109.5
C6—C1—H1C 109.5 C6'—C1'—H1'3 109.5
H1A—C1—H1C 109.5 H1'1—C1'—H1'3 109.5
H1B—C1—H1C 109.5 H1'2—C1'—H1'3 109.5
N2—C2—N1 115.6 (3) N2'—C2'—N1' 115.6 (4)
N2—C2—S1 122.9 (3) N2'—C2'—S1' 122.6 (3)
N1—C2—S1 121.5 (3) N1'—C2'—S1' 121.8 (3)
O1—C3—O2 122.7 (4) O1'—C3'—O2' 122.5 (5)
O1—C3—C5 126.7 (4) O1'—C3'—C5' 126.7 (5)
O2—C3—C5 110.6 (4) O2'—C3'—C5' 110.8 (4)
N2—C4—C9 110.5 (3) N2'—C4'—C5' 109.6 (3)
N2—C4—C5 108.9 (3) N2'—C4'—C9' 110.5 (3)
C9—C4—C5 112.3 (3) C5'—C4'—C9' 112.3 (3)
N2—C4—H4 108.3 N2'—C4'—H4' 108.1
C9—C4—H4 108.3 C5'—C4'—H4' 108.1
C5—C4—H4 108.3 C9'—C4'—H4' 108.1
C6—C5—C3 122.6 (4) C6'—C5'—C3' 122.6 (4)
C6—C5—C4 120.3 (3) C6'—C5'—C4' 119.7 (4)
C3—C5—C4 117.0 (3) C3'—C5'—C4' 117.7 (4)
C5—C6—N1 120.0 (4) C5'—C6'—N1' 119.4 (4)
C5—C6—C1 126.9 (4) C5'—C6'—C1' 127.2 (4)
N1—C6—C1 113.1 (4) N1'—C6'—C1' 113.4 (4)
C8—C7—O2 110.1 (5) O2'—C7'—C8' 108.5 (6)
C8—C7—H7A 109.6 O2'—C7'—H7'1 110.0
O2—C7—H7A 109.6 C8'—C7'—H7'1 110.0
C8—C7—H7B 109.6 O2'—C7'—H7'2 110.0
O2—C7—H7B 109.6 C8'—C7'—H7'2 110.0
H7A—C7—H7B 108.2 H7'1—C7'—H7'2 108.4
C7—C8—H8A 109.5 C7'—C8'—H8'1 109.5
C7—C8—H8B 109.5 C7'—C8'—H8'2 109.5
H8A—C8—H8B 109.5 H8'1—C8'—H8'2 109.5
C7—C8—H8C 109.5 C7'—C8'—H8'3 109.5
H8A—C8—H8C 109.5 H8'1—C8'—H8'3 109.5
H8B—C8—H8C 109.5 H8'2—C8'—H8'3 109.5
C14—C9—C10 116.4 (4) C14'—C9'—C10' 116.2 (4)
C14—C9—C4 122.6 (4) C14'—C9'—C4' 122.6 (4)
C10—C9—C4 120.9 (4) C10'—C9'—C4' 121.2 (4)
C11—C10—C9 120.6 (6) C11'—C10'—C9' 121.6 (5)
C11—C10—H10 119.7 C11'—C10'—H10' 119.2
C9—C10—H10 119.7 C9'—C10'—H10' 119.2
C12—C11—C10 119.6 (7) C12'—C11'—C10' 119.9 (6)
C12—C11—H11 120.2 C12'—C11'—H11' 120.1
C10—C11—H11 120.2 C10'—C11'—H11' 120.1
C11—C12—C13 121.3 (6) C13'—C12'—C11' 119.8 (5)
C11—C12—H12 119.3 C13'—C12'—H12' 120.1
C13—C12—H12 119.3 C11'—C12'—H12' 120.1
C14—C13—C12 117.8 (7) C12'—C13'—C14' 119.5 (6)
C14—C13—H13 121.1 C12'—C13'—H13' 120.2
C12—C13—H13 121.1 C14'—C13'—H13' 120.2
F1—C14—C13 118.1 (6) F1'—C14'—C9' 118.4 (4)
F1—C14—C9 117.7 (4) F1'—C14'—C13' 118.6 (5)
C13—C14—C9 124.2 (6) C9'—C14'—C13' 123.0 (6)
C4—N2—C2—N1 15.5 (6) C4'—N2'—C2'—N1' −14.4 (6)
C4—N2—C2—S1 −164.9 (3) C4'—N2'—C2'—S1' 166.1 (3)
C6—N1—C2—N2 3.0 (6) C6'—N1'—C2'—N2' −6.2 (6)
C6—N1—C2—S1 −176.6 (3) C6'—N1'—C2'—S1' 173.3 (3)
C7—O2—C3—O1 2.2 (7) C7'—O2'—C3'—O1' −0.1 (7)
C7—O2—C3—C5 −176.0 (4) C7'—O2'—C3'—C5' 178.7 (4)
C2—N2—C4—C9 99.7 (4) C2'—N2'—C4'—C5' 26.5 (5)
C2—N2—C4—C5 −24.1 (5) C2'—N2'—C4'—C9' −97.8 (4)
O1—C3—C5—C6 4.1 (7) O1'—C3'—C5'—C6' −3.7 (7)
O2—C3—C5—C6 −177.8 (4) O2'—C3'—C5'—C6' 177.5 (4)
O1—C3—C5—C4 −172.3 (4) O1'—C3'—C5'—C4' 173.1 (5)
O2—C3—C5—C4 5.9 (5) O2'—C3'—C5'—C4' −5.6 (5)
N2—C4—C5—C6 16.0 (5) N2'—C4'—C5'—C6' −20.0 (5)
C9—C4—C5—C6 −106.7 (4) C9'—C4'—C5'—C6' 103.1 (4)
N2—C4—C5—C3 −167.6 (3) N2'—C4'—C5'—C3' 163.0 (3)
C9—C4—C5—C3 69.7 (4) C9'—C4'—C5'—C3' −73.8 (5)
C3—C5—C6—N1 −178.2 (4) C3'—C5'—C6'—N1' −179.1 (4)
C4—C5—C6—N1 −2.0 (6) C4'—C5'—C6'—N1' 4.1 (6)
C3—C5—C6—C1 1.9 (7) C3'—C5'—C6'—C1' 1.1 (7)
C4—C5—C6—C1 178.1 (4) C4'—C5'—C6'—C1' −175.7 (4)
C2—N1—C6—C5 −9.2 (6) C2'—N1'—C6'—C5' 10.9 (6)
C2—N1—C6—C1 170.7 (4) C2'—N1'—C6'—C1' −169.3 (4)
C3—O2—C7—C8 164.9 (7) C3'—O2'—C7'—C8' −175.2 (5)
N2—C4—C9—C14 114.6 (4) N2'—C4'—C9'—C14' −114.4 (4)
C5—C4—C9—C14 −123.6 (4) C5'—C4'—C9'—C14' 123.0 (4)
N2—C4—C9—C10 −63.1 (5) N2'—C4'—C9'—C10' 65.2 (5)
C5—C4—C9—C10 58.8 (5) C5'—C4'—C9'—C10' −57.5 (5)
C14—C9—C10—C11 1.1 (6) C14'—C9'—C10'—C11' 0.5 (7)
C4—C9—C10—C11 179.0 (4) C4'—C9'—C10'—C11' −179.1 (4)
C9—C10—C11—C12 −0.9 (8) C9'—C10'—C11'—C12' −1.7 (8)
C10—C11—C12—C13 1.0 (10) C10'—C11'—C12'—C13' 0.7 (9)
C11—C12—C13—C14 −1.4 (10) C11'—C12'—C13'—C14' 1.4 (9)
C12—C13—C14—F1 −177.6 (6) C10'—C9'—C14'—F1' −179.5 (4)
C12—C13—C14—C9 1.7 (9) C4'—C9'—C14'—F1' 0.1 (7)
C10—C9—C14—F1 177.8 (4) C10'—C9'—C14'—C13' 1.7 (7)
C4—C9—C14—F1 0.0 (6) C4'—C9'—C14'—C13' −178.7 (5)
C10—C9—C14—C13 −1.6 (7) C12'—C13'—C14'—F1' 178.5 (5)
C4—C9—C14—C13 −179.3 (5) C12'—C13'—C14'—C9' −2.7 (9)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1···S1′i 0.88 2.83 3.703 (4) 170
N1′—H1′···S1 0.88 2.84 3.711 (4) 171
N2—H2···S1′ 0.88 2.52 3.337 (4) 155
N2′—H2′···S1ii 0.88 2.50 3.335 (5) 158
C1′—H1′1···O1′ 0.98 2.14 2.861 (6) 129

Symmetry codes: (i) x+1, y, z; (ii) x−1, y, z.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: LH5781).

References

  1. Atwal, K. S., Swanson, B. N., Unger, S. E., Floyd, D. M., Moreland, S., Hedberg, A. & O Reilly, B. C. (1991). J. Med. Chem. 34, 806–811. [DOI] [PubMed]
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  3. Brandenburg, K. & Berndt, M. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  4. Bruker. (1998). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  6. Hermann, B., Erwin, H. & Hansjorg, K. (2003). US Patent No. 2003 176 284.
  7. Hurst, E. W. & Hull, R. (1961). J. Med. Pharm. Chem. 3, 215–229. [DOI] [PubMed]
  8. Jauk, B., Pernat, T. & Kappe, C. O. (2000). Molecules, 5, 227–239.
  9. Kappe, C. O. (1998). Molecules, 3, 1–20.
  10. Kappe, C. O. (2000). Eur. J. Med. Chem. 35, 1043–1052. [DOI] [PubMed]
  11. Krishnamurthy, M. S. & Begum, N. S. (2015). Acta Cryst. E71, o268–o269. [DOI] [PMC free article] [PubMed]
  12. Mayer, T. U., Kapoor, T. M., Haggarty, S. J., King, R. W., Schreiber, S. I. & Mitchison, T. J. (1999). Science, 286, 971–974. [DOI] [PubMed]
  13. Prasanna, M. D. & Guru Row, T. N. (2001). J. Mol. Struct. 562, 55–61.
  14. Qin, Y.-Q., Ren, X.-Y., Liang, T.-L. & Jian, F.-F. (2006). Acta Cryst. E62, o5215–o5216.
  15. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  16. Ulrich, H. (2004). US Patent No. 2 004 033 897.
  17. Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989015015145/lh5781sup1.cif

e-71-0o699-sup1.cif (25.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015015145/lh5781Isup2.hkl

e-71-0o699-Isup2.hkl (255.6KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015015145/lh5781Isup3.cml

. DOI: 10.1107/S2056989015015145/lh5781fig1.tif

The asymmetric unit of the title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.

. DOI: 10.1107/S2056989015015145/lh5781fig2.tif

Part of the crystal structure with hydrogen bonds shown as dashed lines.

CCDC reference: 1418668

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES