Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Sep 12;71(Pt 10):o729–o730. doi: 10.1107/S2056989015016679

Crystal structure of methyl (3RS,4SR,4aRS,11aRS,11bSR)-5-oxo-3,4,4a,5,7,8,9,10,11,11a-deca­hydro-3,11b-ep­oxy­azepino[2,1-a]iso­indole-4-carboxyl­ate

Flavien A A Toze a,*, Dmitry S Poplevin b, Fedor I Zubkov b, Eugeniya V Nikitina b, Ciara Porras c, Victor N Khrustalev c,d,*
PMCID: PMC4647423  PMID: 26594446

Abstract

The title compound, C15H19NO4, is the a product of the esterification of the corresponding carbonic acid with methanol. The mol­ecule comprises a fused tetra­cyclic system containing three five-membered rings (2-pyrrolidinone, tetra­hydro­furan and di­hydro­furan) and one seven-membered ring (azepane). The five-membered rings have the usual envelope conformations, with the quaternary C atom being the flap atom for the 2-pyrrolidinone ring, and the ether O atom being the common flap atom for the remaining rings. The seven-membered azepane ring adopts a chair conformation with the methine and middle methyl­ene C atoms lying above and below the mean plane defined by the remaining five atoms. The carboxyl­ate substituent is rotated by 77.56 (5)° with respect to the base plane of the tetra­hydro­furan ring. In the crystal, the mol­ecules are bound by weak C—H⋯O hydrogen-bonding inter­actions into puckered layers parallel to (001).

Keywords: crystal structure; 3,6a-ep­oxy­iso­indoles; azepane; intra­molecular cyclo­addition; C—H⋯O hydrogen bonds

Related literature  

For the synthesis of 2-(furan-2-yl)azepane, see: Asher et al. (1981); Shono et al. (1981); Nikolic & Beak (1997). For intra­molecular cyclo­addition reactions of α,β-unsaturated acid anhydrides to α-furyl­amines (IMDAF reactions), see: Vogel et al. (1999); Zubkov et al. (2005). For related compounds, see: Zylber et al. (1995); Evans et al. (1999); Kachkovskyi & Kolodiazhnyi (2007); Kharitonov et al. (2009); Aabid et al. (2010); Zubkov et al. (2010, 2011, 2014); Toze et al. (2011); Wang & Li (2012); Zaytsev, Mikhailova et al. (2012); Zaytsev, Zubkov et al. 2012); Zaytsev et al. (2013); Chen et al. (2013); Hizartzidis et al. (2014).graphic file with name e-71-0o729-scheme1.jpg

Experimental  

Crystal data  

  • C15H19NO4

  • M r = 277.31

  • Triclinic, Inline graphic

  • a = 7.5460 (8) Å

  • b = 9.6984 (10) Å

  • c = 10.2894 (10) Å

  • α = 103.857 (2)°

  • β = 94.745 (2)°

  • γ = 106.620 (2)°

  • V = 691.24 (12) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 290 K

  • 0.30 × 0.25 × 0.25 mm

Data collection  

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2003) T min = 0.959, T max = 0.969

  • 9699 measured reflections

  • 3268 independent reflections

  • 2613 reflections with I > 2σ(I)

  • R int = 0.018

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.048

  • wR(F 2) = 0.141

  • S = 1.03

  • 3268 reflections

  • 182 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.24 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989015016679/tk5384sup1.cif

e-71-0o729-sup1.cif (368.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015016679/tk5384Isup2.hkl

e-71-0o729-Isup2.hkl (179.4KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015016679/tk5384Isup3.cml

a b a . DOI: 10.1107/S2056989015016679/tk5384fig1.tif

Esterification of 5-oxo-3,4,4a,5,7,8,9,10,11,11a-deca­hydro-3,11b-ep­oxy­azepino[2,1-a]iso­indole-4-carb­oxy­lic acid with methanol.

. DOI: 10.1107/S2056989015016679/tk5384fig2.tif

Mol­ecular structure of (I). Displacement ellipsoids are shown at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.

a . DOI: 10.1107/S2056989015016679/tk5384fig3.tif

Crystal packing of (I) along the a axis demonstrating the H-bonded puckered layers parallel to (001). Dashed lines indicate the weak inter­molecular C—H⋯O hydrogen-bonding inter­actions.

CCDC reference: 1422681

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
C1H1O5i 0.93 2.59 3.4576(19) 156
C3H3O13ii 0.98 2.55 3.5259(19) 174
C4AH4AO14iii 0.98 2.51 3.4190(17) 154
C14H14AO5iv 0.96 2.56 3.279(2) 132

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

Funding from the US National Science Foundation (PREM DMR-0934212 and EPSCoR IIA-1301346) is gratefully acknowledged.

supplementary crystallographic information

S1. Structural commentary

In the last decade our synthetic group has published some effective strategies for the synthesis of 3,6a-ep­oxy­iso­indoles annulated with various heterocycles (Zubkov et al. 2010, 2011, 2014; Zaytsev, Mikhailova et al. 2012; Zaytsev, Zubkov et al. 2012; Zaytsev et al. 2013). These strategies were based on the intra­molecular cyclo­addition reaction of α,β-unsaturated acid anhydrides to the heterocycles containing an α-furfuryl­amine fragment (IMDAF reaction) (Vogel et al., 1999; Zubkov et al., 2005). Therefore, within the scope of this investigation, the initial carb­oxy­lic acid was easily synthesized by the treatment of 2-(2-furyl)perhydro­azepine (Asher et al., 1981; Shono et al., 1981; Nikolic et al., 1997) with maleic anhydride.

This work reports the structural characterization of 3,6a-ep­oxy­iso­indole annulated with perhydro­azepine ring. The esterification of the initial carb­oxy­lic acid obtained as fine-crystalline powder is due to its poor solubility in most common organic solvents (Fig. 1).

The molecule of the title compound, C15H19NO4, (I) comprises a fused tetra­cyclic system containing three five-membered rings (2-pyrrolidinone, tetra­hydro­furan and di­hydro­furan) and one seven-membered ring (1,4-diazepine) (Fig. 2). The 2-pyrrolidinone, tetra­hydro­furan and di­hydro­furan five-membered rings have the usual envelope conformations (Zylber et al., 1995; Evans et al., 1999; Kachkovskyi et al., 2007; Kharitonov et al., 2009; Aabid et al., 2010; Toze et al., 2011; Wang et al., 2012; Chen et al., 2013; Hizartzidis et al., 2014). The seven-membered diazepine ring adopts a chair conformation. The nitro­gen N6 atom has the slightly pyramidalized geometry (sum of the bond angles is 359.7 (4)°). The dihedral angle between the basal plane of the diazepine ring (C8—C9/C11—C11A) and the base plane of the pyrrolidinone ring (C4—C5—N6—C11A) is 66.55 (9)°). The carboxyl­ate substituent is rotated by 77.56 (5)° to the base plane of the tetra­hydro­furan ring.

The molecule of (I) possesses five asymmetric centers at the C3, C4, C4A, C11A and C11B carbon atoms and can have potentially numerous diastereomers. The crystal of (I) is racemic and consists of enanti­omeric pairs with the following relative configuration of the centers: rac-3R*,4S*,4AR*,11AR*,11BS*.

In the crystal, the molecules of (I) are bound by the weak inter­molecular C—H···O hydrogen bonding inter­actions into puckered layers parallel to (001) (Fig. 3, Table 1).

S2. Synthesis and crystallization

A solution of the initial acid – (3R*,4S*,4aR*,11aR*,11bS*)-5-oxo-3,4,4a,5,7,8,9,10,11,11a-deca­hydro-3,11b-ep­oxy­azepino[2,1-a]iso­indole-4-carb­oxy­lic acid (0.5 g, 1.8 mmol) in methanol (30 mL) was refluxed for 3 h in the presence of catalytic amount of concentrated H2SO4 (monitoring by TLC until disappearance of the starting compound (eluent – EtOAc:hexane (1:3), Sorbfil). Then the solvent was evaporated. The residual oil was passed through a thin layer of aluminum oxide (eluent – chloro­form). Chloro­form was removed under reduced pressure. The crude ester was recrystallized from a mixture of EtOAc-EtOH to give the target compound I as white crystals. Yield is 0.31 g (58%). Single-crystals were isolated as fine needles by slow re-crystallization from EtOAc-EtOH. M.pt = 388–389 K. IR (KBr), ν/cm-1: 1741 (C=O), 1693 (C=O). Mass spectrum, EI–MS (70 eV), m/z (Ir(%)): 230 (5), 189 (52), 146 (96), 118 (19), 96 (100), 91 (17), 77 (18), 70 (17), 44 (33), 42 (25), 41 (18). 1H NMR (CDCl3, 400 MHz, 300 K): δ = 1.64–1.25 (m, 3H, H9B, H10A, H10B), 2.00–1.92 (m, 4H, H11B, H8A, H8B, H9A), 2.25–2.22 (m, 1H, H11A), 2.71 (d, 1H, H4, J4,4a = 9.0), 2.86 (d, 1H, H4a, J4a,4 = 9.0), 3.18–3.14 (m, 1H, H7B), 3.78–3.73 (m, 1H, H11A), 3.79 (s, 3H, CO2Me), 3.96 (m, 1H, H7A), 5.15 (d, 1H, H3, J3,2 = 1.7), 6.47 (dd, 1H, H2, J2,1 = 6.5, J2,3 = 1.7), 6.53 (d, 1H, H1, J1,2 = 6.5). 13C NMR (CDCl3, 100 MHz, 300 K): δ = 26.6, 27.6, 29.2, 33.6 (C8, C9, C10, C11), 43.5, 45.4, 49.6, 52.1 (C7, C4A, C13, C4), 59.6 (C11A), 81.2 (C3), 92.1 (C11B), 135.2, 137.4 (C1, C2), 170.5, 172.5 (CO2Me, NCO).

S3. Refinement

The hydrogen atoms were placed in calculated positions with C—H = 0.93–0.98 Å and refined in the riding model with fixed isotropic displacement parameters [Uiso(H) = 1.5Ueq(C) for CH3 and Uiso(H) = 1.2Ueq(C) for remaining H].

Figures

Fig. 1.

Fig. 1.

Esterification of 5-oxo-3,4,4a,5,7,8,9,10,11,11a-decahydro-3,11b-epoxyazepino[2,1-a]isoindole-4-carboxylic acid with methanol.

Fig. 2.

Fig. 2.

Molecular structure of (I). Displacement ellipsoids are shown at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.

Fig. 3.

Fig. 3.

Crystal packing of (I) along the a axis demonstrating the H-bonded puckered layers parallel to (001). Dashed lines indicate the weak intermolecular C—H···O hydrogen-bonding interactions.

Crystal data

C15H19NO4 Z = 2
Mr = 277.31 F(000) = 296
Triclinic, P1 Dx = 1.332 Mg m3
a = 7.5460 (8) Å Mo Kα radiation, λ = 0.71073 Å
b = 9.6984 (10) Å Cell parameters from 4971 reflections
c = 10.2894 (10) Å θ = 2.3–29.5°
α = 103.857 (2)° µ = 0.10 mm1
β = 94.745 (2)° T = 290 K
γ = 106.620 (2)° Prism, colourless
V = 691.24 (12) Å3 0.30 × 0.25 × 0.25 mm

Data collection

Bruker APEXII CCD diffractometer 2613 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.018
φ and ω scans θmax = 28.0°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Bruker, 2003) h = −9→9
Tmin = 0.959, Tmax = 0.969 k = −12→12
9699 measured reflections l = −13→13
3268 independent reflections

Refinement

Refinement on F2 Primary atom site location: difference Fourier map
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.141 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0765P)2 + 0.153P] where P = (Fo2 + 2Fc2)/3
3268 reflections (Δ/σ)max < 0.001
182 parameters Δρmax = 0.37 e Å3
0 restraints Δρmin = −0.24 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.55178 (19) 0.17386 (17) 0.75675 (18) 0.0471 (4)
H1 0.4515 0.2009 0.7244 0.056*
C2 0.5710 (2) 0.12672 (19) 0.86511 (18) 0.0491 (4)
H2 0.4866 0.1136 0.9255 0.059*
C3 0.7587 (2) 0.09790 (16) 0.87191 (15) 0.0403 (3)
H3 0.7723 0.0281 0.9240 0.048*
C4 0.91211 (19) 0.25575 (15) 0.91807 (14) 0.0356 (3)
H4 0.8735 0.3221 0.9899 0.043*
C4A 0.89714 (17) 0.30474 (14) 0.78642 (13) 0.0320 (3)
H4A 0.8720 0.4006 0.8028 0.038*
C5 1.04722 (18) 0.29945 (15) 0.69682 (14) 0.0352 (3)
O5 1.21692 (14) 0.35060 (14) 0.73347 (12) 0.0513 (3)
N6 0.96070 (17) 0.23177 (15) 0.56738 (12) 0.0414 (3)
C7 1.0663 (3) 0.2066 (3) 0.45696 (19) 0.0663 (5)
H7A 1.0931 0.1134 0.4506 0.080*
H7B 1.1852 0.2864 0.4788 0.080*
C8 0.9697 (5) 0.1996 (3) 0.3221 (2) 0.0920 (8)
H8A 0.8776 0.1011 0.2861 0.110*
H8B 1.0616 0.2089 0.2615 0.110*
C9 0.8730 (4) 0.3136 (3) 0.3181 (2) 0.0914 (8)
H9A 0.9526 0.4088 0.3778 0.110*
H9B 0.8637 0.3246 0.2268 0.110*
C10 0.6832 (4) 0.2847 (3) 0.3564 (2) 0.0873 (8)
H10A 0.6030 0.1913 0.2941 0.105*
H10B 0.6353 0.3632 0.3411 0.105*
C11 0.6606 (3) 0.2749 (2) 0.4981 (2) 0.0620 (5)
H11A 0.5277 0.2389 0.5017 0.074*
H11B 0.7103 0.3751 0.5592 0.074*
C11A 0.7550 (2) 0.17431 (17) 0.55118 (15) 0.0423 (3)
H11C 0.7081 0.0719 0.4914 0.051*
C11B 0.72833 (18) 0.17475 (15) 0.69564 (14) 0.0353 (3)
O12 0.76978 (13) 0.05080 (10) 0.73010 (10) 0.0362 (2)
C13 1.1022 (2) 0.24951 (16) 0.96810 (14) 0.0369 (3)
O13 1.15577 (16) 0.14282 (13) 0.93999 (12) 0.0503 (3)
O14 1.20359 (16) 0.38062 (13) 1.05547 (12) 0.0547 (3)
C14 1.3882 (3) 0.3891 (3) 1.1134 (2) 0.0785 (7)
H14A 1.4432 0.4823 1.1823 0.118*
H14B 1.4649 0.3831 1.0437 0.118*
H14C 1.3793 0.3076 1.1528 0.118*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0251 (7) 0.0436 (8) 0.0698 (11) 0.0131 (6) 0.0051 (7) 0.0090 (7)
C2 0.0352 (8) 0.0505 (9) 0.0634 (10) 0.0136 (6) 0.0208 (7) 0.0147 (7)
C3 0.0389 (7) 0.0414 (8) 0.0462 (8) 0.0148 (6) 0.0143 (6) 0.0171 (6)
C4 0.0346 (7) 0.0389 (7) 0.0350 (7) 0.0170 (6) 0.0074 (5) 0.0063 (5)
C4A 0.0276 (6) 0.0300 (6) 0.0393 (7) 0.0131 (5) 0.0028 (5) 0.0074 (5)
C5 0.0299 (6) 0.0378 (7) 0.0428 (7) 0.0134 (5) 0.0052 (5) 0.0169 (6)
O5 0.0271 (5) 0.0681 (8) 0.0603 (7) 0.0106 (5) 0.0047 (5) 0.0266 (6)
N6 0.0388 (7) 0.0508 (7) 0.0387 (6) 0.0172 (6) 0.0076 (5) 0.0158 (5)
C7 0.0728 (13) 0.0911 (15) 0.0516 (10) 0.0372 (11) 0.0287 (9) 0.0299 (10)
C8 0.153 (3) 0.0921 (17) 0.0439 (11) 0.0550 (17) 0.0284 (13) 0.0186 (11)
C9 0.135 (3) 0.0910 (17) 0.0566 (12) 0.0335 (16) 0.0119 (14) 0.0391 (12)
C10 0.105 (2) 0.0797 (15) 0.0733 (14) 0.0216 (14) −0.0235 (14) 0.0358 (12)
C11 0.0454 (9) 0.0690 (12) 0.0734 (12) 0.0160 (8) −0.0107 (8) 0.0323 (10)
C11A 0.0372 (7) 0.0424 (8) 0.0424 (8) 0.0088 (6) −0.0039 (6) 0.0109 (6)
C11B 0.0273 (6) 0.0330 (7) 0.0450 (7) 0.0113 (5) 0.0011 (5) 0.0093 (5)
O12 0.0351 (5) 0.0309 (5) 0.0438 (5) 0.0132 (4) 0.0073 (4) 0.0085 (4)
C13 0.0395 (7) 0.0419 (7) 0.0327 (7) 0.0179 (6) 0.0056 (5) 0.0105 (5)
O13 0.0452 (6) 0.0456 (6) 0.0635 (7) 0.0234 (5) 0.0030 (5) 0.0123 (5)
O14 0.0458 (6) 0.0534 (7) 0.0541 (7) 0.0215 (5) −0.0103 (5) −0.0062 (5)
C14 0.0509 (11) 0.0831 (15) 0.0813 (14) 0.0250 (10) −0.0251 (10) −0.0073 (11)

Geometric parameters (Å, º)

C1—C2 1.315 (3) C8—C9 1.495 (4)
C1—C11B 1.5182 (19) C8—H8A 0.9700
C1—H1 0.9300 C8—H8B 0.9700
C2—C3 1.519 (2) C9—C10 1.484 (4)
C2—H2 0.9300 C9—H9A 0.9700
C3—O12 1.4380 (18) C9—H9B 0.9700
C3—C4 1.567 (2) C10—C11 1.504 (3)
C3—H3 0.9800 C10—H10A 0.9700
C4—C13 1.5062 (19) C10—H10B 0.9700
C4—C4A 1.5450 (19) C11—C11A 1.531 (2)
C4—H4 0.9800 C11—H11A 0.9700
C4A—C5 1.5226 (18) C11—H11B 0.9700
C4A—C11B 1.5508 (18) C11A—C11B 1.515 (2)
C4A—H4A 0.9800 C11A—H11C 0.9800
C5—O5 1.2228 (17) C11B—O12 1.4386 (16)
C5—N6 1.3502 (19) C13—O13 1.1972 (17)
N6—C7 1.454 (2) C13—O14 1.3389 (18)
N6—C11A 1.4718 (19) O14—C14 1.440 (2)
C7—C8 1.490 (3) C14—H14A 0.9600
C7—H7A 0.9700 C14—H14B 0.9600
C7—H7B 0.9700 C14—H14C 0.9600
C2—C1—C11B 105.23 (13) C10—C9—C8 117.5 (2)
C2—C1—H1 127.4 C10—C9—H9A 107.9
C11B—C1—H1 127.4 C8—C9—H9A 107.9
C1—C2—C3 106.25 (13) C10—C9—H9B 107.9
C1—C2—H2 126.9 C8—C9—H9B 107.9
C3—C2—H2 126.9 H9A—C9—H9B 107.2
O12—C3—C2 100.98 (12) C9—C10—C11 118.87 (19)
O12—C3—C4 101.71 (10) C9—C10—H10A 107.6
C2—C3—C4 106.12 (12) C11—C10—H10A 107.6
O12—C3—H3 115.4 C9—C10—H10B 107.6
C2—C3—H3 115.4 C11—C10—H10B 107.6
C4—C3—H3 115.4 H10A—C10—H10B 107.0
C13—C4—C4A 115.38 (11) C10—C11—C11A 116.12 (18)
C13—C4—C3 112.85 (12) C10—C11—H11A 108.3
C4A—C4—C3 100.04 (11) C11A—C11—H11A 108.3
C13—C4—H4 109.4 C10—C11—H11B 108.3
C4A—C4—H4 109.4 C11A—C11—H11B 108.3
C3—C4—H4 109.4 H11A—C11—H11B 107.4
C5—C4A—C4 119.20 (10) N6—C11A—C11B 100.81 (11)
C5—C4A—C11B 100.41 (11) N6—C11A—C11 112.40 (13)
C4—C4A—C11B 101.76 (10) C11B—C11A—C11 112.17 (14)
C5—C4A—H4A 111.4 N6—C11A—H11C 110.4
C4—C4A—H4A 111.4 C11B—C11A—H11C 110.4
C11B—C4A—H4A 111.4 C11—C11A—H11C 110.4
O5—C5—N6 125.20 (13) O12—C11B—C11A 111.09 (11)
O5—C5—C4A 126.66 (13) O12—C11B—C1 101.52 (11)
N6—C5—C4A 108.11 (11) C11A—C11B—C1 126.86 (12)
C5—N6—C7 121.55 (14) O12—C11B—C4A 99.30 (10)
C5—N6—C11A 114.43 (12) C11A—C11B—C4A 105.24 (11)
C7—N6—C11A 123.77 (14) C1—C11B—C4A 109.56 (11)
N6—C7—C8 114.54 (19) C3—O12—C11B 96.06 (10)
N6—C7—H7A 108.6 O13—C13—O14 123.64 (13)
C8—C7—H7A 108.6 O13—C13—C4 126.23 (13)
N6—C7—H7B 108.6 O14—C13—C4 110.07 (11)
C8—C7—H7B 108.6 C13—O14—C14 115.86 (13)
H7A—C7—H7B 107.6 O14—C14—H14A 109.5
C7—C8—C9 117.0 (2) O14—C14—H14B 109.5
C7—C8—H8A 108.0 H14A—C14—H14B 109.5
C9—C8—H8A 108.0 O14—C14—H14C 109.5
C7—C8—H8B 108.0 H14A—C14—H14C 109.5
C9—C8—H8B 108.0 H14B—C14—H14C 109.5
H8A—C8—H8B 107.3
C11B—C1—C2—C3 −0.09 (17) C10—C11—C11A—N6 65.8 (2)
C1—C2—C3—O12 −32.37 (16) C10—C11—C11A—C11B 178.61 (16)
C1—C2—C3—C4 73.37 (16) N6—C11A—C11B—O12 −76.52 (13)
O12—C3—C4—C13 −91.15 (13) C11—C11A—C11B—O12 163.70 (12)
C2—C3—C4—C13 163.64 (12) N6—C11A—C11B—C1 159.66 (13)
O12—C3—C4—C4A 32.02 (12) C11—C11A—C11B—C1 39.9 (2)
C2—C3—C4—C4A −73.20 (13) N6—C11A—C11B—C4A 30.01 (13)
C13—C4—C4A—C5 17.25 (17) C11—C11A—C11B—C4A −89.77 (14)
C3—C4—C4A—C5 −104.12 (13) C2—C1—C11B—O12 32.57 (15)
C13—C4—C4A—C11B 126.38 (12) C2—C1—C11B—C11A 160.29 (14)
C3—C4—C4A—C11B 5.01 (12) C2—C1—C11B—C4A −71.75 (15)
C4—C4A—C5—O5 −49.29 (19) C5—C4A—C11B—O12 82.53 (11)
C11B—C4A—C5—O5 −159.17 (14) C4—C4A—C11B—O12 −40.49 (11)
C4—C4A—C5—N6 132.54 (12) C5—C4A—C11B—C11A −32.47 (12)
C11B—C4A—C5—N6 22.66 (13) C4—C4A—C11B—C11A −155.48 (11)
O5—C5—N6—C7 3.1 (2) C5—C4A—C11B—C1 −171.63 (11)
C4A—C5—N6—C7 −178.69 (14) C4—C4A—C11B—C1 65.35 (13)
O5—C5—N6—C11A 177.51 (13) C2—C3—O12—C11B 50.39 (12)
C4A—C5—N6—C11A −4.29 (16) C4—C3—O12—C11B −58.82 (11)
C5—N6—C7—C8 −152.76 (19) C11A—C11B—O12—C3 171.91 (11)
C11A—N6—C7—C8 33.4 (3) C1—C11B—O12—C3 −50.81 (12)
N6—C7—C8—C9 43.2 (3) C4A—C11B—O12—C3 61.51 (11)
C7—C8—C9—C10 −81.4 (3) C4A—C4—C13—O13 −91.08 (18)
C8—C9—C10—C11 62.4 (3) C3—C4—C13—O13 23.1 (2)
C9—C10—C11—C11A −48.4 (3) C4A—C4—C13—O14 91.77 (14)
C5—N6—C11A—C11B −16.60 (16) C3—C4—C13—O14 −154.06 (12)
C7—N6—C11A—C11B 157.66 (15) O13—C13—O14—C14 1.6 (2)
C5—N6—C11A—C11 103.02 (16) C4—C13—O14—C14 178.86 (16)
C7—N6—C11A—C11 −82.7 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C1—H1···O5i 0.93 2.59 3.4576 (19) 156
C3—H3···O13ii 0.98 2.55 3.5259 (19) 174
C4A—H4A···O14iii 0.98 2.51 3.4190 (17) 154
C14—H14A···O5iv 0.96 2.56 3.279 (2) 132

Symmetry codes: (i) x−1, y, z; (ii) −x+2, −y, −z+2; (iii) −x+2, −y+1, −z+2; (iv) −x+3, −y+1, −z+2.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: TK5384).

References

  1. Aabid, A. M., Vinata, V. M. & Trivedi, G. K. (2010). J. Heterocycl. Chem. 47, 214–218.
  2. Asher, V., Becu, C., Anteunis, M. J. O. & Callens, R. (1981). Tetrahedron Lett. 22, 141–144.
  3. Bruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Bruker (2003). SADABS. Bruker AXS, Madison, Wisconsin, USA.
  5. Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
  6. Chen, C., Yellol, G. S., Tsai, C., Dalvi, P. B. & Sun, C. (2013). J. Org. Chem. 78, 9738–9747. [DOI] [PubMed]
  7. Evans, D. A., Barnes, D. M., Johnson, J. S., Lectka, T., von Matt, P., Miller, S. J., Murry, J. A., Norcross, R. D., Shaughnessy, E. A. & Campos, K. R. (1999). J. Am. Chem. Soc. 121, 7582–7594.
  8. Hizartzidis, L., Tarleton, M., Gordon, C. P. & McCluskey, A. (2014). RSC Adv. 4, 9709–9722.
  9. Kachkovskyi, G. O. & Kolodiazhnyi, O. I. (2007). Tetrahedron, 63, 12576–12582.
  10. Kharitonov, Y. V., Shults, E. E., Shakirov, M. M. & Tolstikov, G. A. (2009). Russ. J. Org. Chem. 45, 637–649.
  11. Nikolic, N. A. & Beak, P. (1997). Org. Synth. 74, 23–32.
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  14. Shono, T., Matsumura, Y., Tsubata, K. O. & Takata, J. (1981). Chem. Lett. pp. 1121–1124.
  15. Toze, F. A. A., Airiyan, I. K., Nikitina, E. V., Sorokina, E. A. & Khrustalev, V. N. (2011). Acta Cryst. E67, o2852–o2853. [DOI] [PMC free article] [PubMed]
  16. Vogel, P., Cossy, J., Plumet, J. & Arjona, O. (1999). Tetrahedron, 55, 13521–13642.
  17. Wang, C.-C. & Li, W.-D. Z. (2012). J. Org. Chem. 77, 4217–4225. [DOI] [PubMed]
  18. Zaytsev, V. P., Mikhailova, N. M., Airiyan, I. K., Galkina, E. V., Golubev, V. D., Nikitina, E. V., Zubkov, F. I. & Varlamov, A. V. (2012). Chem. Heterocycl. Compd, 48, 505–513.
  19. Zaytsev, V. P., Zubkov, F. I., Motorygina, E. L., Gorbacheva, M. G., Nikitina, E. V. & Varlamov, A. V. (2012). Chem. Heterocycl. C. 47, 1603–1606.
  20. Zaytsev, V. P., Zubkov, F. I., Toze, F. A. A., Orlova, D. N., Eliseeva, M. N., Grudinin, D. G., Nikitina, E. V. & Varlamov, A. V. (2013). J. Heterocycl. Chem. 50, E18–E38.
  21. Zubkov, F. I., Nikitina, E. V., Galeev, T. R., Zaytsev, V. P., Khrustalev, V. N., Novikov, R. A., Orlova, D. N. & Varlamov, A. V. (2014). Tetrahedron, 70, 1659–1690.
  22. Zubkov, F. I., Nikitina, E. V. & Varlamov, A. V. (2005). Russ. Chem. Rev. 74, 639–669.
  23. Zubkov, F. I., Zaitsev, V. P., Piskareva, A. M., Eliseeva, M. N., Nikitina, E. V., Mikhailova, N. M. & Varlamov, A. V. (2010). Russ. J. Org. Chem. 46, 1192–1206.
  24. Zubkov, F. I., Zaytsev, V. P., Nikitina, E. V., Khrustalev, V. N., Gozun, S. V., Boltukhina, E. V. & Varlamov, A. V. (2011). Tetrahedron, 67, 9148–9163.
  25. Zylber, J., Tubul, A. & Brun, P. (1995). Tetrahedron Asymmetry, 6, 377–380.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989015016679/tk5384sup1.cif

e-71-0o729-sup1.cif (368.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015016679/tk5384Isup2.hkl

e-71-0o729-Isup2.hkl (179.4KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015016679/tk5384Isup3.cml

a b a . DOI: 10.1107/S2056989015016679/tk5384fig1.tif

Esterification of 5-oxo-3,4,4a,5,7,8,9,10,11,11a-deca­hydro-3,11b-ep­oxy­azepino[2,1-a]iso­indole-4-carb­oxy­lic acid with methanol.

. DOI: 10.1107/S2056989015016679/tk5384fig2.tif

Mol­ecular structure of (I). Displacement ellipsoids are shown at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.

a . DOI: 10.1107/S2056989015016679/tk5384fig3.tif

Crystal packing of (I) along the a axis demonstrating the H-bonded puckered layers parallel to (001). Dashed lines indicate the weak inter­molecular C—H⋯O hydrogen-bonding inter­actions.

CCDC reference: 1422681

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES