Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Sep 26;71(Pt 10):m185–m186. doi: 10.1107/S2056989015017466

Crystal structure of [3-amino-2-(phenyl­diazenyl)­pyridine]chlorido­(η6-p-cymene)­ruthenium(II) chloride

Kanidtha Hansongnern a,*, Supojjanee Sansook a, Thassani Romin a, Arunpatcha Nimthong Roldan b, Chaveng Pakawatchai a
PMCID: PMC4647410  PMID: 26594428

Abstract

The title compound, [RuCl(C10H14)(C11H10N4)]Cl is an RuII complex in which an η6-p-cymene ligand, two N atoms of 3-amino-2-(phenyl­azo)pyridine and one Cl ion form a piano-stool coordination environment around the metal ion. In the crystal structure, N—H⋯Cl hydrogen bonds play an important role in the formation of the supramolecular zigzag chain along the a-axis direction. Disorder is observed for the isopropyl group with site-occupancy factors refined to 0.78 (5) and 0.22 (5).

Keywords: crystal structure, 3-amino-2-(phenyl­azo)pyridine, ruthenium complex, N—H⋯Cl hydrogen bonds

Related literature  

For anti­cancer activity of organometallic ruthenium complexes, see: Almodares et al. (2014); Stepanenko et al. (2011). For the use of a similar azo­pyridine ligand to stabilize ruthenium complexes, see: Velders et al. (2000). For related η6-p-cymene ruthenium complexes, see: Singh et al. (2002), Kumar et al. (2008). For the crystal structure of an η6-p-cymene ruthenium complex with an azo­pyridine ligand, see: Dougan et al. (2006).graphic file with name e-71-0m185-scheme1.jpg

Experimental  

Crystal data  

  • [RuCl(C10H14)(C11H10N4)]Cl

  • M r = 504.41

  • Orthorhombic, Inline graphic

  • a = 8.9642 (8) Å

  • b = 17.6283 (16) Å

  • c = 26.976 (3) Å

  • V = 4262.8 (7) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.00 mm−1

  • T = 293 K

  • 0.44 × 0.10 × 0.07 mm

Data collection  

  • Bruker SMART APEX CCD Diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2003) T min = 0.693, T max = 1.000

  • 40186 measured reflections

  • 5127 independent reflections

  • 4242 reflections with I > 2σ(I)

  • R int = 0.069

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.074

  • wR(F 2) = 0.136

  • S = 1.12

  • 5127 reflections

  • 265 parameters

  • 15 restraints

  • H-atom parameters constrained

  • Δρmax = 0.71 e Å−3

  • Δρmin = −1.61 e Å−3

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2015) and SHELXLE (Hübschle et al., 2011); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015017466/zq2235sup1.cif

e-71-0m185-sup1.cif (1.2MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015017466/zq2235Isup2.hkl

e-71-0m185-Isup2.hkl (408.4KB, hkl)

. DOI: 10.1107/S2056989015017466/zq2235fig1.tif

The mol­ecular structure of the title compound showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

a . DOI: 10.1107/S2056989015017466/zq2235fig2.tif

Crystal packing of the title compound showing the N—H⋯Cl hydrogen bonds along the a axis.

CCDC reference: 1425731

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
N4H4ACl2 0.86 2.34 3.200(5) 176
N4H4BCl2i 0.86 2.37 3.152(5) 151

Symmetry code: (i) Inline graphic.

Acknowledgments

Financial support from the Center of Excellence for Innovation of Chemistry (PERCH–CIC), Office of the Higher Education Commission, Ministry of Education, Department of Chemistry, and Graduate School, Prince of Songkla University are gratefully acknowledged.

supplementary crystallographic information

S0.1. Synthesis and crystallization

3-amino-2-(phenyl­azo)pyridine (3aazpy) was prepared by condensation of 2,3-di­amino-pyridine (14 mg, 2 mmol) with nitroso­benzene (217 mg, 2.1 mmol) in a mixture of 30 M NaOH (3 mL) and 35 mL of benzene solution. The reaction mixture was stirred and heated under reflux for 14 h. The product was extracted many times with benzene to obtain the brown solution. Then the volume was reduced to 3 mL. The residue was purified by column chromatography. The red-orange band was collected and evaporated to dryness (yield : 37%).

The title compound was obtained by the following procedure: [(η6-p-cym)RuCl2]2 (0.05 mmol) was added to a THF solution of 3aazpy (0.1 mmol); the solution color change from red to purple. The solution was stirred at ambient temperature for 2 h. The precipitate was collected by filtration, washed with a small amount of THF. Monocrystals were obtained by diffusion of ether into a di­chloro­methane solution of the complex (yield: 82%).

S0.2. Refinement

H atoms bonded to C and N atoms were included in calculated positions and were refined with a riding model using distances of 0.93 Å (aryl H), and Uiso(H) = 1.2Ueq(C); 0.98 Å (CH) and Uiso(H) = 1.5Ueq(C); 0.96 Å (CH3) and Uiso(H) = 1.5Ueq(C); 0.86 Å (NH2), and Uiso(H) = 1.2Ueq(N). A disorder is observed for the iso­propyl group with site-occupancy factors refined to 0.78 (5) and 0.22 (5).

S1. Results and discussion

Organometallic ruthenium complexes have gained much inter­est due to promising anti­cancer activity (Almodares et al., 2014; Stepanenko et al., 2011). These arene complexes consist of a chelating ligand and one chloride ion. In this work, a new ruthenium(II) complex of this type is reported.

The title complex exists as a half sandwich complex with the neutral arene ring bonded to the ruthenium center along with two N atoms from 3-amino-2-(phenyl­azo)pyridine (3aazpy) and one chloride ion (Fig. 1). The 3aazpy ligand contains the –N=N—C=N linkage which is similar to 2-(phenyl­azo)pyridine (azpy). Azo ligands of this type can stabilize metals in their lower oxidation states (Velders et al., 2000). The ruthenium atom is π-bonded to the p-cymene ligand with an average Ru—C bond length of 2.215 (6) Å (range 2.185 (6) - 2.243 (5) Å) similar to those observed in related η6-p-cymene ruthenium complexes (Singh et al., 2002, Kumar et al., 2008). The p-cymene ring is almost planar and the C—C bond lengths within the ring are in the range 1.376 – 1.435 Å. The ruthenium center is also coordinated to N1 (azo moiety, 2.078 (4) Å) and to N3 (pyridine, 2.077 (4) Å) of 3aazpy. These Ru—N bond lengths are longer than those in [(η6-p-cymene)Ru(azpy)Cl](PF6) (Dougan et al., 2006). It indicates that azpy is a better ligand to stabilize the ruthenium(II) center than 3aazpy. Meanwhile, the bite angle of 75.6 (2)° of the chelate ligand and the Ru—Cl bond distance of 2.3938 (15) Å are comparable to those in [(η6-p-cym)Ru(azpy)Cl](PF6). In the crystal structure, chloride ions are linked with the complex molecule through N4—H4A···Cl2i and N4—H4B···Cl2 hydrogen bonds leading to the formation of a 1-D zigzag chain along the a-axis (see Table 1 and Fig. 2). A disorder is observed for the iso­propyl group with site-occupancy factors refined to 0.78 (5) and 0.22 (5).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2.

Fig. 2.

Crystal packing of the title compound showing the N—H···Cl hydrogen bonds along the a axis.

Crystal data

[RuCl(C10H14)(C11H10N4)]Cl Dx = 1.572 Mg m3
Mr = 504.41 Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pbca Cell parameters from 7302 reflections
a = 8.9642 (8) Å θ = 2.3–27.9°
b = 17.6283 (16) Å µ = 1.00 mm1
c = 26.976 (3) Å T = 293 K
V = 4262.8 (7) Å3 Block, colorless
Z = 8 0.44 × 0.10 × 0.07 mm
F(000) = 2048

Data collection

Bruker SMART APEX CCD Diffractometer 4242 reflections with I > 2σ(I)
Radiation source: sealed tube Rint = 0.069
φ and ω scans θmax = 28.0°, θmin = 1.5°
Absorption correction: multi-scan (SADABS; Bruker, 2003) h = −11→11
Tmin = 0.693, Tmax = 1.000 k = −23→23
40186 measured reflections l = −35→35
5127 independent reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.074 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.136 H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.0276P)2 + 25.095P] where P = (Fo2 + 2Fc2)/3
5127 reflections (Δ/σ)max = 0.002
265 parameters Δρmax = 0.71 e Å3
15 restraints Δρmin = −1.61 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Ru1 0.62601 (5) 0.03668 (2) 0.38760 (2) 0.03006 (13)
Cl1 0.73313 (19) −0.03312 (8) 0.45488 (5) 0.0473 (4)
Cl2 0.98928 (17) −0.30554 (8) 0.21404 (6) 0.0434 (4)
N1 0.5259 (5) −0.0663 (2) 0.37034 (16) 0.0298 (9)
N2 0.5993 (5) −0.1133 (2) 0.34347 (16) 0.0310 (10)
N3 0.7791 (5) −0.0169 (2) 0.34159 (16) 0.0283 (9)
N4 0.7774 (5) −0.2032 (3) 0.28221 (19) 0.0450 (13)
H4A 0.8322 −0.2296 0.2625 0.054*
H4B 0.6955 −0.2218 0.2935 0.054*
C1 0.3803 (6) −0.0944 (3) 0.3838 (2) 0.0352 (12)
C2 0.3052 (7) −0.0609 (3) 0.4228 (2) 0.0410 (14)
H2 0.3527 −0.0249 0.4423 0.049*
C3 0.1594 (7) −0.0812 (4) 0.4325 (3) 0.0511 (17)
H3 0.1065 −0.0564 0.4574 0.061*
C4 0.0923 (8) −0.1376 (4) 0.4057 (3) 0.0571 (19)
H4 −0.0057 −0.1514 0.4125 0.069*
C5 0.1712 (8) −0.1743 (4) 0.3684 (3) 0.0542 (18)
H5 0.1273 −0.2140 0.3510 0.065*
C6 0.3139 (7) −0.1520 (3) 0.3573 (2) 0.0413 (14)
H6 0.3658 −0.1757 0.3318 0.050*
C7 0.7341 (6) −0.0871 (3) 0.32750 (18) 0.0270 (10)
C8 0.8194 (6) −0.1338 (3) 0.2952 (2) 0.0311 (11)
C9 0.9527 (6) −0.1018 (3) 0.2774 (2) 0.0389 (13)
H9 1.0131 −0.1291 0.2558 0.047*
C10 0.9932 (7) −0.0306 (3) 0.2921 (2) 0.0477 (15)
H10 1.0801 −0.0090 0.2796 0.057*
C11 0.9061 (6) 0.0096 (3) 0.3252 (2) 0.0396 (14)
H11 0.9388 0.0568 0.3361 0.048*
C12 0.6938 (7) 0.1496 (3) 0.4186 (2) 0.0374 (13)
C13 0.5524 (8) 0.1272 (3) 0.4388 (3) 0.0495 (17)
H13 0.5459 0.1158 0.4743 0.059*
C14 0.4329 (8) 0.1095 (3) 0.4089 (3) 0.0565 (19)
H14 0.3456 0.0853 0.4240 0.068*
C15 0.4465 (8) 0.1082 (3) 0.3565 (3) 0.0549 (18)
C16 0.5835 (7) 0.1301 (3) 0.3363 (2) 0.0447 (15)
H16 0.6012 0.1223 0.3008 0.054*
C17 0.7038 (7) 0.1516 (3) 0.3669 (2) 0.0382 (13)
H17 0.8028 0.1568 0.3518 0.046*
C18 0.3198 (8) 0.0843 (5) 0.3244 (3) 0.081 (3)
H18A 0.3575 0.0676 0.2929 0.121*
H18B 0.2536 0.1264 0.3195 0.121*
H18C 0.2667 0.0436 0.3401 0.121*
C19 0.8212 (9) 0.1721 (4) 0.4513 (3) 0.0580 (19) 0.78 (5)
H19 0.7999 0.1522 0.4845 0.070* 0.78 (5)
C20 0.9735 (12) 0.1408 (13) 0.4358 (7) 0.066 (4) 0.78 (5)
H20A 0.9682 0.0865 0.4335 0.099* 0.78 (5)
H20B 1.0471 0.1547 0.4600 0.099* 0.78 (5)
H20C 1.0006 0.1614 0.4041 0.099* 0.78 (5)
C21 0.824 (3) 0.2586 (7) 0.4555 (12) 0.111 (8) 0.78 (5)
H21A 0.9016 0.2735 0.4781 0.167* 0.78 (5)
H21B 0.7298 0.2763 0.4675 0.167* 0.78 (5)
H21C 0.8437 0.2802 0.4234 0.167* 0.78 (5)
C19B 0.8212 (9) 0.1721 (4) 0.4513 (3) 0.0580 (19) 0.22 (5)
H19B 0.8245 0.1339 0.4777 0.070* 0.22 (5)
C20B 0.974 (4) 0.169 (4) 0.426 (2) 0.066 (4) 0.22 (5)
H20D 0.9845 0.1215 0.4094 0.099* 0.22 (5)
H20E 1.0504 0.1738 0.4510 0.099* 0.22 (5)
H20F 0.9819 0.2098 0.4030 0.099* 0.22 (5)
C21B 0.791 (9) 0.247 (3) 0.477 (3) 0.111 (8) 0.22 (5)
H21D 0.8799 0.2637 0.4939 0.167* 0.22 (5)
H21E 0.7125 0.2405 0.5011 0.167* 0.22 (5)
H21F 0.7618 0.2844 0.4533 0.167* 0.22 (5)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ru1 0.0334 (2) 0.02129 (19) 0.0355 (2) 0.00223 (18) 0.00250 (19) −0.00160 (17)
Cl1 0.0641 (10) 0.0363 (7) 0.0414 (8) 0.0089 (7) −0.0093 (7) 0.0017 (6)
Cl2 0.0424 (8) 0.0322 (7) 0.0558 (9) −0.0014 (6) 0.0150 (7) −0.0051 (6)
N1 0.033 (2) 0.024 (2) 0.032 (2) −0.0030 (19) 0.0057 (19) −0.0007 (17)
N2 0.030 (2) 0.023 (2) 0.040 (2) 0.0006 (18) 0.0072 (19) −0.0019 (18)
N3 0.028 (2) 0.021 (2) 0.036 (2) −0.0013 (17) −0.0003 (19) −0.0040 (17)
N4 0.039 (3) 0.031 (3) 0.065 (3) −0.004 (2) 0.019 (3) −0.011 (2)
C1 0.032 (3) 0.032 (3) 0.041 (3) −0.002 (2) 0.009 (3) 0.006 (2)
C2 0.043 (3) 0.036 (3) 0.044 (3) 0.002 (3) 0.011 (3) 0.001 (3)
C3 0.049 (4) 0.050 (4) 0.054 (4) 0.006 (3) 0.023 (3) 0.009 (3)
C4 0.036 (4) 0.069 (5) 0.066 (5) −0.005 (3) 0.006 (3) 0.020 (4)
C5 0.047 (4) 0.047 (4) 0.069 (5) −0.016 (3) 0.002 (3) 0.001 (3)
C6 0.038 (3) 0.037 (3) 0.049 (4) −0.008 (3) 0.009 (3) −0.004 (3)
C7 0.025 (2) 0.024 (2) 0.032 (3) −0.001 (2) 0.000 (2) 0.000 (2)
C8 0.034 (3) 0.025 (3) 0.035 (3) 0.004 (2) 0.004 (2) 0.002 (2)
C9 0.031 (3) 0.040 (3) 0.046 (3) 0.008 (2) 0.010 (3) −0.004 (3)
C10 0.036 (3) 0.045 (3) 0.062 (4) −0.011 (3) 0.014 (3) −0.006 (3)
C11 0.032 (3) 0.034 (3) 0.053 (4) −0.004 (2) 0.010 (3) −0.011 (3)
C12 0.060 (4) 0.015 (2) 0.037 (3) 0.001 (2) 0.004 (3) 0.002 (2)
C13 0.076 (5) 0.021 (3) 0.052 (4) 0.006 (3) 0.020 (4) −0.004 (3)
C14 0.050 (4) 0.026 (3) 0.093 (6) 0.011 (3) 0.019 (4) −0.005 (3)
C15 0.048 (4) 0.030 (3) 0.087 (5) 0.011 (3) −0.014 (4) 0.002 (3)
C16 0.055 (4) 0.031 (3) 0.049 (4) 0.010 (3) −0.007 (3) 0.008 (3)
C17 0.045 (3) 0.024 (3) 0.045 (3) 0.003 (3) 0.002 (3) 0.006 (2)
C18 0.053 (5) 0.064 (5) 0.126 (8) 0.007 (4) −0.038 (5) 0.020 (5)
C19 0.089 (6) 0.036 (3) 0.049 (4) −0.013 (4) −0.013 (4) −0.012 (3)
C20 0.066 (6) 0.064 (10) 0.068 (8) −0.018 (6) −0.016 (5) −0.002 (7)
C21 0.147 (15) 0.048 (6) 0.14 (2) −0.010 (8) −0.054 (14) −0.032 (9)
C19B 0.089 (6) 0.036 (3) 0.049 (4) −0.013 (4) −0.013 (4) −0.012 (3)
C20B 0.066 (6) 0.064 (10) 0.068 (8) −0.018 (6) −0.016 (5) −0.002 (7)
C21B 0.147 (15) 0.048 (6) 0.14 (2) −0.010 (8) −0.054 (14) −0.032 (9)

Geometric parameters (Å, º)

Ru1—N3 2.077 (4) C10—H10 0.9300
Ru1—N1 2.078 (4) C11—H11 0.9300
Ru1—C16 2.185 (6) C12—C17 1.398 (8)
Ru1—C15 2.210 (6) C12—C13 1.435 (9)
Ru1—C13 2.211 (6) C12—C19 1.498 (9)
Ru1—C17 2.215 (5) C13—C14 1.376 (10)
Ru1—C14 2.231 (6) C13—H13 0.9800
Ru1—C12 2.243 (5) C14—C15 1.419 (10)
Ru1—Cl1 2.3938 (15) C14—H14 0.9800
N1—N2 1.283 (6) C15—C16 1.398 (9)
N1—C1 1.442 (7) C15—C18 1.489 (10)
N2—C7 1.363 (6) C16—C17 1.411 (8)
N3—C11 1.307 (7) C16—H16 0.9800
N3—C7 1.356 (6) C17—H17 0.9800
N4—C8 1.327 (7) C18—H18A 0.9600
N4—H4A 0.8600 C18—H18B 0.9600
N4—H4B 0.8600 C18—H18C 0.9600
C1—C6 1.376 (8) C19—C21 1.529 (12)
C1—C2 1.381 (8) C19—C20 1.531 (12)
C2—C3 1.381 (8) C19—H19 0.9800
C2—H2 0.9300 C20—H20A 0.9600
C3—C4 1.368 (10) C20—H20B 0.9600
C3—H3 0.9300 C20—H20C 0.9600
C4—C5 1.389 (10) C21—H21A 0.9600
C4—H4 0.9300 C21—H21B 0.9600
C5—C6 1.371 (8) C21—H21C 0.9600
C5—H5 0.9300 C20B—H20D 0.9600
C6—H6 0.9300 C20B—H20E 0.9600
C7—C8 1.422 (7) C20B—H20F 0.9600
C8—C9 1.406 (8) C21B—H21D 0.9600
C9—C10 1.365 (8) C21B—H21E 0.9600
C9—H9 0.9300 C21B—H21F 0.9600
C10—C11 1.382 (8)
N3—Ru1—N1 75.80 (16) C9—C10—C11 120.6 (5)
N3—Ru1—C16 94.5 (2) C9—C10—H10 119.7
N1—Ru1—C16 116.2 (2) C11—C10—H10 119.7
N3—Ru1—C15 120.9 (2) N3—C11—C10 121.8 (5)
N1—Ru1—C15 95.7 (2) N3—C11—H11 119.1
C16—Ru1—C15 37.1 (2) C10—C11—H11 119.1
N3—Ru1—C13 153.9 (2) C17—C12—C13 116.3 (6)
N1—Ru1—C13 129.9 (2) C17—C12—C19 122.2 (6)
C16—Ru1—C13 78.4 (2) C13—C12—C19 121.5 (6)
C15—Ru1—C13 66.9 (3) C17—C12—Ru1 70.6 (3)
N3—Ru1—C17 93.25 (19) C13—C12—Ru1 70.0 (3)
N1—Ru1—C17 151.50 (19) C19—C12—Ru1 131.4 (4)
C16—Ru1—C17 37.4 (2) C14—C13—C12 121.9 (6)
C15—Ru1—C17 67.1 (2) C14—C13—Ru1 72.7 (4)
C13—Ru1—C17 65.9 (2) C12—C13—Ru1 72.4 (3)
N3—Ru1—C14 158.2 (2) C14—C13—H13 118.6
N1—Ru1—C14 103.0 (2) C12—C13—H13 118.6
C16—Ru1—C14 66.1 (3) Ru1—C13—H13 118.6
C15—Ru1—C14 37.3 (3) C13—C14—C15 121.3 (7)
C13—Ru1—C14 36.1 (3) C13—C14—Ru1 71.2 (4)
C17—Ru1—C14 77.5 (2) C15—C14—Ru1 70.6 (4)
N3—Ru1—C12 116.54 (19) C13—C14—H14 118.5
N1—Ru1—C12 167.39 (19) C15—C14—H14 118.5
C16—Ru1—C12 67.3 (2) Ru1—C14—H14 118.5
C15—Ru1—C12 80.3 (2) C16—C15—C14 117.4 (7)
C13—Ru1—C12 37.6 (2) C16—C15—C18 121.3 (7)
C17—Ru1—C12 36.5 (2) C14—C15—C18 121.2 (7)
C14—Ru1—C12 66.6 (2) C16—C15—Ru1 70.5 (3)
N3—Ru1—Cl1 87.39 (12) C14—C15—Ru1 72.2 (4)
N1—Ru1—Cl1 83.92 (13) C18—C15—Ru1 127.9 (5)
C16—Ru1—Cl1 159.70 (18) C15—C16—C17 121.1 (6)
C15—Ru1—Cl1 150.8 (2) C15—C16—Ru1 72.4 (4)
C13—Ru1—Cl1 91.00 (19) C17—C16—Ru1 72.5 (3)
C17—Ru1—Cl1 122.36 (16) C15—C16—H16 119.1
C14—Ru1—Cl1 114.3 (2) C17—C16—H16 119.1
C12—Ru1—Cl1 93.73 (15) Ru1—C16—H16 119.1
N2—N1—C1 112.6 (4) C12—C17—C16 121.9 (6)
N2—N1—Ru1 118.0 (3) C12—C17—Ru1 72.8 (3)
C1—N1—Ru1 129.4 (3) C16—C17—Ru1 70.1 (3)
N1—N2—C7 114.5 (4) C12—C17—H17 118.3
C11—N3—C7 119.4 (4) C16—C17—H17 118.3
C11—N3—Ru1 128.0 (4) Ru1—C17—H17 118.3
C7—N3—Ru1 112.7 (3) C15—C18—H18A 109.5
C8—N4—H4A 120.0 C15—C18—H18B 109.5
C8—N4—H4B 120.0 H18A—C18—H18B 109.5
H4A—N4—H4B 120.0 C15—C18—H18C 109.5
C6—C1—C2 120.0 (5) H18A—C18—H18C 109.5
C6—C1—N1 120.9 (5) H18B—C18—H18C 109.5
C2—C1—N1 119.0 (5) C12—C19—C21 108.7 (9)
C3—C2—C1 119.8 (6) C12—C19—C20 115.0 (7)
C3—C2—H2 120.1 C21—C19—C20 111.3 (10)
C1—C2—H2 120.1 C12—C19—H19 107.2
C4—C3—C2 120.2 (6) C21—C19—H19 107.2
C4—C3—H3 119.9 C20—C19—H19 107.2
C2—C3—H3 119.9 C19—C20—H20A 109.5
C3—C4—C5 119.8 (6) C19—C20—H20B 109.5
C3—C4—H4 120.1 H20A—C20—H20B 109.5
C5—C4—H4 120.1 C19—C20—H20C 109.5
C6—C5—C4 120.0 (7) H20A—C20—H20C 109.5
C6—C5—H5 120.0 H20B—C20—H20C 109.5
C4—C5—H5 120.0 C19—C21—H21A 109.5
C5—C6—C1 120.0 (6) C19—C21—H21B 109.5
C5—C6—H6 120.0 H21A—C21—H21B 109.5
C1—C6—H6 120.0 C19—C21—H21C 109.5
N3—C7—N2 119.0 (4) H21A—C21—H21C 109.5
N3—C7—C8 122.7 (5) H21B—C21—H21C 109.5
N2—C7—C8 118.2 (4) H20D—C20B—H20E 109.5
N4—C8—C9 121.4 (5) H20D—C20B—H20F 109.5
N4—C8—C7 123.0 (5) H20E—C20B—H20F 109.5
C9—C8—C7 115.7 (5) H21D—C21B—H21E 109.5
C10—C9—C8 119.8 (5) H21D—C21B—H21F 109.5
C10—C9—H9 120.1 H21E—C21B—H21F 109.5
C8—C9—H9 120.1
C1—N1—N2—C7 176.3 (4) C19—C12—C13—C14 177.3 (6)
Ru1—N1—N2—C7 −3.0 (6) Ru1—C12—C13—C14 −55.7 (5)
N2—N1—C1—C6 −19.8 (7) C17—C12—C13—Ru1 55.0 (4)
Ru1—N1—C1—C6 159.5 (4) C19—C12—C13—Ru1 −127.0 (5)
N2—N1—C1—C2 162.6 (5) C12—C13—C14—C15 3.7 (9)
Ru1—N1—C1—C2 −18.2 (7) Ru1—C13—C14—C15 −51.8 (5)
C6—C1—C2—C3 −5.1 (9) C12—C13—C14—Ru1 55.5 (5)
N1—C1—C2—C3 172.7 (5) C13—C14—C15—C16 −3.7 (9)
C1—C2—C3—C4 4.1 (10) Ru1—C14—C15—C16 −55.8 (5)
C2—C3—C4—C5 −0.3 (10) C13—C14—C15—C18 176.1 (6)
C3—C4—C5—C6 −2.5 (11) Ru1—C14—C15—C18 124.0 (6)
C4—C5—C6—C1 1.5 (10) C13—C14—C15—Ru1 52.1 (5)
C2—C1—C6—C5 2.3 (9) C14—C15—C16—C17 0.7 (9)
N1—C1—C6—C5 −175.4 (6) C18—C15—C16—C17 −179.1 (6)
C11—N3—C7—N2 −177.9 (5) Ru1—C15—C16—C17 −55.9 (5)
Ru1—N3—C7—N2 1.0 (6) C14—C15—C16—Ru1 56.6 (5)
C11—N3—C7—C8 −0.1 (8) C18—C15—C16—Ru1 −123.2 (6)
Ru1—N3—C7—C8 178.8 (4) C13—C12—C17—C16 −2.3 (8)
N1—N2—C7—N3 1.3 (7) C19—C12—C17—C16 179.7 (5)
N1—N2—C7—C8 −176.6 (4) Ru1—C12—C17—C16 52.4 (5)
N3—C7—C8—N4 178.4 (5) C13—C12—C17—Ru1 −54.7 (4)
N2—C7—C8—N4 −3.8 (8) C19—C12—C17—Ru1 127.4 (5)
N3—C7—C8—C9 −1.8 (7) C15—C16—C17—C12 2.3 (9)
N2—C7—C8—C9 176.0 (5) Ru1—C16—C17—C12 −53.6 (5)
N4—C8—C9—C10 −179.2 (6) C15—C16—C17—Ru1 55.9 (5)
C7—C8—C9—C10 0.9 (8) C17—C12—C19—C21 81.0 (17)
C8—C9—C10—C11 1.6 (10) C13—C12—C19—C21 −96.8 (16)
C7—N3—C11—C10 2.9 (9) Ru1—C12—C19—C21 172.9 (15)
Ru1—N3—C11—C10 −175.8 (5) C17—C12—C19—C20 −44.5 (14)
C9—C10—C11—N3 −3.7 (10) C13—C12—C19—C20 137.7 (12)
C17—C12—C13—C14 −0.7 (8) Ru1—C12—C19—C20 47.4 (13)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N4—H4A···Cl2 0.86 2.34 3.200 (5) 176
N4—H4B···Cl2i 0.86 2.37 3.152 (5) 151

Symmetry code: (i) x−1/2, y, −z+1/2.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: ZQ2235).

References

  1. Almodares, Z., Lucas, S. J., Crossley, B. D., Basri, A. M., Pask, C. M., Hebden, A. J., Phillips, R. M. & McGowan, P. C. (2014). Inorg. Chem. 53, 727–736. [DOI] [PubMed]
  2. Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Bruker (2003). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Dougan, S. J., Melchart, M., Habtemariam, A., Parsons, S. & Sadler, P. J. (2006). Inorg. Chem. 45, 10882–10894. [DOI] [PubMed]
  5. Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284. [DOI] [PMC free article] [PubMed]
  6. Kumar, K. N., Venkatachalam, G., Ramesh, R. & Liu, Y. (2008). Polyhedron, 27, 157–166.
  7. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  10. Singh, A., Singh, N. & Pandey, D. S. (2002). J. Organomet. Chem. 642, 48–57.
  11. Stepanenko, I. N., Novak, M. S., Mühlgassner, M., Roller, A., Hejl, M., Arion, V. B., Jakupec, M. A. & Keppler, B. K. (2011). Inorg. Chem. 50, 11715–11728. [DOI] [PMC free article] [PubMed]
  12. Velders, A. H., Kooijman, H., Spek, A. L., Haasnoot, J. G., de Vos, D. & Reedijk, J. (2000). Inorg. Chem. 39, 2966–2967. [DOI] [PubMed]
  13. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015017466/zq2235sup1.cif

e-71-0m185-sup1.cif (1.2MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015017466/zq2235Isup2.hkl

e-71-0m185-Isup2.hkl (408.4KB, hkl)

. DOI: 10.1107/S2056989015017466/zq2235fig1.tif

The mol­ecular structure of the title compound showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

a . DOI: 10.1107/S2056989015017466/zq2235fig2.tif

Crystal packing of the title compound showing the N—H⋯Cl hydrogen bonds along the a axis.

CCDC reference: 1425731

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES