Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Sep 17;71(Pt 10):o762–o763. doi: 10.1107/S2056989015016217

Crystal structure of ethyl 5-acetyl-2-{[(di­methyl­amino)­methyl­idene]amino}-4-methyl­thio­phene-3-carboxyl­ate

N L Prasad a, M S Krishnamurthy a, H Nagarajaiah a, Noor Shahina Begum a,*
PMCID: PMC4647409  PMID: 26594465

Abstract

In the title thio­phene derivative, C13H18N2O3S, the dihedral angles between the thio­phene ring and the [(di­methyl­amino)­methyl­idene]amino side chain (r.m.s. deviation = 0.009 Å) and the –CO2 ester group are 3.01 (16) and 59.9 (3)°, respectively. In the crystal, inversion dimers linked by pairs of C—H⋯O hydrogen bonds generate R 2 2(16) loops. The dimers are linked by another weak C—H⋯O inter­action, forming chains along [001]. In addition, weak C—H⋯π inter­actions are observed, which link the chains into (001) layers.

Keywords: crystal structure, thio­phene derivative, hydrogen bonding, C—H⋯π inter­actions

Related literature  

For background to the applications of thio­phene derivatives, see: Sabnis et al. (1999). For a related structure, see: Mukhtar et al. (2010). For further synthetic details, see: Gewald et al. (1966).graphic file with name e-71-0o762-scheme1.jpg

Experimental  

Crystal data  

  • C13H18N2O3S

  • M r = 282.35

  • Orthorhombic, Inline graphic

  • a = 12.218 (3) Å

  • b = 7.332 (2) Å

  • c = 30.923 (8) Å

  • V = 2769.9 (13) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 100 K

  • 0.29 × 0.26 × 0.10 mm

Data collection  

  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998) T min = 0.958, T max = 0.963

  • 15478 measured reflections

  • 3012 independent reflections

  • 2140 reflections with I > 2σ(I)

  • R int = 0.076

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.058

  • wR(F 2) = 0.173

  • S = 1.19

  • 3012 reflections

  • 177 parameters

  • H-atom parameters constrained

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.34 e Å−3

Data collection: SMART (Bruker, 1998); cell refinement: SAINT-Plus (Bruker, 1998); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and CAMERON (Watkin et al., 1996); software used to prepare material for publication: WinGX (Farrugia, 2012).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989015016217/hb7483sup1.cif

e-71-0o762-sup1.cif (18.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015016217/hb7483Isup2.hkl

e-71-0o762-Isup2.hkl (144.9KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015016217/hb7483Isup3.cml

. DOI: 10.1107/S2056989015016217/hb7483fig1.tif

The mol­ecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.

. DOI: 10.1107/S2056989015016217/hb7483fig2.tif

Unit cell packing of the title compound showing inter­molecular C—H⋯O inter­actions with dotted lines. H-atoms not involved in hydrogen bonding have been excluded.

. DOI: 10.1107/S2056989015016217/hb7483fig3.tif

Unit cell packing depicting C—H⋯π inter­actions with dotted lines.

CCDC reference: 1421360

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (, ).

Cg is the centroid of the C2/C3/C4/C5/S1 ring.

DHA DH HA D A DHA
C9H9AO2i 0.99 2.45 3.270(3) 139
C11H11O1ii 0.95 2.47 3.312(4) 147
C7H7C Cg iii 0.98 2.86 3.693(2) 143

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

NLP thanks the University Grants Commission (UGC), India for a CSIR–NET fellowship and MSK thanks the UGC for a UGC–BSR Meritorious fellowship.

supplementary crystallographic information

S1. Comment

Thiophene belongs to a class of heterocyclic compounds containing a five membered ring made up of one sulfur as heteroatom, that are widely used as building blocks in many agrochemicals and pharmaceuticals. 2-Aminothiophenes attract special attention because of their applications in pharmaceuticals, agriculture, pesticides and dyes (Sabnis et al., 1999). The most convergent and well established classical approach for the preparation of 2-aminothiophenes is Gewald's method (Gewald et al., 1966), which involves the multicomponent condensation of a ketone with an activated nitrile and elemental sulfur in the presence of diethylamine as a catalyst. Herein, we report the structure of the title compound, (I).

The molecular structure of the compound is shown in Fig. 1. In the title compound, C13H18N2O3S, a thiophene derivative with dimethylamino- methyleneamino, acetyl, methyl and ethyl carboxylate substituents attached to a central thiophene ring. The thiophene ring and all the substituents are almost planar except the carboxyl group (C10/C9/O3/C8), it is slightly deviating from the plane at -83.474 (3)°. The carbonyl group of the exocyclic ester at C3 and acetyl at C5 adopts a trans orientation with C3=C2 and C5=C4 double bond respectively. The crystal structure features C—H···O interactions. The C11—H11···O1 hydrogen bonds resulting in a centrosymmetric head to head dimer with graph set R22(16) notation, which are in turn linked by another weak C9—H9A···O2 interactions to form chains of rings along [001] (Table.1; Fig. 2). In addition, weak C—H···π interactions of the type C7—H7C···Cg [Cg being the centroid of the thiophene ring (C2/C3/C4/C5/S1)] link the chains into layers parallel to (001) with a distance 2.864 Å is also observed (Fig. 3).

S2. Experimental

Step-1: 3.3 g of cyano ethyl acetate was weighed and transferred to RB flask and 5 g of acetyl acetone and 10 to 15 ml of ethanol were added to it. The whole mixture was stirred for 10 min. After stirring 1.6 g of elemental sulfur was added to the mixture and cold condition was maintained by using crushed ice. Later 5 ml of diethyl amine was added drop by drop the solution changes its color to red. After the completion of addition the solution was again kept for stirring (10 min). Ice pack was removed and stirring was continued for about an hour. The precipitated product (1) was filtered, dried and recrystallized from ethanol (yield: 68%, m.p. 430 K)

Step-2: A mixture of compound 1 (10 mmol) and DMF—DMA (5 ml) was stirred at room temperature for 30 minutes. To this was added ethanol and kept in room temperature to give a solid product (title compound) that was collected by filtration. The compound was recrystallized by slow evaporation from ethanol, yielding single crystals suitable for X-ray diffraction studies.

S3. Refinement

The H atoms were placed at calculated positions in the riding-model approximation with C—H = 0.96° A, 0.97 ° A and 0.93 ° A for methyl, methylene and methyne H-atoms respectively, with Uiso(H) = 1.5Ueq(C) for methyl H atoms and Uiso(H) = 1.2Ueq(C) for other hydrogen atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.

Fig. 2.

Fig. 2.

Unit cell packing of the title compound showing intermolecular C—H···O interactions with dotted lines. H-atoms not involved in hydrogen bonding have been excluded.

Fig. 3.

Fig. 3.

Unit cell packing depicting C—H···π interactions with dotted lines.

Crystal data

C13H18N2O3S F(000) = 1200
Mr = 282.35 Dx = 1.354 Mg m3
Orthorhombic, Pbca Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2ab Cell parameters from 3012 reflections
a = 12.218 (3) Å θ = 2.1–27.0°
b = 7.332 (2) Å µ = 0.24 mm1
c = 30.923 (8) Å T = 100 K
V = 2769.9 (13) Å3 Block, colorless
Z = 8 0.29 × 0.26 × 0.10 mm

Data collection

Bruker SMART APEX CCD diffractometer 3012 independent reflections
Radiation source: fine-focus sealed tube 2140 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.076
ω scans θmax = 27.0°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Bruker, 1998) h = −14→15
Tmin = 0.958, Tmax = 0.963 k = −9→9
15478 measured reflections l = −39→35

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.173 H-atom parameters constrained
S = 1.19 w = 1/[σ2(Fo2) + (0.0811P)2 + 0.3374P] where P = (Fo2 + 2Fc2)/3
3012 reflections (Δ/σ)max < 0.001
177 parameters Δρmax = 0.52 e Å3
0 restraints Δρmin = −0.33 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.8067 (2) 0.2414 (4) 0.37436 (9) 0.0219 (6)
H1A 0.8527 0.3124 0.3942 0.033*
H1B 0.7973 0.3089 0.3473 0.033*
H1C 0.8419 0.1240 0.3684 0.033*
C2 0.5031 (2) 0.1973 (4) 0.39447 (9) 0.0194 (6)
C3 0.5979 (2) 0.2312 (4) 0.37104 (9) 0.0193 (6)
C4 0.6967 (2) 0.2091 (4) 0.39477 (9) 0.0196 (6)
C5 0.6764 (2) 0.1574 (4) 0.43709 (9) 0.0190 (6)
C6 0.7476 (2) 0.1108 (4) 0.47350 (9) 0.0211 (6)
C7 0.8697 (2) 0.1198 (4) 0.46853 (9) 0.0252 (7)
H7A 0.9048 0.0694 0.4944 0.038*
H7B 0.8923 0.2471 0.4648 0.038*
H7C 0.8919 0.0488 0.4431 0.038*
C8 0.5956 (2) 0.2660 (4) 0.32370 (9) 0.0203 (6)
C9 0.5315 (2) 0.4612 (4) 0.26762 (9) 0.0251 (7)
H9A 0.4661 0.5384 0.2628 0.030*
H9B 0.5215 0.3467 0.2511 0.030*
C10 0.6313 (2) 0.5590 (5) 0.25110 (10) 0.0321 (7)
H10A 0.6411 0.6730 0.2672 0.048*
H10B 0.6219 0.5864 0.2203 0.048*
H10C 0.6958 0.4814 0.2550 0.048*
C11 0.3149 (2) 0.1822 (4) 0.40202 (9) 0.0216 (6)
H11 0.3262 0.1544 0.4317 0.026*
C13 0.1194 (2) 0.1650 (4) 0.41533 (10) 0.0287 (7)
H13A 0.1452 0.1305 0.4442 0.043*
H13B 0.0736 0.0673 0.4035 0.043*
H13C 0.0765 0.2776 0.4173 0.043*
C12 0.1888 (2) 0.2409 (5) 0.34251 (10) 0.0323 (8)
H12A 0.2567 0.2747 0.3277 0.048*
H12B 0.1377 0.3439 0.3418 0.048*
H12C 0.1558 0.1356 0.3280 0.048*
N1 0.40009 (18) 0.2074 (3) 0.37699 (7) 0.0216 (5)
N2 0.21291 (18) 0.1943 (3) 0.38709 (7) 0.0218 (5)
O1 0.70690 (16) 0.0608 (3) 0.50809 (6) 0.0285 (5)
O2 0.63937 (18) 0.1686 (3) 0.29724 (6) 0.0308 (5)
O3 0.54047 (16) 0.4187 (3) 0.31356 (6) 0.0244 (5)
S1 0.53616 (5) 0.13387 (10) 0.44751 (2) 0.0202 (2)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0151 (15) 0.0206 (15) 0.0301 (16) −0.0008 (11) 0.0015 (11) −0.0017 (12)
C2 0.0147 (14) 0.0169 (14) 0.0267 (15) 0.0005 (11) −0.0003 (11) −0.0026 (11)
C3 0.0166 (15) 0.0142 (14) 0.0270 (15) 0.0008 (10) 0.0002 (11) −0.0016 (11)
C4 0.0154 (15) 0.0127 (14) 0.0308 (15) −0.0002 (10) −0.0009 (11) −0.0039 (11)
C5 0.0125 (14) 0.0223 (15) 0.0220 (14) 0.0018 (11) 0.0012 (11) −0.0017 (11)
C6 0.0176 (15) 0.0189 (15) 0.0268 (15) 0.0001 (11) −0.0015 (12) −0.0001 (11)
C7 0.0170 (15) 0.0281 (16) 0.0304 (16) −0.0015 (12) −0.0037 (12) 0.0031 (12)
C8 0.0133 (14) 0.0197 (15) 0.0278 (16) −0.0041 (11) −0.0025 (12) −0.0015 (12)
C9 0.0231 (16) 0.0261 (16) 0.0262 (15) −0.0016 (12) −0.0041 (12) 0.0043 (12)
C10 0.0262 (17) 0.0424 (19) 0.0276 (16) −0.0008 (14) −0.0002 (14) 0.0053 (14)
C11 0.0165 (15) 0.0236 (15) 0.0248 (15) 0.0010 (11) −0.0026 (12) 0.0007 (12)
C13 0.0131 (15) 0.0363 (18) 0.0368 (18) −0.0005 (12) 0.0015 (13) 0.0009 (14)
C12 0.0196 (16) 0.043 (2) 0.0341 (18) 0.0057 (13) −0.0040 (13) −0.0024 (15)
N1 0.0140 (13) 0.0235 (13) 0.0275 (13) 0.0013 (10) −0.0003 (10) 0.0009 (10)
N2 0.0130 (12) 0.0285 (14) 0.0240 (12) 0.0006 (10) 0.0000 (10) 0.0005 (10)
O1 0.0216 (11) 0.0385 (13) 0.0254 (11) −0.0008 (9) −0.0010 (9) 0.0059 (9)
O2 0.0307 (12) 0.0372 (13) 0.0245 (11) 0.0088 (10) −0.0012 (9) −0.0060 (9)
O3 0.0225 (11) 0.0257 (11) 0.0251 (11) 0.0029 (8) 0.0001 (8) 0.0028 (9)
S1 0.0121 (4) 0.0250 (4) 0.0237 (4) −0.0003 (3) 0.0004 (3) 0.0017 (3)

Geometric parameters (Å, º)

C1—C4 1.504 (4) C9—O3 1.458 (3)
C1—H1A 0.9800 C9—C10 1.504 (4)
C1—H1B 0.9800 C9—H9A 0.9900
C1—H1C 0.9800 C9—H9B 0.9900
C2—N1 1.372 (3) C10—H10A 0.9800
C2—C3 1.388 (4) C10—H10B 0.9800
C2—S1 1.752 (3) C10—H10C 0.9800
C3—C4 1.422 (4) C11—N1 1.310 (3)
C3—C8 1.486 (4) C11—N2 1.332 (3)
C4—C5 1.385 (4) C11—H11 0.9500
C5—C6 1.464 (4) C13—N2 1.454 (4)
C5—S1 1.752 (3) C13—H13A 0.9800
C6—O1 1.235 (3) C13—H13B 0.9800
C6—C7 1.501 (4) C13—H13C 0.9800
C7—H7A 0.9800 C12—N2 1.450 (4)
C7—H7B 0.9800 C12—H12A 0.9800
C7—H7C 0.9800 C12—H12B 0.9800
C8—O2 1.210 (3) C12—H12C 0.9800
C8—O3 1.343 (3)
C4—C1—H1A 109.5 C10—C9—H9A 109.2
C4—C1—H1B 109.5 O3—C9—H9B 109.2
H1A—C1—H1B 109.5 C10—C9—H9B 109.2
C4—C1—H1C 109.5 H9A—C9—H9B 107.9
H1A—C1—H1C 109.5 C9—C10—H10A 109.5
H1B—C1—H1C 109.5 C9—C10—H10B 109.5
N1—C2—C3 123.4 (3) H10A—C10—H10B 109.5
N1—C2—S1 126.5 (2) C9—C10—H10C 109.5
C3—C2—S1 110.1 (2) H10A—C10—H10C 109.5
C2—C3—C4 114.7 (3) H10B—C10—H10C 109.5
C2—C3—C8 122.0 (2) N1—C11—N2 121.9 (3)
C4—C3—C8 122.9 (2) N1—C11—H11 119.0
C5—C4—C3 111.5 (2) N2—C11—H11 119.0
C5—C4—C1 126.8 (2) N2—C13—H13A 109.5
C3—C4—C1 121.6 (3) N2—C13—H13B 109.5
C4—C5—C6 133.2 (3) H13A—C13—H13B 109.5
C4—C5—S1 112.1 (2) N2—C13—H13C 109.5
C6—C5—S1 114.7 (2) H13A—C13—H13C 109.5
O1—C6—C5 119.7 (3) H13B—C13—H13C 109.5
O1—C6—C7 120.2 (2) N2—C12—H12A 109.5
C5—C6—C7 120.1 (2) N2—C12—H12B 109.5
C6—C7—H7A 109.5 H12A—C12—H12B 109.5
C6—C7—H7B 109.5 N2—C12—H12C 109.5
H7A—C7—H7B 109.5 H12A—C12—H12C 109.5
C6—C7—H7C 109.5 H12B—C12—H12C 109.5
H7A—C7—H7C 109.5 C11—N1—C2 119.2 (2)
H7B—C7—H7C 109.5 C11—N2—C12 122.3 (2)
O2—C8—O3 123.7 (3) C11—N2—C13 121.1 (2)
O2—C8—C3 123.8 (3) C12—N2—C13 116.5 (2)
O3—C8—C3 112.5 (2) C8—O3—C9 116.3 (2)
O3—C9—C10 111.8 (2) C2—S1—C5 91.56 (13)
O3—C9—H9A 109.2
N1—C2—C3—C4 −178.5 (2) C2—C3—C8—O2 −117.1 (3)
S1—C2—C3—C4 −0.6 (3) C4—C3—C8—O2 55.5 (4)
N1—C2—C3—C8 −5.4 (4) C2—C3—C8—O3 63.5 (3)
S1—C2—C3—C8 172.5 (2) C4—C3—C8—O3 −124.0 (3)
C2—C3—C4—C5 0.0 (3) N2—C11—N1—C2 178.5 (2)
C8—C3—C4—C5 −173.0 (2) C3—C2—N1—C11 −176.6 (3)
C2—C3—C4—C1 −179.7 (2) S1—C2—N1—C11 5.8 (4)
C8—C3—C4—C1 7.3 (4) N1—C11—N2—C12 −1.7 (4)
C3—C4—C5—C6 177.1 (3) N1—C11—N2—C13 179.7 (3)
C1—C4—C5—C6 −3.2 (5) O2—C8—O3—C9 2.1 (4)
C3—C4—C5—S1 0.6 (3) C3—C8—O3—C9 −178.4 (2)
C1—C4—C5—S1 −179.8 (2) C10—C9—O3—C8 −83.4 (3)
C4—C5—C6—O1 −176.9 (3) N1—C2—S1—C5 178.6 (2)
S1—C5—C6—O1 −0.4 (3) C3—C2—S1—C5 0.7 (2)
C4—C5—C6—C7 1.8 (5) C4—C5—S1—C2 −0.8 (2)
S1—C5—C6—C7 178.2 (2) C6—C5—S1—C2 −178.0 (2)

Hydrogen-bond geometry (Å, º)

Cg is the centroid of the C2/C3/C4/C5/S1 ring .

D—H···A D—H H···A D···A D—H···A
C9—H9A···O2i 0.99 2.45 3.270 (3) 139
C11—H11···O1ii 0.95 2.47 3.312 (4) 147
C7—H7C···Cgiii 0.98 2.86 3.693 (2) 143

Symmetry codes: (i) −x+1, y+1/2, −z+1/2; (ii) −x+1, −y, −z+1; (iii) x+1/2, −y+3/2, −z.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: HB7483).

References

  1. Bruker. (1998). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  3. Gewald, K., Schinke, E. & Böttcher, H. (1966). Chem. Ber. 99, 94–100.
  4. Mukhtar, A., Tahir, M. N., Khan, M. A. & Khan, M. N. (2010). Acta Cryst. E66, o2652. [DOI] [PMC free article] [PubMed]
  5. Sabnis, R. W., Rangnekar, D. W. & Sonawane, N. D. (1999). J. Heterocycl. Chem. 36, 333–345.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989015016217/hb7483sup1.cif

e-71-0o762-sup1.cif (18.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015016217/hb7483Isup2.hkl

e-71-0o762-Isup2.hkl (144.9KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015016217/hb7483Isup3.cml

. DOI: 10.1107/S2056989015016217/hb7483fig1.tif

The mol­ecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.

. DOI: 10.1107/S2056989015016217/hb7483fig2.tif

Unit cell packing of the title compound showing inter­molecular C—H⋯O inter­actions with dotted lines. H-atoms not involved in hydrogen bonding have been excluded.

. DOI: 10.1107/S2056989015016217/hb7483fig3.tif

Unit cell packing depicting C—H⋯π inter­actions with dotted lines.

CCDC reference: 1421360

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES