Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Sep 26;71(Pt 10):o788–o789. doi: 10.1107/S2056989015017600

Crystal structure of 2-[(1R,2R,4aS,8aS)-2-hy­droxy-2,5,5,8a-tetra­methyl­deca­hydro­naphthalen-1-yl]-N-(o-tol­yl)acetamide

Dang-Dang Li a, Xin-Wei Shi b, Qiang-Qiang Lu b, Sheng-Kun Li a,*
PMCID: PMC4647428  PMID: 26594480

Abstract

The title compound, C23H35NO2, is an amide derivative of the lactone (+)-sclareolide, and was synthesized from natural sclareol. In the mol­ecular structure, the two six-membered rings (A and B) of the labdane skeleton are trans-fused, and adopt chair conformations. There is an intra­molecular N—H⋯O hydrogen bond present forming an S(7) ring motif. In the crystal, O—H⋯O hydrogen bonds link the mol­ecules into helical chains propagating along the b-axis direction. The chains are linked via C—H⋯π inter­actions, forming a three-dimensional structure.

Keywords: crystal structure, sclareolide, sclareol, hydrogen bonding, C—H⋯π inter­actions

Related literature  

For the chemistry and biological importance of sclareol and sclareolide, see: Barrero et al. (2004); Huang et al. (2001); Mohamad et al. (2005); Sy & Brown (1997). For the synthesis of coronarin and chinensines, see: Margaros & Vassilikogiannakis (2007). For related structures, see: Bernardinelli & Giersch (1985); Shi et al. (2015).graphic file with name e-71-0o788-scheme1.jpg

Experimental  

Crystal data  

  • C23H35NO2

  • M r = 357.52

  • Monoclinic, Inline graphic

  • a = 6.3001 (5) Å

  • b = 13.2663 (10) Å

  • c = 12.7082 (10) Å

  • β = 96.983 (2)°

  • V = 1054.26 (14) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 296 K

  • 0.22 × 0.20 × 0.18 mm

Data collection  

  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002) T min = 0.985, T max = 0.987

  • 3714 measured reflections

  • 3714 independent reflections

  • 3121 reflections with I > 2σ(I)

  • R int = 0.020

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.040

  • wR(F 2) = 0.095

  • S = 1.06

  • 3714 reflections

  • 242 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.11 e Å−3

  • Δρmin = −0.13 e Å−3

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL).

Supplementary Material

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S2056989015017600/su5209sup1.cif

e-71-0o788-sup1.cif (31.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015017600/su5209Isup2.hkl

e-71-0o788-Isup2.hkl (185.7KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015017600/su5209Isup3.cdx

. DOI: 10.1107/S2056989015017600/su5209fig1.tif

A view of the mol­ecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level. The intra­molecular N—H⋯O hydrogen bonds is shown as a dashed line (see Table 1).

a . DOI: 10.1107/S2056989015017600/su5209fig2.tif

Crystal packing of the title compound, viewed along the a axis. The hydrogen bonds are shown as dashed lines (see Table 1), and C-bound H atoms have been omitted for clarity.

CCDC reference: 1426216

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (, ).

Cg is the centroid of benzene ring C1C6.

DHA DH HA D A DHA
N1H1O1 0.86 2.09 2.894(2) 155
O1H1OO2i 0.82 2.00 2.8054(19) 168
C8H8B Cg ii 0.97 2.79 3.632(2) 146
C22H22A Cg iii 0.96 2.98 3.808(3) 145

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

This project was supported by the National Natural Science Foundation of China (Nos. 3140177 and 31200257), the Science and Technology Research and Development Projects of Shaanxi Province (No. 2013KJXX-74) and the National Science Foundation of Jiangsu Province (No. BK20140684).

supplementary crystallographic information

S1. Comment

The title compound, possessing an intact homodrimane skeleton, is an amide derivative of (+)-sclareolide, which was synthesized from natural sclareol (Barrero et al., 2004). The commercially available diterpene (-)-sclareol or the lactone derivative (+)-sclareolide make an ideal starting point for some biologically important natural products (Mohamad et al., 2005). Furthermore, the enanti­ometrically pure sclareolide provided the perfect tool to validate the absolute stereochemistry of certain chinensine family members, whose stereochemistry had been tentatively assigned based on comparisons to other biogenetically close compounds, such as coronarin E (Margaros & Vassilikogiannakis, 2007; Sy & Brown, 1997). Herein, we report on the first synthesis and crystal structure of the title compound.

The molecular structure of the title compound is shown in Fig. 1. The molecule is composed of three main rings (A, B and C). The six-membered rings, A (C13/C14/C17—C20) and B (C9—C14), are trans-fused and have chair conformations. Bond angles to the aliphatic rings and to the aromatic ring C (C1—C6) are in the range of 114.40 (16) to 129.65 (16)° and 117.91 (19) to 122.2 (2)°, respectively. The methyl group at C15 and the side chain at C8 are attached in ideal equatorial positions. There is an intra­molecular N—H···O hydrogen bond forming an S(7) ring motif (Table 1).

In the crystal, O—H···O hydrogen bonds link the molecules into zigzag chains propagating along the b axis direction (Table 1 and Fig. 2). The chains are linked via C—H···π inter­actions forming a three-dimensional structure (Table 1).

S2. Synthesis and crystallization

A solution of DIBAL-H (1.5 M in toluene, 2.58 ml, 3.87 mmol) was added to a cooled (273 K) solution of o-methyl­anilines (0.688 g, 4.0 mmol) in THF (1.7 ml) under nitro­gen. The mixture was allowed to warm up and stirred at rt for 2 h. The concentration of the prepared DIBAL-H-o-CH3C6H4NH2 complex was ca 0.88 M, and was used directly for amino­lysis. To a solution of (+)-sclareolide (0.168 g, 0.67 mmol) in THF (2.5 ml) was added, under nitro­gen at rt, the DIBAL-H-p-C6H4NH2 complexe (3.8 ml, 3.35 mmol). After stirring at rt for 2 h, the reaction was cooled to 273 K, and then quenched with H2O (1.5 ml) and a 1 M aqueous solution of KHSO4 (4 ml). The resulting mixture was extracted with CH2Cl2 (3 × 10 ml). The combined organic layers were washed with brine, dried over Na2SO4 and concentrated. The residue was purified by flash chromatography (200-300 m ilicon) with PE/EtOAc = 6:1 as eluant to give the title compound (215 mg, yield 90 %) as a white solid (Margaros & Georgios, 2007). Colourless crystals were obtained by slow evaporation of a solution in CH2Cl2.

S2.1. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. All the H atoms could be located in difference Fourier maps. In the final cycles of refinement they were included in calculated positions and refined as riding atoms: O—H = 0.82 Å, N—H = 0.86 Å and C—H = 0.93-0.97 Å with Uiso(H) = 1.5Ueq(C) for OH and methyl H atoms and 1.2Ueq(N,C) for other H atoms. The absolute configuration of the title compound is based on that of the starting reagent (+)-sclareolide.

Figures

Fig. 1.

Fig. 1.

A view of the molecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level. The intramolecular N—H···O hydrogen bonds is shown as a dashed line (see Table 1).

Fig. 2.

Fig. 2.

Crystal packing of the title compound, viewed along the a axis. The hydrogen bonds are shown as dashed lines (see Table 1), and C-bound H atoms have been omitted for clarity.

Crystal data

C23H35NO2 F(000) = 392
Mr = 357.52 Dx = 1.126 Mg m3
Monoclinic, P21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2yb Cell parameters from 2068 reflections
a = 6.3001 (5) Å θ = 3.1–23.4°
b = 13.2663 (10) Å µ = 0.07 mm1
c = 12.7082 (10) Å T = 296 K
β = 96.983 (2)° Block, colorless
V = 1054.26 (14) Å3 0.22 × 0.20 × 0.18 mm
Z = 2

Data collection

Bruker SMART APEX CCD diffractometer 3714 independent reflections
Radiation source: fine-focus sealed tube 3121 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.020
phi and ω scans θmax = 25.4°, θmin = 1.6°
Absorption correction: multi-scan (SADABS; Bruker, 2002) h = −7→7
Tmin = 0.985, Tmax = 0.987 k = −15→14
3714 measured reflections l = 0→15

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095 H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0452P)2 + 0.0489P] where P = (Fo2 + 2Fc2)/3
3714 reflections (Δ/σ)max < 0.001
242 parameters Δρmax = 0.11 e Å3
1 restraint Δρmin = −0.13 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.4624 (2) 0.38763 (11) 0.90592 (12) 0.0598 (4)
H1O 0.5362 0.4362 0.9269 0.090*
O2 0.3383 (3) 0.06216 (10) 1.00512 (14) 0.0661 (4)
N1 0.2698 (2) 0.22934 (12) 1.01913 (11) 0.0413 (4)
H1 0.3134 0.2876 1.0012 0.050*
C1 0.0998 (3) 0.23103 (14) 1.08233 (13) 0.0373 (4)
C2 0.0322 (3) 0.32517 (14) 1.11475 (15) 0.0449 (5)
C3 −0.1453 (4) 0.32833 (19) 1.16972 (18) 0.0601 (6)
H3 −0.1947 0.3906 1.1900 0.072*
C4 −0.2502 (4) 0.2428 (2) 1.19504 (17) 0.0647 (6)
H4 −0.3692 0.2472 1.2315 0.078*
C5 −0.1783 (4) 0.1515 (2) 1.16623 (18) 0.0608 (6)
H5 −0.2466 0.0931 1.1848 0.073*
C6 −0.0049 (3) 0.14439 (16) 1.10965 (17) 0.0503 (5)
H6 0.0419 0.0815 1.0898 0.060*
C7 0.3739 (3) 0.15013 (14) 0.98281 (15) 0.0412 (4)
C8 0.5396 (3) 0.17800 (15) 0.91191 (16) 0.0448 (5)
H8A 0.6079 0.1167 0.8914 0.054*
H8B 0.6485 0.2187 0.9523 0.054*
C9 0.4531 (3) 0.23662 (13) 0.80977 (13) 0.0351 (4)
H9 0.2994 0.2439 0.8135 0.042*
C10 0.5404 (3) 0.34563 (14) 0.81224 (16) 0.0461 (5)
C11 0.4370 (4) 0.40191 (15) 0.71547 (18) 0.0601 (6)
H11A 0.5034 0.4677 0.7131 0.072*
H11B 0.2869 0.4123 0.7224 0.072*
C12 0.4552 (4) 0.34729 (15) 0.61180 (17) 0.0584 (6)
H12A 0.6046 0.3408 0.6016 0.070*
H12B 0.3838 0.3862 0.5532 0.070*
C13 0.3536 (3) 0.24265 (16) 0.61310 (15) 0.0458 (5)
H13 0.2113 0.2551 0.6342 0.055*
C14 0.4691 (3) 0.17743 (14) 0.70513 (14) 0.0380 (4)
C15 0.7835 (4) 0.35592 (19) 0.82392 (19) 0.0667 (7)
H15A 0.8226 0.4244 0.8415 0.100*
H15B 0.8349 0.3379 0.7584 0.100*
H15C 0.8459 0.3120 0.8793 0.100*
C16 0.7032 (3) 0.15146 (18) 0.69257 (18) 0.0558 (5)
H16A 0.7818 0.1407 0.7612 0.084*
H16B 0.7663 0.2061 0.6578 0.084*
H16C 0.7073 0.0913 0.6508 0.084*
C17 0.3428 (3) 0.07858 (15) 0.71010 (17) 0.0507 (5)
H17A 0.4192 0.0347 0.7628 0.061*
H17B 0.2047 0.0936 0.7329 0.061*
C18 0.3081 (5) 0.02307 (19) 0.6044 (2) 0.0782 (8)
H18A 0.4451 0.0016 0.5847 0.094*
H18B 0.2220 −0.0366 0.6116 0.094*
C19 0.1974 (4) 0.0897 (2) 0.5183 (2) 0.0848 (9)
H19A 0.0535 0.1032 0.5343 0.102*
H19B 0.1858 0.0530 0.4518 0.102*
C20 0.3085 (4) 0.1906 (2) 0.50341 (17) 0.0658 (6)
C21 0.5087 (5) 0.1731 (3) 0.4470 (2) 0.0896 (9)
H21A 0.6003 0.1248 0.4861 0.134*
H21B 0.5843 0.2356 0.4431 0.134*
H21C 0.4663 0.1482 0.3767 0.134*
C22 0.1549 (6) 0.2562 (3) 0.4303 (2) 0.1163 (13)
H22A 0.1083 0.2197 0.3664 0.174*
H22B 0.2268 0.3167 0.4131 0.174*
H22C 0.0333 0.2732 0.4655 0.174*
C23 0.1454 (4) 0.42079 (16) 1.0915 (2) 0.0669 (7)
H23A 0.0722 0.4774 1.1175 0.100*
H23B 0.1467 0.4273 1.0164 0.100*
H23C 0.2897 0.4188 1.1259 0.100*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0856 (11) 0.0399 (8) 0.0583 (9) −0.0191 (7) 0.0266 (8) −0.0166 (7)
O2 0.0854 (11) 0.0327 (8) 0.0842 (11) 0.0119 (8) 0.0266 (9) 0.0162 (8)
N1 0.0510 (9) 0.0274 (8) 0.0467 (9) −0.0027 (7) 0.0110 (7) 0.0035 (7)
C1 0.0414 (9) 0.0384 (10) 0.0314 (9) −0.0004 (9) 0.0012 (7) 0.0030 (8)
C2 0.0536 (12) 0.0420 (11) 0.0392 (11) 0.0005 (9) 0.0056 (9) −0.0023 (8)
C3 0.0650 (14) 0.0676 (16) 0.0497 (13) 0.0086 (13) 0.0145 (11) −0.0088 (11)
C4 0.0582 (13) 0.092 (2) 0.0467 (13) 0.0002 (14) 0.0160 (10) 0.0072 (13)
C5 0.0603 (13) 0.0724 (16) 0.0495 (13) −0.0172 (12) 0.0059 (11) 0.0188 (12)
C6 0.0605 (13) 0.0429 (11) 0.0473 (12) −0.0045 (10) 0.0051 (10) 0.0092 (9)
C7 0.0497 (11) 0.0344 (11) 0.0379 (10) 0.0053 (9) −0.0009 (8) 0.0056 (8)
C8 0.0452 (11) 0.0438 (11) 0.0449 (11) 0.0107 (9) 0.0044 (8) −0.0001 (9)
C9 0.0365 (9) 0.0314 (9) 0.0383 (10) 0.0025 (8) 0.0075 (7) 0.0001 (8)
C10 0.0594 (12) 0.0352 (11) 0.0459 (12) −0.0093 (9) 0.0151 (9) −0.0071 (8)
C11 0.0855 (16) 0.0337 (12) 0.0642 (15) −0.0013 (11) 0.0215 (12) 0.0091 (10)
C12 0.0787 (15) 0.0495 (13) 0.0489 (13) 0.0011 (11) 0.0152 (11) 0.0159 (10)
C13 0.0433 (10) 0.0532 (12) 0.0415 (11) 0.0001 (9) 0.0079 (8) 0.0025 (9)
C14 0.0395 (10) 0.0366 (10) 0.0397 (10) −0.0017 (8) 0.0116 (8) −0.0019 (7)
C15 0.0656 (14) 0.0696 (16) 0.0664 (15) −0.0320 (12) 0.0143 (11) −0.0156 (12)
C16 0.0493 (12) 0.0572 (13) 0.0639 (14) 0.0062 (10) 0.0193 (10) −0.0053 (11)
C17 0.0610 (13) 0.0417 (12) 0.0520 (13) −0.0102 (10) 0.0172 (10) −0.0090 (9)
C18 0.104 (2) 0.0623 (17) 0.0738 (19) −0.0359 (15) 0.0339 (16) −0.0293 (13)
C19 0.0888 (19) 0.111 (2) 0.0561 (17) −0.0440 (17) 0.0149 (14) −0.0369 (16)
C20 0.0702 (14) 0.0887 (18) 0.0385 (12) −0.0182 (13) 0.0066 (11) −0.0055 (11)
C21 0.106 (2) 0.117 (2) 0.0529 (16) −0.0345 (18) 0.0368 (15) −0.0212 (15)
C22 0.117 (3) 0.166 (4) 0.0575 (17) −0.009 (2) −0.0239 (17) 0.0145 (19)
C23 0.0797 (16) 0.0373 (12) 0.0870 (18) −0.0010 (11) 0.0236 (14) −0.0140 (11)

Geometric parameters (Å, º)

O1—C10 1.453 (2) C13—C20 1.551 (3)
O1—H1O 0.8200 C13—C14 1.562 (3)
O2—C7 1.228 (2) C13—H13 0.9800
N1—C7 1.349 (2) C14—C17 1.539 (3)
N1—C1 1.415 (2) C14—C16 1.541 (3)
N1—H1 0.8600 C15—H15A 0.9600
C1—C6 1.390 (3) C15—H15B 0.9600
C1—C2 1.398 (3) C15—H15C 0.9600
C2—C3 1.390 (3) C16—H16A 0.9600
C2—C23 1.502 (3) C16—H16B 0.9600
C3—C4 1.371 (3) C16—H16C 0.9600
C3—H3 0.9300 C17—C18 1.524 (3)
C4—C5 1.358 (4) C17—H17A 0.9700
C4—H4 0.9300 C17—H17B 0.9700
C5—C6 1.382 (3) C18—C19 1.510 (4)
C5—H5 0.9300 C18—H18A 0.9700
C6—H6 0.9300 C18—H18B 0.9700
C7—C8 1.506 (3) C19—C20 1.533 (4)
C8—C9 1.554 (3) C19—H19A 0.9700
C8—H8A 0.9700 C19—H19B 0.9700
C8—H8B 0.9700 C20—C22 1.529 (4)
C9—C10 1.546 (3) C20—C21 1.542 (4)
C9—C14 1.558 (2) C21—H21A 0.9600
C9—H9 0.9800 C21—H21B 0.9600
C10—C11 1.516 (3) C21—H21C 0.9600
C10—C15 1.527 (3) C22—H22A 0.9600
C11—C12 1.520 (3) C22—H22B 0.9600
C11—H11A 0.9700 C22—H22C 0.9600
C11—H11B 0.9700 C23—H23A 0.9600
C12—C13 1.530 (3) C23—H23B 0.9600
C12—H12A 0.9700 C23—H23C 0.9600
C12—H12B 0.9700
C10—O1—H1O 109.5 C17—C14—C16 108.65 (16)
C7—N1—C1 129.73 (16) C17—C14—C9 107.87 (14)
C7—N1—H1 115.1 C16—C14—C9 111.29 (15)
C1—N1—H1 115.1 C17—C14—C13 107.85 (15)
C6—C1—C2 119.63 (17) C16—C14—C13 114.27 (15)
C6—C1—N1 122.93 (18) C9—C14—C13 106.69 (14)
C2—C1—N1 117.40 (16) C10—C15—H15A 109.5
C3—C2—C1 117.90 (19) C10—C15—H15B 109.5
C3—C2—C23 120.25 (19) H15A—C15—H15B 109.5
C1—C2—C23 121.85 (18) C10—C15—H15C 109.5
C4—C3—C2 122.2 (2) H15A—C15—H15C 109.5
C4—C3—H3 118.9 H15B—C15—H15C 109.5
C2—C3—H3 118.9 C14—C16—H16A 109.5
C5—C4—C3 119.3 (2) C14—C16—H16B 109.5
C5—C4—H4 120.4 H16A—C16—H16B 109.5
C3—C4—H4 120.4 C14—C16—H16C 109.5
C4—C5—C6 120.8 (2) H16A—C16—H16C 109.5
C4—C5—H5 119.6 H16B—C16—H16C 109.5
C6—C5—H5 119.6 C18—C17—C14 113.26 (17)
C5—C6—C1 120.2 (2) C18—C17—H17A 108.9
C5—C6—H6 119.9 C14—C17—H17A 108.9
C1—C6—H6 119.9 C18—C17—H17B 108.9
O2—C7—N1 123.46 (17) C14—C17—H17B 108.9
O2—C7—C8 122.06 (17) H17A—C17—H17B 107.7
N1—C7—C8 114.48 (16) C19—C18—C17 111.1 (2)
C7—C8—C9 115.10 (15) C19—C18—H18A 109.4
C7—C8—H8A 108.5 C17—C18—H18A 109.4
C9—C8—H8A 108.5 C19—C18—H18B 109.4
C7—C8—H8B 108.5 C17—C18—H18B 109.4
C9—C8—H8B 108.5 H18A—C18—H18B 108.0
H8A—C8—H8B 107.5 C18—C19—C20 115.0 (2)
C10—C9—C8 111.30 (15) C18—C19—H19A 108.5
C10—C9—C14 115.40 (14) C20—C19—H19A 108.5
C8—C9—C14 114.09 (15) C18—C19—H19B 108.5
C10—C9—H9 104.9 C20—C19—H19B 108.5
C8—C9—H9 104.9 H19A—C19—H19B 107.5
C14—C9—H9 104.9 C22—C20—C19 107.9 (2)
O1—C10—C11 108.73 (17) C22—C20—C21 107.2 (2)
O1—C10—C15 108.72 (17) C19—C20—C21 109.7 (2)
C11—C10—C15 111.21 (18) C22—C20—C13 109.0 (2)
O1—C10—C9 102.74 (14) C19—C20—C13 108.33 (18)
C11—C10—C9 109.11 (16) C21—C20—C13 114.47 (19)
C15—C10—C9 115.82 (17) C20—C21—H21A 109.5
C10—C11—C12 113.45 (17) C20—C21—H21B 109.5
C10—C11—H11A 108.9 H21A—C21—H21B 109.5
C12—C11—H11A 108.9 C20—C21—H21C 109.5
C10—C11—H11B 108.9 H21A—C21—H21C 109.5
C12—C11—H11B 108.9 H21B—C21—H21C 109.5
H11A—C11—H11B 107.7 C20—C22—H22A 109.5
C11—C12—C13 110.33 (17) C20—C22—H22B 109.5
C11—C12—H12A 109.6 H22A—C22—H22B 109.5
C13—C12—H12A 109.6 C20—C22—H22C 109.5
C11—C12—H12B 109.6 H22A—C22—H22C 109.5
C13—C12—H12B 109.6 H22B—C22—H22C 109.5
H12A—C12—H12B 108.1 C2—C23—H23A 109.5
C12—C13—C20 115.19 (17) C2—C23—H23B 109.5
C12—C13—C14 110.69 (16) H23A—C23—H23B 109.5
C20—C13—C14 116.36 (18) C2—C23—H23C 109.5
C12—C13—H13 104.3 H23A—C23—H23C 109.5
C20—C13—H13 104.3 H23B—C23—H23C 109.5
C14—C13—H13 104.3
C7—N1—C1—C6 −6.7 (3) C11—C12—C13—C20 164.77 (19)
C7—N1—C1—C2 175.54 (18) C11—C12—C13—C14 −60.6 (2)
C6—C1—C2—C3 −2.8 (3) C10—C9—C14—C17 −170.84 (16)
N1—C1—C2—C3 175.04 (18) C8—C9—C14—C17 58.41 (19)
C6—C1—C2—C23 177.3 (2) C10—C9—C14—C16 70.1 (2)
N1—C1—C2—C23 −4.9 (3) C8—C9—C14—C16 −60.7 (2)
C1—C2—C3—C4 1.8 (3) C10—C9—C14—C13 −55.19 (19)
C23—C2—C3—C4 −178.3 (2) C8—C9—C14—C13 174.06 (14)
C2—C3—C4—C5 0.4 (3) C12—C13—C14—C17 173.35 (16)
C3—C4—C5—C6 −1.7 (3) C20—C13—C14—C17 −52.6 (2)
C4—C5—C6—C1 0.6 (3) C12—C13—C14—C16 −65.7 (2)
C2—C1—C6—C5 1.7 (3) C20—C13—C14—C16 68.3 (2)
N1—C1—C6—C5 −176.07 (18) C12—C13—C14—C9 57.69 (19)
C1—N1—C7—O2 −3.4 (3) C20—C13—C14—C9 −168.28 (15)
C1—N1—C7—C8 176.65 (17) C16—C14—C17—C18 −70.6 (2)
O2—C7—C8—C9 120.4 (2) C9—C14—C17—C18 168.6 (2)
N1—C7—C8—C9 −59.7 (2) C13—C14—C17—C18 53.7 (2)
C7—C8—C9—C10 113.33 (18) C14—C17—C18—C19 −56.3 (3)
C7—C8—C9—C14 −113.93 (17) C17—C18—C19—C20 55.1 (3)
C8—C9—C10—O1 −60.06 (18) C18—C19—C20—C22 −168.8 (2)
C14—C9—C10—O1 167.86 (14) C18—C19—C20—C21 74.7 (3)
C8—C9—C10—C11 −175.33 (16) C18—C19—C20—C13 −51.0 (3)
C14—C9—C10—C11 52.6 (2) C12—C13—C20—C22 −60.1 (3)
C8—C9—C10—C15 58.3 (2) C14—C13—C20—C22 168.0 (2)
C14—C9—C10—C15 −73.8 (2) C12—C13—C20—C19 −177.2 (2)
O1—C10—C11—C12 −163.68 (17) C14—C13—C20—C19 50.8 (3)
C15—C10—C11—C12 76.6 (2) C12—C13—C20—C21 60.0 (3)
C9—C10—C11—C12 −52.3 (2) C14—C13—C20—C21 −72.0 (3)
C10—C11—C12—C13 58.1 (3)

Hydrogen-bond geometry (Å, º)

Cg is the centroid of benzene ring C1–C6.

D—H···A D—H H···A D···A D—H···A
N1—H1···O1 0.86 2.09 2.894 (2) 155
O1—H1O···O2i 0.82 2.00 2.8054 (19) 168
C8—H8B···Cgii 0.97 2.79 3.632 (2) 146
C22—H22A···Cgiii 0.96 2.98 3.808 (3) 145

Symmetry codes: (i) −x+1, y+1/2, −z+2; (ii) x+1, y, z; (iii) x, y, z−1.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: SU5209).

References

  1. Barrero, A. F., Alvarez–Manzaneda, E. J., Chahboun, R. & Arteaga, A. F. (2004). Synth. Commun. 34, 3631–3643.
  2. Bernardinelli, G. & Giersch, W. (1985). Acta Cryst. C41, 746–749.
  3. Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Huang, P.-Q., Zheng, X. & Deng, X.-M. (2001). Tetrahedron Lett. 42, 9039–9041.
  5. Margaros, I. & Vassilikogiannakis, G. (2007). J. Org. Chem. 72, 4826–4831. [DOI] [PubMed]
  6. Mohamad, H., Lajis, N. H., Abas, F., Ali, A. M., Sukari, M. A., Kikuzaki, H. & Nakatani, N. (2005). J. Nat. Prod. 68, 285–288. [DOI] [PubMed]
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Shi, X.-W., Li, S.-K., Li, D.-D. & Lu, Q.-Q. (2015). Acta Cryst. E71, o710–o711. [DOI] [PMC free article] [PubMed]
  9. Sy, L.-K. & Brown, G. D. (1997). J. Nat. Prod. 60, 904–908.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S2056989015017600/su5209sup1.cif

e-71-0o788-sup1.cif (31.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015017600/su5209Isup2.hkl

e-71-0o788-Isup2.hkl (185.7KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015017600/su5209Isup3.cdx

. DOI: 10.1107/S2056989015017600/su5209fig1.tif

A view of the mol­ecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level. The intra­molecular N—H⋯O hydrogen bonds is shown as a dashed line (see Table 1).

a . DOI: 10.1107/S2056989015017600/su5209fig2.tif

Crystal packing of the title compound, viewed along the a axis. The hydrogen bonds are shown as dashed lines (see Table 1), and C-bound H atoms have been omitted for clarity.

CCDC reference: 1426216

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES